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— Holographic perspectives on chiral transport and spin dynamics —

Work in completion with Maxim Chernodub
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Dynamical vs. Static Problems
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Dynamical Problem — Spin Hydro

Static Problem — Thermodynamics (EoS)

Sμν(t, x) ωμν(t, x)
∂λJλμν = 0 Jλμν = Lλμν + Sλμν?

Requiring: P(ω) such that ⟨S⟩ = ∂P/∂ω

P(Ω) Finite-T QFT in a rotating frame
Dropping  by looking at L r = 0

Dropping  from the operator coupled with L ω

Pseudo-gauge Problem
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This Talk Discusses
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Two approaches give different answers…
Both are physically possible…

The other is very topological:

One is very unstable:

Weyl points / CS currents

Polarization-induced Nielsen-Olesen Instability
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Introduction of Rotation
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In terms of the fluid language:

βμpμ = β(p0 − Ω × x ⋅ p)
= x × p ⋅ Ω = L ⋅ Ω

Cranking Hamiltonian:

Ĥ → Ĥ − ̂J ⋅ Ω

Can be fully relativistically generalized with Ωμ = εμνρσuν∂ρuσ
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Introduction of Rotation
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Metric in the rotating frame:

Geometrical condition:

<latexit sha1_base64="u6X55MTUN6K2UuB6MKnGX1lJInM="></latexit>

gµω =





1→ !2
Ir

2 →i!Ir2 0 0
→i!Ir2 r2 0 0

0 0 1 0
0 0 0 1





Euclidean Cylindrical + Imaginary Rotation

Analytical 
Continuation

<latexit sha1_base64="Dd0o/4Oj+bCkGNqnyUsM+g+j4uU="></latexit>

(ω, ε, r, z) → (ω + ϑ, ε ↑ ϑ!I , r, z)

Period β = 1/T

Imaginary time 
× Imaginary angular velocity
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Controversy at a Quick Glance
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Pressure of Rotating Fermions

pV =
T

8π2 ∫ d2r⊥dz∫ dp2
r dpz

∞

∑
ℓ=−∞

J2
ℓ(prr)

×
+1/2

∑
s=−1/2

ln[1 + e−(E− ( ℓ + s )Ω ∓μ)/T]

E = p2
r + p2

z + m2

ℓ+s

Ω

cf. Chiral Vortical Effect (by Vilenkin)
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Controversy at a Quick Glance
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Pressure of Fermions at Finite Spin Potential

pV =
T

8π2 ∫ d2r⊥dz∫ dp2
r dpz

∞

∑
ℓ=−∞

J2
ℓ(prr)

×
+1/2

∑
s=−1/2

ln[1 + e−(E− sω ∓μ)/T]

s

=1

Homogeneous System (no centrifugal force)

Energy dispersion shifted by ω ⋅ s
(The same conclusion if we set .)r = 0

ω
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Controversy at a Quick Glance

8

Direct Coupling to the Spin Operator

J0μν = iψ†(xμ∂ν − xν∂μ)ψ + ψ†Σμνψ
Lμν Sμν

ψ†ℋψ → ψ†(iγ0γiDi + γ0m− 1
2 ωμνΣμν)ψ

ℒ = ψ̄(iγμDμ − m + 1
2 ωμνγ0Σμν)ψ

− 1
2 ωγ5γ3Spin ~ Axial Vector Current
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Controversy at a Quick Glance

9

Direct Coupling to the Spin Operator

ℒ = ψ̄(iγμ∂μ − m − 1
2 ωγ5γ3)ψ

Energy-dispersion can be explicitly obtained as

ε2
± = p2

⊥ + ( p2
z + m2± 1

2 ω)2

Dropping  in the end and dropping  from 
the beginning lead to different results!

L L

?
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A Quick Answer
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Modified Hamiltonian with Global Rotation:

Ĥ → Ĥ − ̂J ⋅ Ω [Ĥ , ̂J] = 0

E − (ℓ + s)Ω
Conserved Quantity 
Simultaneous Eigenstate

Modified Hamiltonian with Spin Potential:

Ĥ → Ĥ − ̂S ⋅ ω [Ĥ , ̂S] ≠ 0
Removing  is not equivalent to removing  …L̂ ℓ
cf. Pseudo-gauge ambiguity in Spin Hydro
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Removing ℓ
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The spin (chemical) potential is introduced for the 
conserved total angular momentum and then the 
orbital part is assumed to dissipate.
This treatment is assumed in most of preceding 
works (r = 0).
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FIG. 3: The phase diagram on T -! plane (see text).

(rather than the fermion-anti-fermion) superconducting
pairing phenomenon in the presence of rotation. In the
QCD context, this is the color superconductivity at high
density and low temperature (see e.g. [37] for a recent
review). Quite di↵erent from the chiral condensate, the
diquark pairing state has the spatial angular momentum
(for the relative orbital motion) L = 0 while the total
spin S = 0 (i.e. antisymmetric combination of the two
individual quark spins), again with the total angular mo-
mentum J = 0 for the pair. We use the same NJL model
and for simplicity we focus on the low-temperature high-
density region where the chiral symmetry is already re-
stored. Assuming a mean-field 2SC diquark condensate

�✏↵�3✏ij = �2Gd

D
i ↵

i C�
5 �

j

E
the grand potential in

this case is given by:
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(9)

In the above the mean-field quasiparticle dispersion ✏±n
and ✏�±

n is given by ✏±n = (
p
k2z + k2t +m2±µ)�(n+ 1

2 )!

and ✏�±
n = [(

p
k2z + k2t +m2 ± µ)2 +�2]

1
2 � (n+ 1

2 )!.
The mean-field diquark condensate � at given values of
temperature T , chemical potential µ and rotation !, can
then be determined from the self-consistency equation
through variation of the order parameter: �⌦

��(r) = 0 and
�2⌦

��(r)2 > 0. By numerically solving the equation, we show

in Fig. 4 the � (at radius r = 0.1GeV�1) as a function of

! for several values of T and fixed µ = 400MeV. One can
see that with increasing !, the diquark condensate always
decreases toward zero, through a 1st-order transition at
low T while a smooth crossover at higher T . This result
again confirms the generic rotational suppression e↵ect
on the scalar diquark pairing.

