## Scale setting for CLS 2+1 simulations

#### T. Korzec

Bergische Universität Wuppertal



Scale setting: Precision lattice QCD for particle and nuclear physics



## Overview

#### This talk is based on

#### Original 2017 publication

[M. Bruno, T. K. and S. Schaefer, "Setting the scale for the CLS 2 + 1 flavor ensembles",

Phys. Rev. D 95 (2017) no.7, 074504]

#### 2021 update

[B. Straßberger, M. Cè, S. Collins, A. Gérardin, G. von Hippel, P. Korcyl, T. K., D. Mohler, A. Risch, S. Schaefer, W. Söldner and R. Sommer, "Scale setting for CLS 2+1 simulations",

PoS LATTICE2021 (2022), 135]

#### Ben's PhD thesis

[B. Straßberger,

"Towards Higher Precision Lattice QCD Results: Improved Scale Setting and Domain Decomposition Solvers",

doi:10.18452/26517]

#### Recent r<sub>0</sub> determination (→ Tom Asmussen's talk)

[T. M. B. Asmussen, R. Höllwieser, F. Knechtli and T. K., "The determination of potential scales in 2+1 flavor QCD",

arXiv:2412.10215 [hep-lat]]

## Goal

A precise scale is necessary for all dimensionful predictions of QCD The goals of this work are

- Determine precise values in [fm] for widely used reference scales like
  - $\sqrt{t_0}$ , the original gradient flow scale

[M. Lüscher, JHEP 08 (2010) 071]

- w<sub>0</sub>, a modified gradient flow scale
   [S. Borsányi, JHEP 09 (2012)]
- ► *r*<sub>0</sub>, the "Sommer Scale" from the static potential

[R. Sommer, Nucl. Phys. B 411 (1994)]

r<sub>1</sub>, a shorter distance cousin of r<sub>0</sub>
 [W. Bernard et al., Phys. Rev. D 62 (2000)]

(In continuum iso-QCD at well-defined mass points)

• Map out the relation between simulation parameter  $\beta \equiv \frac{6}{g_0^2}$  and the lattice spacing *a* for the lattice action used by CLS

The original precision goal was modest, 1% - 2%, based on our aspiration to compute  $\Lambda_{QCD}$  to  $\approx 3\%$ 

- CLS = Coordinated Lattice Simulations consortium of several European lattice-QCD groups
- Since 2013: generation of  $N_{\rm f} = 2 + 1$  ensembles
- Action
  - [M. Bruno et al. JHEP 02 (2015) 043]
    - ► Tree-level Symanzik O(a<sup>2</sup>) improved gauge action ☐, ☐ [M. Lüscher, P. Weisz (1985)]
    - ► Non-perturbatively O(a) improved Wilson fermions

[B. Sheikholeslami, R. Wohlert, Nucl.Phys.B 259 (1985)][J. Bulava, S. Schaefer, Nucl.Phys.B 874 (2013)]

- Open boundaries in time (mostly)
- Chiral trajectory with tr[M<sub>q</sub>] = const

[W. Bietenholz et al., Phys.Lett. B690 (2010)] Reason: with Wilson fermions same  $\tilde{g}_0^2 = g_0^2 \left(1 + \frac{b_g}{a} \operatorname{tr}[M_q]/3\right) \Leftrightarrow$  same lattice spacing *a* up to  $O(a^2)$ 

## **Ensembles and Statistics**



5/31

## **Ensembles and Statistics**

- Area  $\propto$  MDUs
- Gray = original (2017)
- Blue = update (2021)



T.Korzec (BUW)



- Inputs
- Iteration
- Results

To fix three bare parameters  $a m_{u,d}$ ,  $a m_s$ ,  $\beta$  we use three experimental inputs

- Pion mass *m*<sub>π</sub>
- Kaon mass *m<sub>K</sub>*
- Pseudo-scalar decay constant  $f_{\pi K} \equiv \frac{2}{3} \left( f_K + \frac{1}{2} f_\pi \right)$

We assume that these are already "corrected" for

- QED effects (standard model  $\neq$  QCD)
- $N_f = 2 + 1$  is not  $N_f = 1 + 1 + 1 + 1 + 1 + 1$  effects
- $\rightarrow$  Yesterday's talk by Alberto Ramos

