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“The most fundamental emergent phenomena in
Quantum Chromodynamics (QCD), e.g.
confinement, dynamical chiral symmetry breaking,
mass generation for both gluons and quarks, and
bound state formation, can only be tackled using
non-perturbative methods.”

Yes, but: Bound states can have both non-perturbative
and perturbative aspects (QED).

Paul Hoyer ECT* 20 September 2018 PH 1807.05598 and refs. therein
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e Atomic binding energies do have a perturbative expansion in o

Example: Hyperfine splitting in Positronium G.S. Adkins,
Hyperfine Interact. 233 (2015) 59
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—%.;j In® o + %3 In o (%7 In2— %07) + O (a3>} = 203.39169(41) GHz

Avexp =203.394+ 002 GHz

e Binding energy 1is perturbative in a. and log(a) (measurable)

e Wave function 9 (r) « exp(— mar) is of O(0l*) (gauge dependent)
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Can the situation be analogous in QCD?

e Indications from data:

Spectra (qq, qqq), OZI rule, Duality, ...

e Similarity of quarkonia and atoms

3
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Quoting Craig Roberts, et al.:

» Interpretation of given observable depends on the basis employed

» K.G. Wilson, Walhout, Harindranath, Zhang, Perry, Glazek: Phys. Rev. D 49
(1994) pp. 6720-6766 ... Arguing for the use of quasiparticle operators:
As is always the case, the division of the Hamiltonian into a free part and
an interaction part is arbitrary; however, it is also true that the
convergence of a perturbative expansion depends crucially on how this
choice is made.

» Clearest/simplest picture will likely change with the resolution scale

Craig Roberts. QCD - Carrying our Weight

ECT* - Emergent mass & Consequences in SM (51p)
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Developments in bound state QED

S
1T 1T
---- = ---- K
e 1951: Salpeter & Bethe
1S

Perturbatively expand propagators S and kernel K
Explicit Lorentz covariance
No analytic solution even at lowest order in S and K

e 1975: Caswell & Lepage: BS 1s not unique: o # of equivalent equations, § <> K

We may choose to expand around Schrodinger atoms
Give up explicit boost invariance

e 1986: Caswell & Lepage NRQED: Effective NR field theory

Expand QED action in powers of V/m,
Choose to start from Schrodinger atoms

Paul Hoyer ECT* 20 September 2018
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Bound states in the S-matrix

Feynman diagrams are derived in the Interaction Picture:
H="Ho+Hr Ho |t) s, = Eilt);,

@)

Sfizout<f,t%oo|{Texp[—i/ dt?—[ﬂt)}}]i,t%—oo}m

— OO

Formally exact expression, provided the in- and ouz-states
have a non-vanishing overlap with the the physical i, f states.

Bound states have no overlap with free in- and our-states at f = + o

No Feynman diagram E 5 g 3 E’ E > E
- v o+ - -
has a bound state pole. < <
Expanding around free states 1s inappropriate for bound states.
Paul Hoyer ECT* 20 September 2018
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A stationary action implies a classical gauge field:

5S[AM]
5 AH

_0 / dA"] exp (iS[AP)/R) =  h—0

Paul Hoyer ECT* 20 September 2018



Including bound states in the perturbative S-matrix

A perturbative expansion should start from a stationary action

A stationary action implies a classical gauge field:

5S[AM / |
— () dA"| exp (¢.S|A*|/h — h—0
e dA¥] exp (iS[A¥)/1)
Scattering: et and e- are 1nitially far apart: Ar=0

Positronium is bound by its classical potential: V(r) = — a/r

Paul Hoyer ECT* 20 September 2018



Including bound states in the perturbative S-matrix

A perturbative expansion should start from a stationary action

A stationary action implies a classical gauge field:

5S[AM / |
— () dA"| exp (¢.S|A*|/h — h—0
e dA¥] exp (iS[A¥)/1)
Scattering: et and e- are 1nitially far apart: Ar=0

Positronium is bound by its classical potential: V(r) = — a/r

The i — 0 limit:
e Selects an optimal perturbative expansion.
* Preserves symmetries and unitarity.