FIG. 4: The mean-field diquark condensate � (at radius r =

0.1GeV
�1

) as a function of ! for several values of T and fixed

value of µ = 400MeV.

Summary and Discussions.— In summary, we have
found a generic rotational suppression e↵ect on the
fermion pairing state with zero angular momentum. This
e↵ect is demonstrated for two well-known pairing phe-
nomena in QCD matter, namely the chiral condensate
and the color superconductivity. The scalar pairing
states in these two examples, while di↵erent in many
aspects, are both found to be reduced with increasing
rotation of the system. In the case of chiral phase transi-
tion, we have identified the phase boundary with a criti-
cal point on the T � ! parameter space.
The rotational e↵ects on pairing phase transitions may

bear interesting implications for a number of physics sys-
tems. The phase diagram of QCD matter on T �! plane
could be quantitatively explored by ab initio lattice sim-
ulations which has recently become feasible [8]. In heavy
ion collisions there is sizable global angular momentum
carried by the hot dense matter (as recently computed
in e.g. [6]): such rotational motion may cause the chiral
restoration to occur at lower temperature as our results
imply, and may bear measurable consequences (e.g. for
dilepton emissions). In the case of neutron stars, the
dense QCD matter is under global rotation which may
reduce the chiral as well as diquark or nucleon-nucleon
pairings and may a↵ect the moment of inertia for such
stars [27, 28]. In the non-relativistic domain, the cold
fermionic gas is an ideal place to study the rotational
suppression e↵ect on the fermion pairing and the very
interesting BCS-BEC crossover phenomenon [38–41]. Fi-
nally, while in this paper we limit ourselves to the study
of slow rotation e↵ects, it is worth commenting that

Jiang-Liao (2016)

Figure 1: Thermodynamic quantities, the pressure (left), the energy density (middle), and the entropy (right), calculated in the HRG model
with and without imposing the mass cuto↵ m < ⇤ with ⇤ = 1.5 GeV.

that the changes of the chemical freezeout curve are as
small as around 10 MeV.

We quantitatively study the e↵ect of ⇤. In Fig. 1 we
plot the thermodynamic quantities with and without the
cuto↵ from Eq. (14) in the standard non-rotating HRG
model. The left panel shows the pressure p, the middle
shows the energy density ", and the right shows the en-
tropy density s as functions of T . To check the validity
of our simplification with ⇤, we shall compare the critical
temperature Tc read out from a thermodynamic criterion.

The critical temperature without ⇤ is known from the
lattice-QCD simulation as Tc = 154 MeV [40]. We can
find the corresponding critical p/T 4, "/T 4, and s/T

3 at
Tc from the crossing points of the orange dashed curves
and the dotted vertical lines. Then, we can estimate the
⇤ modified Tc from the crossing points of the blue solid
curves and the dotted horizontal lines in Fig. 1. The shifts
in Tc read out from p/T

4, "/T 4, and s/T
3 are 3.0 MeV,

5.6 MeV, and 5.2 MeV, respectively. This is the numerical
confirmation that the ⇤ e↵ects on Tc are less than 10 MeV.
In conclusion, our simplification by ⇤ = 1.5 GeV is qualita-
tively harmless for the study of the phase boundary around
Tc and also at the quantitative level the possible error is
⇠ 5 MeV. We assume that the ⇤ e↵ects are negligible for
finite ! as well.

Now let us discuss the deconfinement phase boundaries
at finite µ and !. For this purpose we should make the
thermodynamic quantities not only with T (as in Fig. 1)
but with some proper combination of T , µ, and !. We
employ the normalization given by the Stefan-Boltzmann
limit of a rotating quark-gluon gas:

pSB ⌘ (N2
c � 1) pg +NcNf (pq + pq̄) , (20)

where the number of colors and flavors are Nc = 3, Nf = 2,
respectively. The gluon pressure reads:

pg = � T
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T
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. (21)

Here, we note that the possible angular momenta are only
j = `� 1 and j = `+ 1 and there is no contribution from

Figure 2: Deconfinement transition surface as a function of the
baryon chemical potential µ and the angular velocity !.

sz = 0 because gluons are massless gauge bosons. This
is why J

2
`
(krr) + J

2
`+2(krr) appears above. The quark

pressure reads more straightforwardly:
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and the anti-quark pressure, pq̄, takes almost the same
expression with µ ! �µ.

Here our criterion for the deconfinement transition is
prescribed, in a way similar to Ref. [41], as

p

pSB
(Tc, µ, !) = � . (23)

Here, � is a constant, which is chosen to reproduce Tc(µ =
! = 0) = 154 MeV in accordance with the lattice-QCD
results [40]. This condition fixes � = 0.18 in our calcula-
tion. Now we can numerically solve Eq. (23) to identify
Tc = Tc(µ, !) as plotted in Fig. 2.

Now it is evident that Tc is a decreasing function with
increasing ! just like the behavior along the µ direction.
We cannot directly study the chiral properties within the
HRG model, but it is conceivable that the deconfinement

5

Fujimoto-Fukushima-Hidaka (2021)
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Removing ℓ
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Temperature

Baryon/Quark
Chemical Potential

Angular Velocity

Imaginary
Angular Velocity

Quark Gluon
Plasma

Quark Matter

Weak-coupling
Confined Phase

Strong-coupling
Confined Phase

Chen-Fukushima-Shimada (2023)
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Removing ℓ
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Polarization-induced Nielsen-Olesen Instability

p = −
(N2

c − 1)T
8π2 ∫ dp2

r dpz
+1

∑
s=−1

ln[1 + e−(|p|− sω )/T]

Gluon pressure in the presence of the spin potential:

Usually,  does not exceed  due to the boundary 
and the causality condition. 
(  has a gap )

sω | p |

| p | ∼ 1/R > ω

However, the spin-polarized system is homogeneous, 
not requiring any boundary (not rotating), so this is a 
physical instability!
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Removing ℓ
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Polarization-induced Nielsen-Olesen Instability

p = −
(N2

c − 1)π2T4

3

+1

∑
s=−1

B4(( sωI

2π )mod1)
Is this really such unstable?  For Imaginary :ωI = − iω

B4(x) = x4 − 2x3 + x2 − 1/30

Moment of Inertia 
of Perturbative Gluons

Contribution from 
Gluon Condensation 
with Opposite Sign
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Removing L̂
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For Fermions

ℒ = ψ̄(iγμ∂μ − m − 1
2 ωγ5γ3)ψ
ω ∼ Az

5
Spin potential = Spatial component of the axial gauge field 2

Circularly Polarized Laser

Magnetic
Field

j0 A5
B

3D Dirac Material

FIG. 1. Experimental setup with the magnetic field and the
circularly polarized laser onto a 3D Dirac semimetal.

of the CPE has an advantage that we can easily manipu-
late A5. Moreover, the balanced configuration of charge
and axial-charge (i.e. chirality) turns out to be a system
of capacitor of chirality which should be useful for more
direct CME studies.