We want to use leptonic decay constants  $f_{\pi}$ ,  $f_K$  to set the scale

Lowest order: 
$$\Gamma^0(P \to l\nu) = \frac{G_F^2}{8\pi} f_P^2 m_l^2 m_P \left(1 - \frac{m_l^2}{m_P^2}\right)^2 |V_{q_1q_2}|^2$$
  
And  $ip_\mu f_P = \langle 0|\bar{q}_1\gamma_\mu\gamma_5 q_2|P(p)\rangle$  is computable in QCD

- Advantages
  - Low energy quantity
  - Pseudo-scalar correlators are extremely precise (signal/noise=constant)
  - $\chi_{PT}$  to known to high orders
  - Finite volume effects are well understood
- Disadvantages
  - ► Indirect connection to experiment via V<sub>ud</sub>, V<sub>us</sub>
  - Conceptually difficult beyond QCD
  - $\blacktriangleright$  Not a spectral quantity  $\rightarrow$  needs renormalization and improvement

# Iteration

### We would like to

• Compute for each  $\beta$ :  $af_{\pi K}|_{\text{phys. mass}}$ 

• Divide by  $f_{\pi K}^{\text{iso-QCD}}$  to obtain *a* in fm

In practice: The physical mass point is only known after scale setting.

### Iterate

- Take best value of  $\sqrt{t_0}$  [fm]
- Express masses in t<sub>0</sub> units

$$\phi_2 = 8t_0 m_\pi^2$$

$$\phi_4 = 8t_0 \left( m_K^2 + \frac{1}{2} m_\pi^2 \right) , \qquad p$$

proxy for light quark mass proxy for tr[M<sup>R</sup>]

- Perform simulations on chiral trajectories that go through  $\phi_{2}^{\text{iso-QCD}}, \phi_{4}^{\text{iso-QCD}}$
- On this set of ensembles, compute  $\sqrt{t_0} f_{\pi K}$
- Continuum / chiral extrapolate to  $\phi_2^{\text{iso-QCD}}$ ,  $\phi_4^{\text{iso-QCD}}$
- Divide by  $f_{\pi K}^{\text{iso-QCD}}$  to obtain  $\sqrt{t_0}$  [fm]

# **Quark Mass Derivatives**

Instead of re-doing all simulations several times, we correct existing ones

• For every relevant observable  $\mathcal{O}$ , compute derivatives with respect to the bare quark masses

 $\frac{d\langle \mathcal{O} \rangle}{d \, am_u}, \ \frac{d\langle \mathcal{O} \rangle}{d \, am_d}, \ \frac{d\langle \mathcal{O} \rangle}{d \, am_s}$ 

• Use these to shift to slightly different chiral trajectories  $\langle \mathcal{O} \rangle \rightarrow \langle \mathcal{O} \rangle + \sum A^{d \langle \mathcal{O} \rangle}$ 

 $\langle \mathcal{O} \rangle \rightarrow \langle \mathcal{O} \rangle + \sum_{f} \Delta_{f} \frac{d \langle \mathcal{O} \rangle}{d \, am_{f}}$ 

• We neglect  $O(\Delta^2) \rightarrow$  shifts must be small



# **Quark Mass Derivatives**

Instead of re-doing all simulations several times, we correct existing ones

• For every relevant observable  $\mathcal{O}$ , compute derivatives with respect to the bare quark masses

 $\frac{d\langle \mathcal{O}\rangle}{d\,am_u}, \ \frac{d\langle \mathcal{O}\rangle}{d\,am_d}, \ \frac{d\langle \mathcal{O}\rangle}{d\,am_s}$ 

• Use these to shift to slightly different chiral trajectories  $\langle \mathcal{O} \rangle \rightarrow \langle \mathcal{O} \rangle + \sum \Delta e^{d\langle \mathcal{O} \rangle}$ 

 $\langle \mathcal{O} \rangle \rightarrow \langle \mathcal{O} \rangle + \sum_{f} \Delta_{f} \frac{d \langle \mathcal{O} \rangle}{d \, am_{f}}$ 