» Applies also to relativistic dynamics

Paul Hoyer ECT* 20 September 2018
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Implementation: The "Potential Picture”

H=Hy + H; Hy = Ho+ Hi(Ag)

@)

— OO

Spi = vifit — oo {Texp - z/ at M (1)] } i)t = —o0),,

Hy |1)y = Ei|i)y,
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Implementation: The "Potential Picture”

H=Hy + H; Hy = Ho+ Hi(Ag)

@)

Spi = vifit — oo {Texp - z/ at My (1)] } i)t = —o0),,

Hy li)y = Eili)y
e Classical field vanishes for widely separated charges = Standard P.T.

* For bound states, A. 1s not given by Feynman diagrams.

* Born level must give a fair approximation of bound states: (7‘[ 1)0 ho

9
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The classical field for Positronium
5SoED ~V2A(t,x) = et (t, 2) (¢, @)

A =0 =
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The classical field for Positronium
5SoED ~V2A(t,x) = et (t, 2) (¢, @)

A =0 =
0A°(t, x)

10 - 3 € +
Atw) = [y —wtity)

The classical field 1s the expectation value of A0 in the state
1, T2) = (L, 21)Y(t, T2) |0) ~\/

A R 7N
(1, 2] A (@) |21, 2) « o ,\\////////\\ \

(x1, 2| X1, T2) Cle—x1| @ —

=cA’(z; 21, T2)
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The classical field for Positronium
5SoED ~V2A(t,x) = et (t, 2) (¢, @)

A =0 =
0A°(t, x)

10 - 3 € ¥
Atw) = [y —wtity)

The classical field is the expectation value of Ain the state

1, x0) = (L, 21)(t, T2) |0) \N\\:x A
. \ | IR

(1, 22| A’ () |21, 22) B Q Q ,\\////////\\

(1, 2| 1, 22) | —x1| [T — 2

=cA’(z; 21, T2)

Note: * A0is determined instantaneously for all x

e It depends on xi, x> = The charges determine the field
(87

o eAO(azl) = —6A0($2) = —

z1 — T is the classical —o/r potential
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The Schrodinger equation from QED

M), = / 0y dizy P(@1) By — a2) () [0)

Hy (t; 1, x2) = /dw Ut @) [ =iV -+ mn° + JeA®(@; @1, ) |9 (¢, )

Paul Hoyer ECT* 20 September 2018



The Schrodinger equation from QED

M), = / 0y dizy P(@1) By — a2) () [0)

Hy (t; 1, 22) = /dw Ut @) [ =iV -+ mn° + JeA®(@; @1, ) |9 (¢, )

Hy ‘M > v = ‘M > v gives the bound state equation for @ (x1—xz) :

iy ey - v + my°|®(z) + (x) [iv" - v - my’] = [M — V(|z|)]®(x)

with V(|x|) = —— This BSE reduces to the Schrodinger
| equation for non-relativistic kinematics.
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The Schrodinger equation from QED

M), = / 0y dizy P(@1) By — a2) () [0)

Hy (t; 1, x2) = /dw Ut @) [ =iV -+ mn° + JeA®(@; @1, ) |9 (¢, )

Hy ‘M > v = ‘M > v gives the bound state equation for @ (x1—xz) :
[z’vo'y : 3 — mvo] O(x) + P(x) [mofy : % — mvo] = | M —V(jz|)|®(x)

with V(|x|) = — el This BSE reduces to the Schrodinger
T

| equation for non-relativistic kinematics.

The Schrodinger equation should be derived from the QED action
in courses on field theory!
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A classical field in QCD?

Global gauge invariance allows a classical gauge field for neutral atoms,
but not for color singlet hadrons in QCD

A0 =

Tl —x| |z — 2o

Positronium
QED
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A classical field in QCD?

Global gauge invariance allows a classical gauge field for neutral atoms,
but not for color singlet hadrons in QCD

| ————————— —
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o~ et S~
I, "
s #
-~ -
e——
-~
~

0 — (8% B @ 0 o
AV = lz — x| |z — o9 Aa(ib) =0
Positronium Proton
QED QCD
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A classical field in QCD?