The aim of this work is to propose a tractable experi-
mental setup to manifest the CPE in 3D Dirac systems.
A key step to realize the axial-vector field A5 experi-
mentally is, as discussed below, that we utilize a rotating
electric field, i.e., circularly polarized laser rotating in a
two dimensional plane (see Fig. 1 for a schematic illus-
tration). We also refer to a related idea with circular
polarizations in 3D Dirac semimetals20 and more general
photo-induced e↵ects21. Using a simple fermionic de-
scription, we will show that the Dirac point splits into two
Weyl points. With an additional magnetic field22, a finite
density arises from the lowest Landau level (LLL) of one
chirality, which manifests a concrete picture of the CPE
in (1+1)-dimensionally reduced theory of fermions23.

This paper is organized as follows. In Sec. II we discuss
the Floquet e↵ective Hamiltonian to confirm an axial-
vector field. In Sec. III we consider a combination with
a magnetic field and perform explicit calculations for the
charge density and the axial current. Inhomogeneous
electric charge and chirality should be balanced with each
other. We solve these coupled equations of the CPE and
the CME to obtain a balanced distribution of the elec-
tric charge and the chirality in Sec. IV. Finally, Sec. V is
devoted to our discussions and conclusions.

II. FLOQUET EFFECTIVE HAMILTONIAN
AND AXIAL-VECTOR FIELD

We explain how to realize the axial-vector field in a
3D gapless Dirac system by applying a circularly polar-
ized laser. We note that concrete calculations below are
known ones, but a clear recognition of the axial-vector
field has not been established. When continuous laser
fields are imposed externally, the Hamiltonian H(t) be-
comes periodically time-dependent, i.e., H(t+T ) = H(t)
where T = 2⇡/⌦ is the periodicity. Quantum states in
time periodic driving are described by the Floquet the-
ory24,25, that is, a temporal version of the Bloch theorem.

The essence of the Floquet theory is a mapping between
the time-dependent Schrödinger equation and a static
eigenvalue problem. The eigenvalue is called the Floquet
pseudo-energy and plays a role similar to the energy in
a static system. Applications of the Floquet theory to
periodically driven systems with topology changing has
been a recent hot topic26–29 and experiments have also
been done30–33.
To make this paper as self-contained as possible, in this

section, we derive the e↵ective Hamiltonian in an explicit
way, though the final result is not very new but already
known. Let us consider a Hamiltonian, Htot = H0+Hint,
with

H0 = �
0� · p+ �

0
m , Hint = �e�

0� ·A , (3)

that describes the one-particle Dirac system coupled to
an external gauge field and �

µ are the Dirac matrices
satisfying {�µ

, �
⌫} = 2⌘µ⌫ . In an electric field with cir-

cular polarization in the x-y plane, we can write the time-
dependent vector potentials down as

Ax =
E

⌦
cos(⌦t) , Ay =

E

⌦
sin(⌦t) Az = 0 , (4)

where ⌦ is the frequency. We can conveniently de-
compose the interaction part of the Hamiltonian into
two pieces as Hint = e

i⌦t
H� + e

�i⌦t
H+ where H± =

�(eE/⌦)�0
�
± with �

± = 1
2 (�

x ± i�
y). Now we assume

that the the period T = 2⇡/⌦ of the circular polarization
is small enough as compared to the typical observation
timescale. We can then expand the theory in terms of
!/⌦ (with ! being a frequency corresponding to some
excitation energy). Taking the average over T we can
readily find the following e↵ective Hamiltonian27,34–36:

He↵ =
i

T
ln
h
T e

�i
R T
0 dtH(t)

i
' H0 +

1

⌦
[H�, H+] , (5)

to the first order in the expansion. We can also find
the same form from the Floquet Hamiltonian using the
Van Vleck perturbation theory37. Interestingly we can
express the induced term as

Hind ⌘ 1

⌦
[H�, H+] = � (eE)2

⌦3
i�

x
�
y = ���

0
�
z
�5 , (6)

where we defined � ⌘ (eE)2/⌦3. This means that the
circular polarized electric field would induce an axial-
vector background field A5 = �ẑ perpendicular to the
polarization plane. Essentially the same expression was
obtained in the context of “Floquet Weyl semimetal” and
the corresponding Floquet bands were figured out29. The
physics is basically the same as this preceding work29, but
we use a di↵erent language here and, for completeness,
we shall see the energy dispersion relations in the rest of
this section.
The e↵ect of finite � is easily understandable from the

energy dispersion relations. We can immediately diago-
nalize He↵ and the four pseudo-energies read:

"±(p) =
q

p2
x
+ p2

y
+ (

p
p2
z
+m2 ± �)2 (7)

Ebihara-Fukushima-Oka (2015)
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FIG. 1. Experimental setup with the magnetic field and the
circularly polarized laser onto a 3D Dirac semimetal.

of the CPE has an advantage that we can easily manipu-
late A5. Moreover, the balanced configuration of charge
and axial-charge (i.e. chirality) turns out to be a system
of capacitor of chirality which should be useful for more
direct CME studies.

The aim of this work is to propose a tractable experi-
mental setup to manifest the CPE in 3D Dirac systems.
A key step to realize the axial-vector field A5 experi-
mentally is, as discussed below, that we utilize a rotating
electric field, i.e., circularly polarized laser rotating in a
two dimensional plane (see Fig. 1 for a schematic illus-
tration). We also refer to a related idea with circular
polarizations in 3D Dirac semimetals20 and more general
photo-induced e↵ects21. Using a simple fermionic de-
scription, we will show that the Dirac point splits into two
Weyl points. With an additional magnetic field22, a finite
density arises from the lowest Landau level (LLL) of one
chirality, which manifests a concrete picture of the CPE
in (1+1)-dimensionally reduced theory of fermions23.