• We neglect  $O(\Delta^2) \rightarrow$  shifts must be small



## Results

$$\begin{array}{rcl} \sqrt{t_0} &=& 0.1443(7)(13) \ {\rm fm} \,, \\ \sqrt{t_0^\star} &=& 0.1439(7)(13) \ {\rm fm} \,, \\ r_0 &=& 0.4729(74) \ {\rm fm} \,, \\ r_1 &=& 0.3128(40) \ {\rm fm} \end{array}$$

physical mass

$$m_u = m_d = m_s, \phi_4 = 1.11$$

 $\leftarrow \text{Tom Asmussen}$ 

Lattice spacings with CLS action

| β    | <i>a</i> [fm] |  |  |
|------|---------------|--|--|
| 3.40 | 0.0849(5)(8)  |  |  |
| 3.46 | 0.0749(4)(7)  |  |  |
| 3.55 | 0.0633(4)(6)  |  |  |
| 3.70 | 0.0491(3)(4)  |  |  |
| 3.85 | 0.0385(2)(3)  |  |  |
|      |               |  |  |

## Details and Sources of Errors

- Systematic Errors
- Statistical Errors

# **Errors from Inputs**

### Experimentally one finds

- $m_\pi^\pm =$  139.5704 MeV,  $m_\pi^0 =$  134.9768 MeV o 3.3%
- $m_{K}^{\pm} =$  493.68 MeV,  $m_{K}^{0} =$  497.61 MeV ightarrow 0.8%
- $(f_{\pi^+} f_{\pi^0})/f_{\pi^+} \approx 0.3\%$

Spread too big  $\rightarrow$  needs correction  $\rightarrow$  we use as inputs

### "Corrected" iso-QCD values

- $m_{\pi}^{\text{isoQCD}} = 134.9768(5) \text{ MeV}$
- $m_K^{isoQCD} = 497.611(13) \text{ MeV}$ [PDG]

• 
$$f_{\pi}^{\text{isoQCD}} = 130.56(02)(13)(02) \text{ MeV}$$
  
•  $f_{K}^{\text{isoQCD}} = 157(2)(2)(4) \text{ MeV}$   
[FLAG 2021]

This is precise enough for us. More care maybe needed in the future  $\rightarrow$  Alberto Ramos, Andreas Risch

# Decoupling

Can these values be used also for  $N_{\rm f} = 2 + 1$  QCD? How much are dimensionless ratios like  $\sqrt{t_0} f_{\pi}$  affected?



T. Korzec (BUW)

Scale Setting

# Other Parameters

Our calculation also relies on various renormalization and improvement factors

- $c_{sw} = \frac{1-0.1921g_0^2 0.1378g_0^4 + 0.0717g_0^6}{1-0.3881g_0^2}$  (non-perturbative) O(a) improvement of the (bulk) Wilson action [J. Bulava, S. Schaefer, Nucl.Phys.B 874 (2013)] •  $Z_A$  (non-perturbative) known to  $\approx 0.04\%$  accuracy Axial current renormalization factors [M. Dalla Brida, T.K., S. Sint, P. Vilaseca, Eur.Phys.J.C 79 (2019)] •  $c_A = -0.006033 g_0^2 \times \left[1 + \exp\left(9.2056 - \frac{13.9847}{g_0^2}\right)\right]$  (non-perturbative) Axial current improvement coefficient [J. Bulava, M. Della Morte, J. Heitger, C. Wittemeier, Nucl.Phys.B 896 (2015) 555-568]
- *b<sub>A</sub>*,*b<sub>P</sub>*,... (perturbative) Improvement coefficients that come with mass factors *am<sub>q</sub>* Error=Difference between last known orders

[Y. Taniguchi, A. Ukawa, Phys.Rev. D58 (1998)]

# Systematic Monte-Carlo Errors - Distribution

Often it is not possible to sample exactly from a desired PDF  $\propto e^{-S_A}$ . Instead a similar PDF  $\propto e^{-S_B}$  is used.