Global gauge invariance allows a classical gauge field for neutral atoms,
but not for color singlet hadrons in QCD

e e @
—
—— —~—

— et S~
I/ "
s A

-
— e ————
-~ -
~

0 — _ 0 _
A? = lz — x| |z — o9 Ag(x) =0
Positronium Proton
QED QCD
However:
The classical gluon field 1s non-vanishing for each color component C of the state
Ag(z;0) #0 > A(@;C)=0
C
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Three consequences of i — 0 in QCD

CI”ZZ ~ O 43 )
bov hep-ph/9902279
1. a5 does not run at O(ho) * Gribov hep-ph/99

Sept. 2013

. o, v T decays (N3LO)
Estimates for the frozen Q) 2 Lattice OCD (NNLO)
\ a DIS jets (NLO)
03| 0 Heavy Quarkonia (NLO)
o e'e jets & shapes (res. NNLO)

O(S(O)/J'IZ ~ (.14 ® 7 pole fit (N3LO)
v pp —> jets (NLO)

coupling indicate, for MS

= PQCD corrections to J(h0) 02}
can be relevant.

0.1}

— QCD ag(My) = 0.1185 = 0.0006

1 10 Q [GeV] 100 1000
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Three consequences of i — 0 in QCD

1. os does not run at O(h19)

Estimates for the frozei
coupling indicate, for MS

os(0)/mt=0.14

— PQCD corrections to (J(110)
can be relevant.

2. In the absence of loops, the
QCD scale Apcp cannot arise
from renormalization.

Paul Hoyer ECT* 20 September 2018

a.(Q)

03+

0.2

0.1}

't ~
s“11= 043 Griboy hep-ph/9902279
* —

Sept. 2013

v T decays (N3LO)

® Lattice QCD (NNLO)

a DIS jets (NLO)

0 Heavy Quarkonia (NLO)

o e'e jets & shapes (res. NNLO)
® 7 pole fit (N3LO)

v pp—> jets (NLO)

— QCD ag(My) = 0.1185 = 0.0006

1 10 Q [GeV] 100 1000




Three consequences of i — 0 in QCD

't ~
s“11= 043 Griboy hep-ph/9902279

1. a5 does not run at O(ho) * -—
Sept. 2013
. T decays (N3LO)
Estimates for the frozen Q) = Lattics OCD (NNLO)
. . . —MS ( a DIS jets (NLO)
coupling indicate, for 0l - Hoavy Quarkonia (NLO
o e'e jets & shapes (res. NNLO)
O(S(O)/J'IJ ~ (.14 ® 7 pole fit (N3LO)

v pp—> jets (NLO)

= PQCD corrections to J(h0) 02}
can be relevant.

0.1}
2. In the absence of loops, the = QCD 05(M,) = 0.1185 + 0.0006

QCD scale Apcp cannot arise 1 0 o[Gev] ' 1000
from renormalization.

3. Poincaré invariance, unitarity etc. should hold at each power of i

Paul Hoyer ECT* 20 September 2018
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The QCD scale Aqep

At O(h9) (no loops) the QCD scale can only arise via a boundary condition

5
5 A

Sgcp =0 = O;iF0 = —gfupc ALFD + g\ TABy g

The homogeneous, O (") solution with A’ = (0 and hence VZAY = 0

Ad(m) =k ) / dy (z-y) ¥} (y) TPc(y) s (apparently) unique:
B.,C

» Linear in x for translation invariance: A% (x1) — A% (x5) # f(x1 + x2)

e x -y for rotational invariance
e x-independent field energy density Z 'V AY(2)|? must be universal

= determines % up to a scale A [GeV]



Classical color field for mesons

1
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A,B
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Classical color field for mesons

/dCIZl dwg ’Qb ) (I)AB(iBl — 332) ¢B(332) |O> (I)AB (w) —

W) =rY" / dy (z - ) ¥l () TP yc (y)
B,C

(z1', x5 ‘AO z) =i, x5) AA
= k(x1, x2) - (X1 — T2) T,
<Cl?i4,332 ’mf,m?) 7 ¢

1
v N¢

S4B (x)

for each quark color A



Classical color field for mesons

1

/ doydoy P ) 04 @ e @10 @) =
C

6B d(x)