This paper is organized as follows. In Sec. II we discuss
the Floquet e↵ective Hamiltonian to confirm an axial-
vector field. In Sec. III we consider a combination with
a magnetic field and perform explicit calculations for the
charge density and the axial current. Inhomogeneous
electric charge and chirality should be balanced with each
other. We solve these coupled equations of the CPE and
the CME to obtain a balanced distribution of the elec-
tric charge and the chirality in Sec. IV. Finally, Sec. V is
devoted to our discussions and conclusions.

II. FLOQUET EFFECTIVE HAMILTONIAN
AND AXIAL-VECTOR FIELD

We explain how to realize the axial-vector field in a
3D gapless Dirac system by applying a circularly polar-
ized laser. We note that concrete calculations below are
known ones, but a clear recognition of the axial-vector
field has not been established. When continuous laser
fields are imposed externally, the Hamiltonian H(t) be-
comes periodically time-dependent, i.e., H(t+T ) = H(t)
where T = 2⇡/⌦ is the periodicity. Quantum states in
time periodic driving are described by the Floquet the-
ory24,25, that is, a temporal version of the Bloch theorem.

The essence of the Floquet theory is a mapping between
the time-dependent Schrödinger equation and a static
eigenvalue problem. The eigenvalue is called the Floquet
pseudo-energy and plays a role similar to the energy in
a static system. Applications of the Floquet theory to
periodically driven systems with topology changing has
been a recent hot topic26–29 and experiments have also
been done30–33.
To make this paper as self-contained as possible, in this

section, we derive the e↵ective Hamiltonian in an explicit
way, though the final result is not very new but already
known. Let us consider a Hamiltonian, Htot = H0+Hint,
with

H0 = �
0� · p+ �
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m , Hint = �e�

0� ·A , (3)

that describes the one-particle Dirac system coupled to
an external gauge field and �

µ are the Dirac matrices
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cular polarization in the x-y plane, we can write the time-
dependent vector potentials down as

Ax =
E
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cos(⌦t) , Ay =
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sin(⌦t) Az = 0 , (4)
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is small enough as compared to the typical observation
timescale. We can then expand the theory in terms of
!/⌦ (with ! being a frequency corresponding to some
excitation energy). Taking the average over T we can
readily find the following e↵ective Hamiltonian27,34–36:
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where we defined � ⌘ (eE)2/⌦3. This means that the
circular polarized electric field would induce an axial-
vector background field A5 = �ẑ perpendicular to the
polarization plane. Essentially the same expression was
obtained in the context of “Floquet Weyl semimetal” and
the corresponding Floquet bands were figured out29. The
physics is basically the same as this preceding work29, but
we use a di↵erent language here and, for completeness,
we shall see the energy dispersion relations in the rest of
this section.
The e↵ect of finite � is easily understandable from the
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FIG. 1. Experimental setup with the magnetic field and the
circularly polarized laser onto a 3D Dirac semimetal.

of the CPE has an advantage that we can easily manipu-
late A5. Moreover, the balanced configuration of charge
and axial-charge (i.e. chirality) turns out to be a system
of capacitor of chirality which should be useful for more
direct CME studies.

The aim of this work is to propose a tractable experi-
mental setup to manifest the CPE in 3D Dirac systems.
A key step to realize the axial-vector field A5 experi-
mentally is, as discussed below, that we utilize a rotating
electric field, i.e., circularly polarized laser rotating in a
two dimensional plane (see Fig. 1 for a schematic illus-
tration). We also refer to a related idea with circular
polarizations in 3D Dirac semimetals20 and more general
photo-induced e↵ects21. Using a simple fermionic de-
scription, we will show that the Dirac point splits into two
Weyl points. With an additional magnetic field22, a finite
density arises from the lowest Landau level (LLL) of one
chirality, which manifests a concrete picture of the CPE
in (1+1)-dimensionally reduced theory of fermions23.

This paper is organized as follows. In Sec. II we discuss
the Floquet e↵ective Hamiltonian to confirm an axial-
vector field. In Sec. III we consider a combination with
a magnetic field and perform explicit calculations for the
charge density and the axial current. Inhomogeneous
electric charge and chirality should be balanced with each
other. We solve these coupled equations of the CPE and
the CME to obtain a balanced distribution of the elec-
tric charge and the chirality in Sec. IV. Finally, Sec. V is
devoted to our discussions and conclusions.

II. FLOQUET EFFECTIVE HAMILTONIAN
AND AXIAL-VECTOR FIELD

We explain how to realize the axial-vector field in a
3D gapless Dirac system by applying a circularly polar-
ized laser. We note that concrete calculations below are
known ones, but a clear recognition of the axial-vector
field has not been established. When continuous laser
fields are imposed externally, the Hamiltonian H(t) be-
comes periodically time-dependent, i.e., H(t+T ) = H(t)
where T = 2⇡/⌦ is the periodicity. Quantum states in
time periodic driving are described by the Floquet the-
ory24,25, that is, a temporal version of the Bloch theorem.

The essence of the Floquet theory is a mapping between
the time-dependent Schrödinger equation and a static
eigenvalue problem. The eigenvalue is called the Floquet
pseudo-energy and plays a role similar to the energy in
a static system. Applications of the Floquet theory to
periodically driven systems with topology changing has
been a recent hot topic26–29 and experiments have also
been done30–33.
To make this paper as self-contained as possible, in this

section, we derive the e↵ective Hamiltonian in an explicit
way, though the final result is not very new but already
known. Let us consider a Hamiltonian, Htot = H0+Hint,
with

H0 = �
0� · p+ �

0
m , Hint = �e�

0� ·A , (3)

that describes the one-particle Dirac system coupled to
an external gauge field and �

µ are the Dirac matrices
satisfying {�µ

, �
⌫} = 2⌘µ⌫ . In an electric field with cir-

cular polarization in the x-y plane, we can write the time-
dependent vector potentials down as