We correct for such deviations by reweighting

$$\langle \mathcal{O} \rangle_A = \frac{\langle \mathcal{O} | W \rangle_B}{\langle W \rangle_B}$$
  
 $W = e^{S_B - S_A}$ 

- Protect simulations from exceptionally small eigenvalues of  $\hat{D}$   $det[\hat{D}^{\dagger}\hat{D}] \rightarrow det[\hat{D}^{\dagger}\hat{D} + \mu^{2}]^{2}/det[\hat{D}^{\dagger}\hat{D} + 2\mu^{2}]$ (twisted mass reweighting 2. kind) [M. Lüscher, F. Palombi, PoS (LATTICE2008) 049]
- $\det[\hat{D}] = \pm \det[\sqrt{\hat{D}^{\dagger}\hat{D}}] \rightarrow \pm \det[R(\hat{D}^{\dagger}\hat{D})]$ 
  - One reweighting factor for rational  $R(x) \neq \sqrt{x}$
  - One reweighting factor for  $\pm$

[D. Mohler, S. Schaefer, Phys.Rev.D 102 (2020)]

 $\rightarrow$  No systematic error for us

# Typical Reweighting Factor

#### Overall reweighting factor on H100



# Systematic Monte-Carlo Errors - Topology

Even at our smallest lattice spacings, the topology moves



J501:  $a \approx 0.038$  fm, *Q* from GF fields at  $t \approx t_0$  in the bulk

- Topology sampling is not more problematic than other quantities
- Ordinary critical slowing down  $\propto a^{-2}$  is bad enough
- What would happen if we were stuck in a "sector" with |Q| < 1?

All sectors:  $t_0/a^2 = 14.01(7)$   $w_0/a = 4.46(2)$ Stuck:  $t_0/a^2 = 14.06$   $w_0/a = 4.46$ 

 $\rightarrow$  Effect not very clear, needs a dedicated study

T. Korzec (BUW)

## Systematic Monte-Carlo Errors - Plateaus

- Hadron correlators usually suffer from a signal/noise problem
- But not Pions nor Kaons!
  - ightarrow We observe long and precise plateaus even without quark smearing
- Fixed source time-slice (at  $x_0 = a$ ) + correlations
  - ightarrow "waves" in effective masses

$$\begin{split} f_{P}^{r,s}(x_{0},y_{0}) &= -\frac{a^{6}}{L^{3}} \sum_{\mathbf{x},\mathbf{y}} \langle P^{r,s}(x) P^{s,r}(y) \rangle \\ f_{A}^{r,s}(x_{0},y_{0}) &= -\frac{a^{6}}{L^{3}} \sum_{\mathbf{x},\mathbf{y}} \langle A_{0}^{r,s}(x) P^{s,r}(y) \rangle \\ m_{\text{PS}} &= \log \left[ f_{P}(a,y_{0}) / f_{P}(a,y_{0}+a) \right] \end{split}$$

with local

- Pseudo-scalar density P
- Axial current A<sub>µ</sub>



#### typical case (here J303)

## Systematic Monte-Carlo Errors - Plateaus

- Hadron correlators usually suffer from a signal/noise problem
- But not Pions nor Kaons!
  - ightarrow We observe long and precise plateaus even without quark smearing
- Fixed source time-slice (at  $x_0 = a$ ) + correlations
  - ightarrow "waves" in effective masses

$$\begin{split} f_{P}^{r,s}(x_{0},y_{0}) &= -\frac{a^{6}}{L^{3}}\sum_{\mathbf{x},\mathbf{y}} \langle P^{r,s}(x)P^{s,r}(y) \rangle \\ f_{A}^{r,s}(x_{0},y_{0}) &= -\frac{a^{6}}{L^{3}}\sum_{\mathbf{x},\mathbf{y}} \langle A_{0}^{r,s}(x)P^{s,r}(y) \rangle \\ m_{\text{PS}} &= \log \left[ f_{P}(a,y_{0}) / f_{P}(a,y_{0}+a) \right] \end{split}$$

with local

Pseudo-scalar density P

Axial current A<sub>µ</sub>



#### difficult case (here D200)

## Systematic Monte-Carlo Errors - Plateaus

Matrix elements are isolated from ratios

$$R(x_0, y_0) = \sqrt{\frac{f_A^{\text{imp}}(x_0, y_0) f_A^{\text{imp}}(x_0, T - y_0)}{f_P(T - y_0, y_0)}}$$