=
[

Ad () =%Z/dy (@ y) vh(y) TP Ye(y)
B.C

TAA

= k(x1,x2) - (L1 — T2) T for each quark color A

L1 — L2

TAA 6A2 O (ag)
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Classical color field for mesons

1
vV N¢

/da:l dxo ¢ 1) q)AB(iIH — T2) ¢B(332) 0) AP (CI?) = 5AB(I)($)

=
[

W) =rY" / dy (z - ) ¥l () TP yc (y)
B,C

TAA

= k(x1,x2) - (L1 — T2) T for each quark color A

L1 — L2

TAA 6A2 O (ao)

S

= Ag(m;m17m27A) — [m N %(:m * w2)} | 1 — 2

Z (VAo (x; @1, T2, A)}2 — 12A* Universal field energy density

a

Another hadron feels
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Classical color field for mesons

1

s 6B d(x)

/dCIZl dwg ’Qb ) (I)AB(iBl — 332) ¢B(332) |O> (I)AB (w) —

=
[

W) =rY" / dy (z - ) ¥l () TP yc (y)
B,C

TAA

= k(x1,x2) - (L1 — T2) T for each quark color A

=  Aj(mxy, @0, A) = [m - %(%‘1 + 5132)} Pt

S

TAA 6A2 O (ag)
[T — @2

Z (VAo (x; @1, T2, A)}2 — 12A* Universal field energy density

a

Another hadron feels

0. AA _
ZAa(m’wl’wQ’A)O(TrT =0 no field at any x

Ve, —x2) = QgZTAA Ao(wl,wl,wg,A) Ag(wg;wl,wQ,A)] :gA2\w1 — X

Linear potential, independent of quark color component A



Classical color field for baryons

M) = ) /df’ﬁldf"’2 das ) (21) ] (@2) )] (w3) @APC (@1, @2, @3) |0)  PABC = ABC
AB.C
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Classical color field for baryons

M) = ) /df’ﬁldf"’2 das ) (21) ] (@2) )] (w3) @APC (@1, @2, @3) |0)  PABC = ABC
AB.C

Expectation value of flg(w) = K Z / dy (ﬂU : y) @g(y) chlbc(y)
B,C

in wz(wl)w};(wg)wg(xg) 0) (A # B # C) determines the classical field:

6A2
d(wla L2, «’.Ug)

Al(z; 1, T2, 3, ABC) = [ — 3 (21 + X2 + T3)] - (TA%¢, + TBBxy + T x5)

where d(xq,x2,x3) = V(T1 — x2)2 + (T2 — x3)2 + (T3 — T1)2

1
V2
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Classical color field for baryons

M) = ) /df’ﬁldf"’2 das ) (21) ] (@2) )] (w3) @APC (@1, @2, @3) |0)  PABC = ABC
AB.C

Expectation value of flg(w) = K Z / dy (ﬂU : y) @g(y) chlbc(y)
B,C

in wz(wl)w};(wg)wg(xg) 0) (A # B # C) determines the classical field:

6A2
d(wla L2, «’.Ug)

Al(z; 1, T2, 3, ABC) = [ — 3 (21 + X2 + T3)] - (TA%¢, + TBBxy + T x5)

1
where d(a:l, o, 33‘3) = \ﬁ\/(ml — $2)2 —+ (CL‘Q — 333)2 -+ (CL‘3 — 331)2
Z ‘VIA?L(HJ; T1,To, I3, ABC)’2 — 12A% Universal field energy

Z eBCAY (x; 21, 29,3, ABC) =0 No classical field for singlet state
A,B,C

2
V(w17 L2, fL‘g) — QA d(fL‘l, L2, CL‘g)
Paul Hoyer ECT* 20 September 2018
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Bound state equation for mesons (rest frame)