Ax =
E

⌦
cos(⌦t) , Ay =

E

⌦
sin(⌦t) Az = 0 , (4)

where ⌦ is the frequency. We can conveniently de-
compose the interaction part of the Hamiltonian into
two pieces as Hint = e

i⌦t
H� + e

�i⌦t
H+ where H± =

�(eE/⌦)�0
�
± with �

± = 1
2 (�

x ± i�
y). Now we assume

that the the period T = 2⇡/⌦ of the circular polarization
is small enough as compared to the typical observation
timescale. We can then expand the theory in terms of
!/⌦ (with ! being a frequency corresponding to some
excitation energy). Taking the average over T we can
readily find the following e↵ective Hamiltonian27,34–36:

He↵ =
i

T
ln
h
T e

�i
R T
0 dtH(t)

i
' H0 +

1

⌦
[H�, H+] , (5)

to the first order in the expansion. We can also find
the same form from the Floquet Hamiltonian using the
Van Vleck perturbation theory37. Interestingly we can
express the induced term as

Hind ⌘ 1

⌦
[H�, H+] = � (eE)2

⌦3
i�

x
�
y = ���

0
�
z
�5 , (6)

where we defined � ⌘ (eE)2/⌦3. This means that the
circular polarized electric field would induce an axial-
vector background field A5 = �ẑ perpendicular to the
polarization plane. Essentially the same expression was
obtained in the context of “Floquet Weyl semimetal” and
the corresponding Floquet bands were figured out29. The
physics is basically the same as this preceding work29, but
we use a di↵erent language here and, for completeness,
we shall see the energy dispersion relations in the rest of
this section.
The e↵ect of finite � is easily understandable from the

energy dispersion relations. We can immediately diago-
nalize He↵ and the four pseudo-energies read:

"±(p) =
q

p2
x
+ p2

y
+ (

p
p2
z
+m2 ± �)2 (7)
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FIG. 2. Pseudo-energies ±"�(p) as a function of px,y =p
p2x + p2y and pz for � > m [in the figure (m,�) = (1, 5)

was chosen].

and �"±(p). We display low-lying ±"�(p) in Fig. 2.
which shows that the Dirac point splits into two Weyl
points with a displacement given by

�p =
p
�2 �m2 . (8)

In fact, � is nothing but a momentum shift along the
z-axis that is positive for the right chirality state (i.e.,
�5 R = + R) and negative for the left chirality state
(i.e., �5 L = � L). We point out that time-resolved
ARPES should be able to see this splitting of Weyl
points in a similar manner as the gap opening26 of the
2D Dirac point already observed experimentally32. In
order that the Weyl point splitting, � = (eE)2/⌦3, is
large while keeping small expanding parameter, eE/⌦2,
in Eq. (6), we should choose large enough E and ⌦. If
we take E ⇠ 1015 V/m and ⌦ ⇠ 1018 Hz, for exam-
ple, which could be available from The European X-Ray
Laser Project XFEL at DESY and also Extreme Light
Infrastructure (ELI), the resulting Weyl node splitting
is estimated as � ⇠ 108 m�1, which is of the same or-
der as the observed one of ordinary Weyl semimetals12,13

and should be experimentally observable. If experiments
could resolve smaller Weyl node splitting, smaller E and
⌦ may be possible. We also note that, if we treat the
Floquet Hamiltonian without expansion, we can still an-
ticipate qualitatively same (and more sizable) e↵ects for
even smaller ⌦. Interestingly, as long as � > m, the
pseudo-energy always has two Weyl points (if they are
inside of the Brillouin zone) even for m > 0. Therefore,
we do not have to require strict massless-ness to realize
gapless dispersions, which should be a quite useful fea-
ture for practical applications including the Schwinger
or Landau-Zener e↵ect. In what follows below, we limit
ourselves to the m = 0 case just for technical simplicity.

The generalization from the one-particle Hamiltonian
to the many-body field theory is straightforward. It is
then more convenient to work with the Lagrangian den-
sity corresponding to He↵, that we can express as

Le↵ =  ̄(/p�m) + � ̄�
z
�5 + µA ̄�

0
�5 . (9)

Here we include µA for completeness, which is a necessary
ingredient for the CME. It is clear from this Hamiltonian

FIG. 3. Energy dispersion relations of the LLL (i.e., px =
py = 0) with (a) chiral chemical potential µA relevant for
the CME and (b) chiral shift � relevant for the CPE. Filled
(blank) dots represent states that are newly occupied (unoc-
cupied).

that we should identify � as a parameter representing
what is called the chiral shift38,39. We should emphasize
a crucial di↵erence from the idea of the chiral shift that
is not directly controllable but secondarily generated by
finite-density e↵ects. In our present problem, however,
� is an external parameter that we can control with the
amplitude and/or the frequency of the circular polarized
electric field. What we will see is that, conversely to
discussions on the chiral shift38,39, a finite density is gen-
erated by this externally given � 6= 0.

III. RESPONSE TO THE MAGNETIC FIELD

It is the most essential point that we can regard �

as the z component of an axial-vector field; � ⇠ A
z

5.
Then, if we further impose an external magnetic field
B

z = F
12 on this system, we should expect the following

anomaly relation; j0 / �B, immediately from the CPE
or Eq. (2). We will confirm this expectation with explicit
calculations, but before going into details, let us consider
an intuitive interpretation to understand Eq. (2).
For the purpose of comprehensible illustration it would

be useful to sketch the dispersion relations in the same
way as in a CME literature4. Figure 3 (a) shows the
dispersion relations of the lowest Landau levels (LLLs)
relevant for the CME with � = 0 and µA 6= 0. In this
case with µA > 0 the energies of the right-handed (R)
particles are decreased, while those of the left-handed
(L) particles are increased. Note that only one spin state
is chosen out for the LLL depending on the sign of eB.
Therefore, a positive µA favors more R than L. This
explains how a finite chiral density is accumulated, while
a net density remains vanishing. Also we see that the
CME current flows from the LLL with µA and gives an
intuitive picture for the anomaly relation (1). In contrast,
as seen in Fig. 3 (b) for � > 0, the energy dispersion of R
(and L) is shifted positively (and negatively, respectively)
along the pz axis. Thus, assuming that particles can flow
in through the p

z-integration edges [as indicated by the
dashed lines in Fig. 3 (b)], both L and R LLL states
increase their occupation. This is the mechanism of how
a finite density develops from a combination of � and
B (that causes the dimensional reduction) through the

Ebihara-Fukushima-Oka (2015)

Chernodub-Ferreiros-Grushin- 
-Landsteiner-Vozmediano, Phys.Rept. (2022)
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In QED in the Jaffe-Manohar decomposition:

J = −
1
2

ψ̄γ5γψ + E × A − iψ†(x × ∇)ψ + E(x × ∇)A

1
2 ΔΣ ΔG Lq Lg

E ⋅ B = ∂t(A ⋅ B) + ∇ ⋅ (A0B + E × A) ∼ ∂μKμ

We are proposing the gauge-spin coupling as

Δℒ = N∫ d4x ω ⋅ K
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This is the spatial version of the chiral chemical pot.:
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On chiral magnetic effect and holography

V.A. Rubakov

Institute for Nuclear Research of the Russian Academy of Sciences,

60th October Anniversary Prospect, 7a, 117312 Moscow, Russia

Abstract

We point out that there is a difference between the behavior of fermionic systems

(and their holographic analogs) in a background axial vector field, on the one hand,

and at finite chiral chemical potential, on the other. In the former case, the electric

current induced by constant background axial field A0 and magnetic field B vanishes,

while in the latter it is given by the anomaly-prescribed formula j = µA

2π2 e
2NcB.

1 Introduction and summary

The chiral magnetic effect (CME) [1, 2], in its simplest version, is that chirally asymmetric

quark matter in background magnetic field B develops electric current directed along B.
The “canonical” expression for the current in a theory with one quark flavor of unit electric

charge e = 1 and Nc colors is [2] (see also Refs. [3, 4, 5, 6, 7, 8] for related discussion)

j =
µA

2π2
NcB , (1)

where µA is the chemical potential to the chiral charge. There is some debate on whether

this result is subject to strong interaction corrections [9, 10, 11, 12, 13, 14], and, in partic-
ular, whether it holds in holographic models of QCD [11, 12, 13]. The purpose of this note

is to point out that Refs. [11, 12, 13] study, in fact, quite a different situation than that
relevant for CME. In effect, they consider the electric current induced by the joint action of

the background magnetic field B and background temporal component of an axial vector field

AA
µ (the latter field couples to the chiral current). Furthermore, they require that when both

electromagnetic (vector) field AV
µ (x) and axial vector field AA

µ (x) are present, the theory re-

mains invariant under electromagnetic gauge transformations. The latter requirement yields
the Bardeen counterterm [15] that contributes to the expression for the electric current1.

1Ref. [13] proceeds by adding a contribution to the electric current coming from the scalar sector of the
holographic model, and arrives at several expressions, one of which coincides with (1). Ref. [16] claims that
the result (1) is obtained for canonical ensemble, while the electric current calculated for grand canonical
ensemble vanishes.

1

arXiv:1005.1888 [hep-ph]

If it did not vanish in our background, and had the form J ∝ AA
0 · B, then the lowest

derivative term in the effective action would have precisely the form of the Bardeen action,

Seff [A
V , AA] = const ·

∫

d4x εµνλρAA
µA

V
ν F

V
λρ (11)

However, the theory, and hence the effective action, is invariant under electromagnetic gauge
transformations, so such a term cannot be generated.

Let us now switch off the axial vector field AA
µ and introduce instead finite axial chemical

potential µA. In the first place, the chemical potential is constant in space and time, so

the constraints coming from the requirement of the electromagnetic gauge invariance are
relaxed. Second, the chemical potential can be introduced to a conserved quantity only. In
other words, a quantity well defined for a microcanonical ensemble is a quantum number

that does not change when other parameters (like background fields) vary. Precisely because
of the anomaly (7), the integral of J5

0 over space is not conserved. The conserved chiral

charge is

Q5 =

∫

d3x J5

0 − 3κ

∫

d3x εijkAV
i F

V
jk

Since J0 is gauge invariant, this chiral charge is invariant under the electromagnetic gauge
transformations. Upon adding the chemical potential, the (Euclidean) action of the theory
becomes

S[µ] = S − µA

∫

dx0 Q5 =

(

S −

∫

d4xµAJ
5

0

)

+ 3κµA

∫

d4x εijkAV
i F

V
jk (12)

where S is the original action of the theory. The dynamical degrees of freedom enter only the
term in parenthesis, which is invariant under electromagnetic gauge transformations even for
µA varying in space and time. In other words, when considering the dynamics induced by

this term, one can treat µA as the static and homogeneous axial vector field (in the model of
section 2 this is precisely the dynamics studied there). According to the above argument, this

dynamics does not induce the term (11) in the effective action. Hence, the lowest derivative
term in the effective action is simply given by the last term in (12) (cf. Ref. [4]),

Seff = 3κµA

∫

d4x εijkAV
i F

V
jk (13)

By varying this effective action with respect to Ai, one arrives at the result (1).
To conclude, any model with correct anomaly structure yields the effective action (13),

and hence the exression (1) for the electric current induced in chirally asymmteric matter.

The author is indebted to A. Gorsky, D. Kharzeev, D.T. Son and M. Stephanov for useful

comments. This work has been supported in part by Russian Foundation for Basic Research
grant 08-02-00473.
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More generally:

Δℒ = N∫ d4x (∂μθ) Kμ

= − N∫ d4x θ ∂μKμ

ωμ

Introducing the spin potential in the gauge sector 
is equivalent to introducing inhomogeneous  angle! θ

See: Vazifeh-Franz (2013) for applications in cond-mat.
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We already know the answer: b = − ∂zθ

3

Figure 1. Schematic illustration for the physical setup. Two
perfect conductor plates at z = 0 and z = Lz constitute the
transverse planes coordinated by x̂ and ŷ. The space between
two plates is filled with chiral matter represented by the axion
electrodynamics.

It is known that a timelike bµ may incur tachyonic in-
stabilities at long wavelength, which would impede the
covariant quantization of the electromagnetic fields [83–
85]. Also, we point out that the Casimir e↵ect with con-
stant b0 6= 0 but b = 0 has been addressed in Ref. [80],
where no sign flip of the Casimir force was observed.
Thus, we focus on the situation with b0 = 0 and b 6= 0
in the present work. From transverse symmetry, we pos-
tulate b = bẑ, that is, b is directed perpendicular to the
two plates. In our setup with such b 6= 0, the reflection
symmetry is explicitly broken, which suggests that there
may arise a repulsive component in the Casimir force.
Indeed, we will confirm this with concrete calculations.