 $f_{PS} = Z_A [1 + \overline{b}_A \ a \ {
m tr} M_q + \widetilde{b}_A \ a m_{
m PCAC}] \sqrt{2/m_{PS}} \ R^{
m aver}$ 



T. Korzec (BUW)

We deal with reweighted "primary" observables

$$oldsymbol{o} = \langle \mathcal{O} 
angle_{oldsymbol{Q} \mathcal{C} \mathcal{D}} = rac{\langle \mathcal{O} \ oldsymbol{W} 
angle}{\langle oldsymbol{W} 
angle} \,.$$

As well as with "derived" observables

$$f(\langle \mathcal{O}_1 \rangle_{QCD}, \ldots, \langle \mathcal{O}_n \rangle_{QCD}, m)$$

The bare quark mass derivative of the latter is given by

$$\frac{df}{dm} = \frac{\partial f}{\partial o_i} \left\langle \frac{\partial \mathcal{O}_i}{\partial m} \right\rangle_{QCD} - \frac{\partial f}{\partial o_i} \left( \left\langle \mathcal{O}_i \frac{\partial S}{\partial m} \right\rangle_{QCD} - o_i \left\langle \frac{\partial S}{\partial m} \right\rangle_{QCD} \right) + \frac{\partial f}{\partial m} \\
= \frac{\partial f}{\partial o_i} \frac{\left\langle \frac{\partial \mathcal{O}_i}{\partial m} W \right\rangle}{\langle W \rangle} - \frac{\partial f}{\partial o_i} \left( \frac{\left\langle \mathcal{O}_i \frac{\partial S}{\partial m} W \right\rangle}{\langle W \rangle} - \frac{\left\langle \mathcal{O}_i W \right\rangle \left\langle \frac{\partial S}{\partial m} W \right\rangle}{\langle W \rangle^2} \right) + \frac{\partial f}{\partial m}.$$

- All observables will need: sea quark mass dependence  $\frac{\partial S}{\partial m} \rightarrow tr[D^{-1}] \rightarrow stochastic estimation, 1 solve per noise$
- Fermionic observables also: valence quark mass dependence E.g. pion correlator  $(\bar{u}\gamma_5 d)$ :  $\mathcal{O} = -\sum \operatorname{tr}[\gamma_5 D^{-1}(x, y)\gamma_5 D^{-1}(y, x)]$ estimated stochastically  $\mathcal{O} = -\sum_{\mathbf{y}} \langle \xi^{\dagger}(\mathbf{y}) \xi(\mathbf{y}) \rangle_{\text{noise}}$ with  $\xi = D^{-1}\eta$  and  $\eta =$  vector with noise on  $x_0$ . (1 solve per noise) Each mass derivative needs an additional inversion  $rac{\partial \mathcal{O}}{\partial m_u} = -\sum_{m{y}} \langle \xi^\dagger(m{y}) rac{\partial \xi(m{y})}{\partial m_u} 
  angle_{ ext{noise}}$  $\frac{\partial \xi}{\partial m} = -D^{-2}\eta$

Two  $m_{u,d} = m_s$  ensembles with 7% difference in  $\phi_4$ 



Largest shift: 5%, majority  $\approx 2\% \rightarrow$  We assume that  $O(\Delta^2)$  is negligible

T. Korzec (BUW)

04.03.2025

Since we are already changing the chiral trajectories: one more change:

- Instead of trajectories with  $tr[M_q] = const.$
- Create trajectories with  $\phi_4 = \text{const.} \sim \text{tr}[M^R]$



T. Korzec (BUW)

Scale Setting

Our volumes are finite, but large

- Smallest  $m_{\pi}L \approx 3.8$  on D452 (only case below 4)
- Largest  $m_{\pi}L \approx 6.4$  on N202
- Smallest  $L \approx 2.35$  fm

Finite volume effects in  $f_{\pi,K}$  and  $m_{\pi,K}$  have been worked out in  $\chi_{PT}$ 

[G. Colangelo, S. Dürr, Nucl. Phys. B 721 (2005)] We apply these corrections

- Average correction: 0.1%
- Biggest correction: 0.6%

Uncanceled finite size effects are assumed to be negligible

## Statistical Monte-Carlo Errors

To calculate the statistical errors of a MC estimate

$$\sigma_f = \sqrt{\frac{\operatorname{var}(f)}{N/(2\tau_{\operatorname{int},f})}}$$