Hy |M),, = M |M);, Bound state condition implies, with x = x—x>

iV AV, @(z)} +m 77, ®(x)| = [M - V(x)]|®(x)
V(z) = g\|z| = V'|z

Expanding the 4 x 4 wave function F A
) Ir
in a basis of 16 Dirac structures Fi(x) Z >\( )

we may use rotational, parity and charge conjugatlon invariance to determine
which I';(x) may occur for a state of given jPC:

0~ trajectory [s =0, £=j]: —np=nc = (=1)7 ~v5, Vv, s -, -z x L

0™~ trajectory [s=1, £ =j]: np=nc=—(-1)Y YPya -z, VY sa-xxL, a-L, Y °a-L

07" trajectory [s=1, f=35%1]: np=nc=+(-1) 1, -z, Ya -z, a-zx L, Ya -z x L, YVy5a-L
07~ trajectory [exotic] : np=-nc= (-1 4% y5a- L



Bound state equation for mesons (rest frame)

Hy |M),, = M |M);, Bound state condition implies, with x = x—x>

iV -y, @(x)} + m 7, ()| = (M — V(x)|®(x)
V(z) = g\|z| = V'|z

Expanding the 4 x 4 wave function F A
) Ir
in a basis of 16 Dirac structures F,-(x) Z >\( )

we may use rotational, parity and charge conjugatlon invariance to determine
which I';(x) may occur for a state of given jPC:

0~ trajectory [s =0, £ =j]: —np =1nc = (=1)7 v, 5, Ba- -z, a-xx L

0™~ trajectory [s=1, £ =j]: np=nc=—(-1)Y YPya -z, VY sa-xxL, a-L, Y °a-L

07" trajectory [s=1, f=35%1]: np=nc=+(-1) 1, -z, Ya -z, a-zx L, Ya -z x L, YVy5a-L
0"~ trajectory [exotic] : np=-nc = (-1 4% v a-L

—> There are no solutions for quantum numbers that would be exotic
in the quark model (despite the relativistic dynamics)



Example: O trajectory wf's

2 . % AN
(@) = [ (e V+my®) + 1] A ()Y (@)
. . . /, 2 V, / l . 2 o 2 .
Radial equation: F|" + (r + 7 V)F1 + [4(M V) —m
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Example: O trajectory wf's

b (@)= [ lia VA m®) 1 AOYA@E) o= (-ly

N

, : 2 Vv’ (7 +1
Radial equation: F|" + (; + M—V)F{ + [ (M —V)? —m? — iU+ )}Fl — 0

Local normalizability at » = 0 and at V(r) = M determines the discrete M
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Example: O trajectory wf's

(icx - €+mvo) + 1}75 Fy(r)Yja() e =(-1y

, : 2 Vv’ (7 +1
Radial equation: F|" + (; + M—V)F{ + [ (M —V)? —m? — iU+ )}Fl — 0

N

Local normalizability at » = 0 and at V(r) = M determines the discrete M

m=>0
Mass spectrum:
. 4+
Linear Regge J e e e
trajectories 3+ ® © e o o o o o o o
with daughters
2 - [ [ [ [ [ o o [ o [
Spectrum similar to *
dual models 10 ® o o o o o o o o o
7 M?>/V°
® ® @ ® e - © ® o o @ . ‘
) 10 15 20
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Spin Sz contribution fo Jz2=L2+52=1

In NR limit, S = S52=0
for O+ trajectory states



Spin Sz contribution fo Jz2=L2+52=1

In NR limit, §=5:=0
for O—+ trajectory states

XL

0 2

|®12 and (S?) along
a curve of radius 2V’
in the x1 — z plane,

for two quark masses,
m=0and m = 1.5Vv’



Spin Sz contribution fo Jz2=L2+52=1

®(z,,2)|* JEC =11

In NR limit, § = 52=0 ~ \— |
for O— trajectory states | B
] y /\\
-X_I_ 1.0 / \\ m = O
\\
2.5 \‘
“m = 1.5 N

A . .
C.5 ‘0 1.5 20 25 a0 9

=D 0 2

|®12 and (S?) along
a curve of radius 2V’
in the x1 — z plane,

for two quark masses,
m=0and m = 1.5Vv’