III. VACUUM ENERGY

We impose the Dirichlet boundary condition, Aµ =
0, at z = 0 and z = Lz, which is consistent with the
properties of perfect conductor. Moreover, we take the
limit Lx,y ! 1. Then, we discretize the electromagnetic
wave vector as k = (kx, ky, kz = n⇡/Lz) with n 2 Z.

A canonical quantization scheme for Aµ with covariant
gauge was proposed in Ref. [86–88], in which a tiny pho-
ton mass was introduced. Instead, here we adopt a path
integral quantization with ghost fields. The Lagrangian
density with the gauge fixing term parameterized by ⇠,
and the ghost fields c and c̄, reads:

L = Lphoton + Lghost

= �1

4
Fµ⌫F

µ⌫ � 1

4
bA⌫ F̃

z⌫ +
1

2⇠
(@µA

µ)2 +
1

2
@µc̄@

µc .

(8)

The vacuum energy density " is obtained from the gen-
erating functionals as follows:

V T" = i logZphoton + i logZghost . (9)

Here V = LxLyLz is the volume of the vacuum region
between two plates and T is the time interval in the path

integral. We keep them finite in the intermediate calcula-
tions and take the limits of Lx,y ! 1 and T ! 1 in the
end. Beginning with the calculation of the photon part,
we rewrite the photon Lagrangian as a bilinear form of
Aµ in momentum space:

Lphoton = �1

2
AµG

�1

µ⌫A⌫ , (10)

where

G�1

µ⌫ = gµ⌫k
2 + i✏µ⌫↵�b

↵k� �
✓
1� 1

⇠

◆
kµk⌫ . (11)

Then we have:

i logZphoton = � i

2
logDet

⇥
G�1

µ⌫ (k)
⇤
, (12)

where Det represents the determinant with respect to
the momentum index k and the Lorentz indices µ, ⌫. We
firstly calculate the determinant over Lorentz indices as

Det
⇥
G�1

µ⌫ (k)
⇤
=
Y

k

⇠�1
�
k2
�2 h�

�
k2
�2

+ b2(k2 + k2z)
i
.

(13)
For further calculations we employ the following notation
for the energy dispersion relations determined from the
on-shell condition [89]:

!2

1,2 = k2 , (14)

!2

± = k2x + k2y +

 r
k2z +

b2

4
± b

2

!2

. (15)

We note that !1,2 are zeros of (k2)2 in Eq. (13). Since
(k2)2 appears from the longitudinal and the scalar polar-
izations, the modes with !1,2 are unphysical and their
contributions to vacuum energy are cancelled by the
ghosts. The physical modes !± are zeros of �(k2)2 +
b2(k2 + k2z) and they correspond to the right- and left-
handed photons. With these dispersion relations we ex-
press the vacuum energy contributed from the photon
as

i logZphoton = �
X

i=1,2,±

X

k

i

2
log
⇥
k2
0
� !2

i (k)
⇤
, (16)

where we have dropped an irrelevant constant ⇠�1. By a
similar computation for the ghost, we acquire:

i logZghost = 2
X

k

i

2
log
�
k2
0
� k2

�
. (17)

Notably Eq. (17) cancels the contribution from the un-
physical modes with i = 1, 2 in Eq. (16). Summing the
photon and the ghost contributions up, we get,

V T" = � i

2

X

±

X

k

log
⇥
k2
0
� !2

±(k)
⇤
. (18)
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Figure 1. Schematic illustration for the physical setup. Two
perfect conductor plates at z = 0 and z = Lz constitute the
transverse planes coordinated by x̂ and ŷ. The space between
two plates is filled with chiral matter represented by the axion
electrodynamics.

It is known that a timelike bµ may incur tachyonic in-
stabilities at long wavelength, which would impede the
covariant quantization of the electromagnetic fields [83–
85]. Also, we point out that the Casimir e↵ect with con-
stant b0 6= 0 but b = 0 has been addressed in Ref. [80],
where no sign flip of the Casimir force was observed.
Thus, we focus on the situation with b0 = 0 and b 6= 0
in the present work. From transverse symmetry, we pos-
tulate b = bẑ, that is, b is directed perpendicular to the
two plates. In our setup with such b 6= 0, the reflection
symmetry is explicitly broken, which suggests that there
may arise a repulsive component in the Casimir force.
Indeed, we will confirm this with concrete calculations.

III. VACUUM ENERGY

We impose the Dirichlet boundary condition, Aµ =
0, at z = 0 and z = Lz, which is consistent with the
properties of perfect conductor. Moreover, we take the
limit Lx,y ! 1. Then, we discretize the electromagnetic
wave vector as k = (kx, ky, kz = n⇡/Lz) with n 2 Z.

A canonical quantization scheme for Aµ with covariant
gauge was proposed in Ref. [86–88], in which a tiny pho-
ton mass was introduced. Instead, here we adopt a path
integral quantization with ghost fields. The Lagrangian
density with the gauge fixing term parameterized by ⇠,
and the ghost fields c and c̄, reads:

L = Lphoton + Lghost

= �1

4
Fµ⌫F

µ⌫ � 1

4
bA⌫ F̃

z⌫ +
1

2⇠
(@µA

µ)2 +
1

2
@µc̄@

µc .

(8)

The vacuum energy density " is obtained from the gen-
erating functionals as follows:

V T" = i logZphoton + i logZghost . (9)

Here V = LxLyLz is the volume of the vacuum region
between two plates and T is the time interval in the path

integral. We keep them finite in the intermediate calcula-
tions and take the limits of Lx,y ! 1 and T ! 1 in the
end. Beginning with the calculation of the photon part,
we rewrite the photon Lagrangian as a bilinear form of
Aµ in momentum space:

Lphoton = �1

2
AµG

�1

µ⌫A⌫ , (10)

where

G�1

µ⌫ = gµ⌫k
2 + i✏µ⌫↵�b

↵k� �
✓
1� 1

⇠

◆
kµk⌫ . (11)

Then we have:

i logZphoton = � i

2
logDet

⇥
G�1

µ⌫ (k)
⇤
, (12)

where Det represents the determinant with respect to
the momentum index k and the Lorentz indices µ, ⌫. We
firstly calculate the determinant over Lorentz indices as

Det
⇥
G�1

µ⌫ (k)
⇤
=
Y

k

⇠�1
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k2
�2 h�
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k2
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+ b2(k2 + k2z)
i
.