We use the  $\Gamma$ -method, i.e. explicitly compute  $\tau_{int,f}$  from the data [U. Wolff, Comput.Phys.Commun. 156 (2004)]

- We use rough estimates of τ<sub>exp</sub> to attach exponential tails to Γ [S. Schaefer, R. Sommer, F. Virotta, Nucl.Phys.B 845 (2011)]
- Projected Observables

[A. Ramos, Comput.Phys.Commun. 238 (2019)] For "derived" observables  $f(\langle a_1 \rangle, \dots, \langle a_n \rangle)$ , store a projected time series

$$f^{i}_{\text{proj}} = f(\langle a_{1} \rangle, \dots, \langle a_{n} \rangle) + \sum_{\alpha} \frac{\partial f}{\partial \langle a_{\alpha} \rangle} (a^{i}_{\alpha} - \langle a_{\alpha} \rangle), \qquad i = 1, \dots, N$$

Analyzed like a "primary" observable, this yields the correct error

Example: action density at flow time  $t \approx t_0$  on N = 4032 measurements on H101



Example: action density at flow time  $t \approx t_0$  on N = 3804 measurements of N202



## How Much Statistics is Necessary?

Experiment: let us use different fractions of H101 statistics

| Ν    | <i>N</i> /14 | $	au_{int}$                |
|------|--------------|----------------------------|
| 4032 | 287          | $14\pm 6$                  |
| 1400 | 100          | $\textbf{22}\pm\textbf{8}$ |
| 700  | 50           | $9\pm 6$                   |
| 350  | 25           | $6\pm 2$                   |

ightarrow statistics of at least  $N/ au_{exp} >$  50 is necessary

Using full statistics and attaching a tail with  $\tau_{exp} = 13.3$ , we obtain

$$\tau_{\rm int} = 24 \pm 6$$

# Chiral / Continuum Extrapolations

Lattice results  $\sqrt{t_0} f_{\pi K}$  vs  $\phi_2$ at  $\phi_4 = \text{const.}$  is fitted globally:

- Continuum part of the fit
  - I. Order Taylor in φ<sub>2</sub> − φ<sub>2</sub><sup>sym</sup>
     2. Order Taylor in φ<sub>2</sub> − φ<sub>2</sub><sup>sym</sup>

  - SU(3) χ<sub>PT</sub>
  - $SU(2) \chi_{PT}$  for  $f_{\pi}$ only in [B.Straßberger PhD thesis]
- Lattice artifacts
  - Factor  $(1 + c_1 \frac{a^2}{t_{a}^{sym}})$
  - As above  $+c_2 a^2 m_{\pi}^2$
- Cuts
  - neglect coarse ensembles
  - neglect heavy ensembles
  - both

Variation = leading source of (systematic) error!