Spin Sz contribution fo Jz2=L2+52=1

®(z,,2)|* FC _ ||
In NR limit, S = § = 0 | (z1,2)] J A=11
for O trajectory states /\
X1 o \, m =0
v
/D2 and (S?) along

a curve of radius 2/V/V’
in the x1 — z plane,

for two quark masses,
m=0and m = 1.5Vv’



Parton distributions have a sea component

In D=1+1 dimensions the sea component 1s prominent at low mi/e :

/ - O 1 D. D. Dietrich, PH, M. Jiarvinen
m/ie =Uu. arXiv 1212.4747
xg;f (xg;) xg;jf (xg;)
10 (a) L (b)
Sl 12}
10} .
6l sl (log scale 1n x3))
4t ol
4t
2 5
2 2 2 2 ° ° » xBj 2 2 M o . x
0.2 04 0.6 0.8 1.0 0.001 0.01 0.05 0.1

The red curve 1s an analytic approximation, valid in the xp; — 0 limat.
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Parton distributions have a sea component

In D=1+1 dimensions the sea component 1s prominent at low mi/e :

m/e = 0.1
xg;f (xg;) xg;jf (xg;)
10¢ (a) 1

8 I 12 3
10F

6 s

4l

2

o o o o ° * o xBj
0.2 04 0.6 0.8 1.0

N A N X

D. D. Dietrich, PH, M. Jarvinen
arXiv 1212.4747

(b)

(log scale in xp))

T0.001

A A a X
0.01 0.050.1

The red curve 1s an analytic approximation, valid in the xp; — 0 limat.

Note: Enhancement at low x is due to bd (sea), not to bid" (valence) component.

String breaking at O(1/N.) 1s calculable, but is not included here.

Bj



20

Bound states in motion

A qq bound state with CM momentum P may be expressed as

M, P),, = /dazl do )(t = 0,xq) T (@422 20F) (g — 2o)p(t = 0, 25) |0)

Paul Hoyer ECT* 20 September 2018
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Bound states in motion

A qq bound state with CM momentum P may be expressed as

M,P), = | de;dxs(t =0, 2, et (@14+22) 25(P) (. g, Wt =0,x5) |0
1%

Note: States are defined at equal time in all frames.

Paul Hoyer ECT* 20 September 2018



20

Bound states in motion

A qq bound state with CM momentum P may be expressed as

M,P), = | de;dxs(t =0, 2, et (@14+22) 25(P) (. g, Wt =0,x5) |0
1%

Note: States are defined at equal time in all frames.

What is the classical field Al(L P) in the potential Hamiltonian?

Hy = /da: zﬂ(t, x) [ — Q- 3 +my? + %’YOQA(P)MD(@ )
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20

Bound states in motion

A qq bound state with CM momentum P may be expressed as

M,P), = | de;dxs(t =0, 2, et (@14+22) 25(P) (. g, Wt =0,x5) |0
1%

Note: States are defined at equal time in all frames.

What is the classical field Al(L P) in the potential Hamiltonian?

_>
Hy = [ dewi(t.e)[~ia- ¥ +m® + 12| 0(t2)
The answer depends on the frame of the observer.

e Observer at rest, bound state is moving: A’(‘ Py = A" P-independent

e Observer is moving, bound state at rest: A?P) 18 boosted A0 field
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States with M = O
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States with M = O

We required the wave function to be normalizable at r =0 and V'r = M
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States with M = O

We required the wave function to be normalizable at r =0 and V'r = M

For M = 0 the two points coincide. Regular, massless solutions are found.

Paul Hoyer ECT* 20 September 2018

21



States with M =0 5

We required the wave function to be normalizable at r =0 and V'r = M

For M = 0 the two points coincide. Regular, massless solutions are found.

The massless o) = /dazl dxo &(wl) O, (x1 — x2) Y(x2) |0) = 7 |0)

O+ meson “0”’

(
Form=0andV'=1: @,(x) =N, JO(iTZ)jLa.m; Jy(Lr?)

Jo and J; are Bessel functions.
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States with M =0 4

We required the wave function to be normalizable at r =0 and V'r = M

For M = 0 the two points coincide. Regular, massless solutions are found.