(13)
For further calculations we employ the following notation
for the energy dispersion relations determined from the
on-shell condition [89]:

!2

1,2 = k2 , (14)

!2

± = k2x + k2y +

 r
k2z +

b2

4
± b

2

!2

. (15)

We note that !1,2 are zeros of (k2)2 in Eq. (13). Since
(k2)2 appears from the longitudinal and the scalar polar-
izations, the modes with !1,2 are unphysical and their
contributions to vacuum energy are cancelled by the
ghosts. The physical modes !± are zeros of �(k2)2 +
b2(k2 + k2z) and they correspond to the right- and left-
handed photons. With these dispersion relations we ex-
press the vacuum energy contributed from the photon
as

i logZphoton = �
X

i=1,2,±

X

k

i

2
log
⇥
k2
0
� !2

i (k)
⇤
, (16)

where we have dropped an irrelevant constant ⇠�1. By a
similar computation for the ghost, we acquire:

i logZghost = 2
X

k

i

2
log
�
k2
0
� k2

�
. (17)

Notably Eq. (17) cancels the contribution from the un-
physical modes with i = 1, 2 in Eq. (16). Summing the
photon and the ghost contributions up, we get,

V T" = � i

2

X

±

X

k

log
⇥
k2
0
� !2

±(k)
⇤
. (18)

Qiu-Cao-Huang (2016)

For the application to the Casimir force, 
see: Fukushima-Imaki-Qiu (2019)

3

Perfect 
Conductor

Perfect 
Conductor

Chiral Matter

Figure 1. Schematic illustration for the physical setup. Two
perfect conductor plates at z = 0 and z = Lz constitute the
transverse planes coordinated by x̂ and ŷ. The space between
two plates is filled with chiral matter represented by the axion
electrodynamics.

It is known that a timelike bµ may incur tachyonic in-
stabilities at long wavelength, which would impede the
covariant quantization of the electromagnetic fields [83–
85]. Also, we point out that the Casimir e↵ect with con-
stant b0 6= 0 but b = 0 has been addressed in Ref. [80],
where no sign flip of the Casimir force was observed.
Thus, we focus on the situation with b0 = 0 and b 6= 0
in the present work. From transverse symmetry, we pos-
tulate b = bẑ, that is, b is directed perpendicular to the
two plates. In our setup with such b 6= 0, the reflection
symmetry is explicitly broken, which suggests that there
may arise a repulsive component in the Casimir force.
Indeed, we will confirm this with concrete calculations.

III. VACUUM ENERGY

We impose the Dirichlet boundary condition, Aµ =
0, at z = 0 and z = Lz, which is consistent with the
properties of perfect conductor. Moreover, we take the
limit Lx,y ! 1. Then, we discretize the electromagnetic
wave vector as k = (kx, ky, kz = n⇡/Lz) with n 2 Z.

A canonical quantization scheme for Aµ with covariant
gauge was proposed in Ref. [86–88], in which a tiny pho-
ton mass was introduced. Instead, here we adopt a path
integral quantization with ghost fields. The Lagrangian
density with the gauge fixing term parameterized by ⇠,
and the ghost fields c and c̄, reads:

L = Lphoton + Lghost

= �1

4
Fµ⌫F

µ⌫ � 1

4
bA⌫ F̃

z⌫ +
1

2⇠
(@µA

µ)2 +
1

2
@µc̄@

µc .

(8)

The vacuum energy density " is obtained from the gen-
erating functionals as follows:

V T" = i logZphoton + i logZghost . (9)

Here V = LxLyLz is the volume of the vacuum region
between two plates and T is the time interval in the path

integral. We keep them finite in the intermediate calcula-
tions and take the limits of Lx,y ! 1 and T ! 1 in the
end. Beginning with the calculation of the photon part,
we rewrite the photon Lagrangian as a bilinear form of
Aµ in momentum space:

Lphoton = �1

2
AµG

�1

µ⌫A⌫ , (10)

where

G�1

µ⌫ = gµ⌫k
2 + i✏µ⌫↵�b

↵k� �
✓
1� 1

⇠

◆
kµk⌫ . (11)

Then we have:

i logZphoton = � i

2
logDet

⇥
G�1

µ⌫ (k)
⇤
, (12)

where Det represents the determinant with respect to
the momentum index k and the Lorentz indices µ, ⌫. We
firstly calculate the determinant over Lorentz indices as

Det
⇥
G�1

µ⌫ (k)
⇤
=
Y

k

⇠�1
�
k2
�2 h�

�
k2
�2

+ b2(k2 + k2z)
i
.

(13)
For further calculations we employ the following notation
for the energy dispersion relations determined from the
on-shell condition [89]:

!2

1,2 = k2 , (14)

!2

± = k2x + k2y +

 r
k2z +

b2

4
± b

2

!2

. (15)

We note that !1,2 are zeros of (k2)2 in Eq. (13). Since
(k2)2 appears from the longitudinal and the scalar polar-
izations, the modes with !1,2 are unphysical and their
contributions to vacuum energy are cancelled by the
ghosts. The physical modes !± are zeros of �(k2)2 +
b2(k2 + k2z) and they correspond to the right- and left-
handed photons. With these dispersion relations we ex-
press the vacuum energy contributed from the photon
as

i logZphoton = �
X

i=1,2,±

X

k

i

2
log
⇥
k2
0
� !2

i (k)
⇤
, (16)

where we have dropped an irrelevant constant ⇠�1. By a
similar computation for the ghost, we acquire:

i logZghost = 2
X

k

i

2
log
�
k2
0
� k2

�
. (17)

Notably Eq. (17) cancels the contribution from the un-
physical modes with i = 1, 2 in Eq. (16). Summing the
photon and the ghost contributions up, we get,

V T" = � i

2

X

±

X

k

log
⇥
k2
0
� !2

±(k)
⇤
. (18)

Not only the attractive but 
also the repulsive force!



Summary

Spin Potential 
□ Removing the orbital part after/before diagonalization 

leads to different results.  
□Which corresponds to which physical setup? 

Removing-  
□ Polarization-induced Nielsen-Olesen instability. 
□ Thermodynamics looks non-singular. 

Removing-  
□ Spin-potential couples the topological CS current…???

ℓ

L̂

21