| type                            | cut                         | $\chi^2/{ m dof.}$ | $\sqrt{t_0}f_{\pi}$ | $\sqrt{t_0} f_{\pi K}$ |
|---------------------------------|-----------------------------|--------------------|---------------------|------------------------|
| Taylor                          | -                           | 2.05               |                     | 0.1083(3)              |
| Taylor                          | $\beta > 3.4$               | 2.07               |                     | 0.1088(4)              |
| Taylor                          | $\beta > 3.5$               | 2.68               |                     | 0.1084(5)              |
| Taylor                          | $\phi_2 < 0.6$              | 1.77               |                     | 0.1086(3)              |
| Taylor                          | $\phi_2 < 0.4$              | 2.16               |                     | 0.1086(4)              |
| Taylor                          | $\beta>3.4, \phi_2<0.6$     | 2.03               |                     | 0.1090(5)              |
| Taylor(4)                       | -                           | 1.98               |                     | 0.1081(3)              |
| Taylor(4)                       | $\beta > 3.4$               | 1.69               |                     | 0.1083(4)              |
| Taylor(4)                       | $\beta > 3.5$               | 2.26               |                     | 0.1078(5)              |
| Taylor(4)                       | $\phi_2 < 0.6$              | 1.64               |                     | 0.1084(4)              |
| Taylor(4)                       | $\phi_2 < 0.4$              | 2.03               |                     | 0.1083(4)              |
| Taylor(4)                       | $\beta>3.4, \phi_2<0.6$     | 1.43               |                     | 0.1086(5)              |
| $SU(3) \chi PT$                 | -                           | 1.84               |                     | 0.1081(3)              |
| $SU(3) \chi PT$                 | $\beta > 3.4$               | 1.63               |                     | 0.1085(4)              |
| $SU(3) \chi PT$                 | $\beta > 3.5$               | 2.09               |                     | 0.1081(5)              |
| $SU(3) \chi PT$                 | $\phi_2 < 0.6$              | 1.50               |                     | 0.1084(3)              |
| $SU(3) \chi PT$                 | $\phi_2 < 0.4$              | 1.86               |                     | 0.1084(4)              |
| $SU(3) \chi PT$                 | $\beta>3.4, \phi_2<0.6$     | 1.48               |                     | 0.1088(5)              |
| $SU(3) \chi PT + a^2 m_\pi^2$   | -                           | 1.82               |                     | 0.1085(4)              |
| $SU(3) \chi PT + a^2 m_{\pi}^2$ | $\beta > 3.4$               | 1.77               |                     | 0.1084(6)              |
| $SU(3) \chi PT + a^2 m_{\pi}^2$ | $\beta > 3.5$               | 2.39               |                     | 0.1080(8)              |
| SU(3) $\chi PT + a^2 m_{\pi}^2$ | $\phi_2 < 0.6$              | 1.63               |                     | 0.1085(5)              |
| $SU(3) \chi PT + a^2 m_{\pi}^2$ | $\phi_2 < 0.4$              | 2.16               |                     | 0.1086(7)              |
| SU(3) $\chi PT + a^2 m_\pi^2$   | $\beta>3.4, \phi_2<0.6$     | 1.18               |                     | 0.1078(7)              |
| $SU(2) \chi PT$                 | -                           | 1.82               | 0.0933(4)           | 0.1074(3)              |
| $SU(2) \chi PT$                 | $\beta > 3.4$               | 1.58               | 0.0937(4)           | 0.1079(4)              |
| $SU(2) \chi PT$                 | $\beta > 3.5$               | 1.94               | 0.0933(6)           | 0.1075(5)              |
| $SU(2) \chi PT$                 | $\phi_2 < 0.6$              | 1.26               | 0.0941(4)           | 0.1078(3)              |
| $SU(2) \chi PT$                 | $\phi_2 < 0.4$              | 1.30               | 0.0945(5)           | 0.1079(4)              |
| $SU(2) \chi PT$                 | $\beta > 3.4, \phi_2 < 0.6$ | 0.96               | 0.0947(6)           | 0.1085(5)              |

#### [B.Straßberger PhD thesis]

# Lattice Artifacts Beyond $O(a^2)$

- Our fits assume that we see only leading corrections to scaling, i.e. pure O(a<sup>2</sup>)
- Other cutoff effects that could be expected
  - $O(a^3)$ , next order of the Symanzik action
  - O(a<sup>2</sup> log(a)<sup>Γ</sup>), taking the leading order more seriously. There are O(10) such terms with largely known Γ
     [N. Husung, P. Marguard, R. Sommer, Phys.Lett.B 829 (2022)]
  - ► O(a) from uncanceled am<sub>q</sub>
- With "only" 5 lattice spacings it is difficult to fit more than 1-2 lattice-artifact terms.

Practical approach: use only pure  $O(a^2)$ , but study cuts and  $\chi^2$  values.

Extrapolations are a major source of uncertainty

## Conclusions

### Conclusions

- We obtained  $\sqrt{t_0}$  to  $\approx 1\%$  accuracy
- At this level of precision the errors are dominated by
  - Statistical error
  - Systematic error due to extrapolations
- Negligible sources of errors
  - External parameters
  - Charm quark effects
  - Mass shifts beyond linear approximation
  - Finite Volume

### Wish-list / Possible Improvements

- Longer MC chains
- *m<sub>s</sub>* = const. trajectory
- Improved flow