O+ meson ‘O

The masslefs” o) = /dazl dxo P (x1) Py (x1 — T2) Y(x2) |0) = 6 10)

(
Form=0andV'=1: @,(x) =N, JO(iTZ)jLa.m; Jy(Lr?)

Jo and J; are Bessel functions.

P"|o) =0  State has vanishing four-momentum in any frame.
It may mix with the perturbative vacuum.
This spontaneously breaks chiral invariance.
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A chiral condensate (m = 0)

Since | 0 ) has vacuum quantum numbers and zero momentum it can mix
with the perturbative vacuum without violating Poincaré invariance

Ansatz: ‘X> — eXp((Af) ‘O> implies <XW¢ Ix) = 4N,
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A chiral condensate (m = 0) §

Since | 0 ) has vacuum quantum numbers and zero momentum it can mix
with the perturbative vacuum without violating Poincaré invariance

Ansatz: ‘X> — eXp((Af) ‘O> implies <XW¢ Ix) = 4N,

An infinitesimal chiral rotation of the condensate generates a pion

U(8) =exp [iB [ dewl@hsv@)]  Uy(8) ) = (1= 2087 |x)

where 7 is the massless 0 state with wave function ¢_ = V5P,
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Small quark mass: m > 0

When m # 0 the massless (M = 0) sigma 0++ state has wave function

(I)U(a}) — fl (r) +i00- @ f2 (7‘) +iv - go (7‘) Radial functions

are Laguerre fn’s

Paul Hoyer ECT* 20 September 2018
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Small quark mass: m > 0

When m # 0 the massless (M = 0) sigma 0++ state has wave function

(I)U(a}) — fl (r) +i00- @ f2 (7‘) +iv - go (7‘) Radial functions

are Laguerre fn’s

An M5 > 0 pion O state has rest frame wave function

Or(x) = [Fi(r)+ic-zF(r)+7 Fa(r)]ys  Fi0) = 22 Fi(0)

2
F{’+<—+

2 2
r M—r)Fl’+E(M_T) _m]Flzo
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Small quark mass: m > 0

When m # 0 the massless (M = 0) sigma 0++ state has wave function

(I)U(a}) — fl (r) +i00- @ f2 (7‘) +iv - go (7‘) Radial functions

are Laguerre fn’s

An M5 > 0 pion O state has rest frame wave function

Or(x) = [Fi(r)+ic-zF(r)+7 Fa(r)]ys  Fi0) = 22 Fi(0)

M
F”+<g+ )FL + [H(M = )% = m?| Fy = 0
1 r M—r) 1 4 1
(x|7E (x)7 |x) = iP* fre " = F4(0) = 2iM, fx
B e - M2
Sv) = - f il = — i
(x| (x)ys¢ () 7t |x) ig—fre F1(0) = - fr

CSB relations are satisfied for any P.
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Final remarks

Bound states can have both perturbative and non-perturbative aspects.
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Final remarks

Bound states can have both perturbative and non-perturbative aspects.
The Schrodinger eq. for Positronium is of O(19) in QED.
An h expansion may be relevant also for QCD hadrons.

At O(h9) this implies phenomenologically relevant features:

e A linear A9 potential with scale A1
e gqg and ggq quantum numbers
e M=0 states, allowing for CSB
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String breaking effects (decays, etc.) are calculable: A ;
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e A linear A9 potential with scale A1
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e M=0 states, allowing for CSB

o1

String breaking effects (decays, etc.) are calculable: A ;

Higher orders in o are given by the perturbative
S-matrix in the Potential Picture.

Paul Hoyer ECT* 20 September 2018

24



Final remarks

Bound states can have both perturbative and non-perturbative aspects.

The Schrodinger eq. for Positronium is of O(19) in QED.
An h expansion may be relevant also for QCD hadrons.

At O(h9) this implies phenomenologically relevant features:

e A linear A9 potential with scale A1
e gqg and ggq quantum numbers
e M=0 states, allowing for CSB

o1

String breaking effects (decays, etc.) are calculable: A ;

Higher orders in o are given by the perturbative
S-matrix in the Potential Picture.

Many interesting studies & tests are waiting to be done!
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