DETERMINATION OF A GRADIENT FLOW SCALE

Kalman Szabo

together with Fabian Frech, Finn Stokes, Gen Wang for Budapest-Marseille-Wuppertal collaboration

- 1 our use case
- 2 w₀ from Omega baryon mass [2407.10913]
- $3 w_0$ from pion decay rate

Scale precision for HVP

■ rule of thumb: $\delta a/a = 1\% \rightarrow \delta a_{\mu}/a_{\mu} = 2\% \rightarrow$ sub-percent needs scale determination with few per-mill

arxiv: 2407.10913

 $a_{\mu}^{\rm LO-HVP} = 714.1(2.2)(2.5)[3.3]$ using omega mass

 $w_0 = 0.17245(22)(46)[51]$ fm used in intermediate step

4stout simulations

- 4stout smeared, 2+1+1 flavor staggered, Symanzik improved gauge
- m_l , m_s bracketing the physical point, $m_c/m_s = 11.85$ within one per-cent of FLAG value
- $L \approx 6$ fm spatial, $T \approx 9$ fm temporal extent

4stout autocorrelations

 normalized autocorrelation function and integrated autocorrelation times for finest lattice in units of configs (10 RHMC trajectories)

$au^{\text{int}} \leq 10$ for considered observables

jackknife resampling 48 blocks $ightarrow B pprox 5 au^{
m int}$ on finest

4stout taste violation

 topological susceptibility highly sensitive to taste violation

on finest lattice $\chi = 0.0358(29)$ and $\chi_{imp} = 0.0299(24)$

 cont. extrap is consistent with LO XPT 0.0224(12)

- mass of pion tastes $M_{\pi}^2(\xi) = M_{II}^2 + \Delta_{KS}(\xi)$
- decreases faster than naive $\alpha_s a^2$ more like $\alpha_s^3 a^2 \approx a^4$
- on finest lattice RMS is 5% larger than physical

Omega operators

7 tastes degenerate in continuum, 2 operators [Golterman'84]

$$\begin{split} \Omega_{\mathrm{VI}}(t) &= \sum_{x_{k} \mathrm{even}} \epsilon_{abc} \left[S_{1} \chi_{a} S_{12} \chi_{b} S_{13} \chi_{c} - S_{2} \chi_{a} S_{21} \chi_{b} S_{23} \chi_{c} + S_{3} \chi_{a} S_{31} \chi_{b} S_{32} \chi_{c} \right](x), \\ \Omega_{\mathrm{XI}}(t) &= \sum_{x_{k} \mathrm{even}} \epsilon_{abc} \left[S_{1} \chi_{a} S_{2} \chi_{b} S_{3} \chi_{c} \right](x). \end{split}$$

both couple to two tastes, disentangling by cross-correlations

can also construct operator coupling to a single taste [Bailey'06]

$$\Omega_{\mathrm{Ba}}(t) = \left[2\delta_{\alpha 1}\delta_{\beta 2}\delta_{\gamma 3} - \delta_{\alpha 3}\delta_{\beta 1}\delta_{\gamma 2} - \delta_{\alpha 2}\delta_{\beta 3}\delta_{\gamma 1} + (\dots\beta\leftrightarrow\gamma\dots) \right] \cdot \\ \cdot \sum_{\mathbf{X}_{k}\mathrm{even}} \epsilon_{abc} \left[S_{1}\chi_{a\alpha}S_{12}\chi_{b\beta}S_{13}\chi_{c\gamma} - S_{2}\chi_{a\alpha}S_{21}\chi_{b\beta}S_{23}\chi_{c\gamma} + S_{3}\chi_{a\alpha}S_{31}\chi_{b\beta}S_{32}\chi_{c\gamma} \right] (\mathbf{X})$$

by working with multi-flavor operators

Omega propagators

 beside positive parity oscillating negative parity

$$C(t) = A_0 e^{-M_0 t} + (-1)^t A_1 e^{-M_1 t} + \dots$$

- supress excited state contamination
- 3d gauge-link and quark-field smearing [Gusken'89]
- Z₃ grid source

GEVP/GPoF methods

cross-correlator of point and smeared operators

 $\begin{pmatrix} P(t)P(0) & P(t)S(0) \\ S(t)P(0) & S(t)S(0) \end{pmatrix}$

cross-correlator time-shift operators $P_1 = e^{-H}Pe^H$ [Aubin,Orginos'11]

$$\begin{pmatrix} P_0(t)P_0(0) & P_0(t)P_1(0) \\ P_1(t)P_0(0) & P_1(t)P_1(0) \end{pmatrix} = \begin{pmatrix} C_{PP}(t) & C_{PP}(t+1) \\ C_{PP}(t+1) & C_{PP}(t+2) \end{pmatrix}$$

 \rightarrow efficiently projects the oscillating states combine the two techniques and solve Generalized Eigenvalue Problem [Blossier et al '09, ...]

$$\mathbf{C}(t_a)\mathbf{v}(t_a,t_b) = \lambda(t_a,t_b)\mathbf{C}(t_b)\mathbf{v}(t_a,t_b)$$

propagator (v, λ) eigenstate is given in fixed-eigenvector approach

$$P(t; t_a, t_b) = v^{\dagger}(t_a, t_b) \mathbf{C}(t) v(t_a, t_b)$$

Omega GEVP spectrum

• build 6×6 cross-correlator of $\{P_0, P_1, S_0, S_1, S_2, S_3\}$

 ground and first excited states have nice plateaus consistent across changing GEVP parameters (t_a, t_b)

excited states compatible with PDG states
 Ω(2012, * * *), Ω(2250, * * *), Ω(2380, **), Ω(2470, **)

Omega GEVP ground state

- single-exponential fit to the propagator to extract mass
- multi-exponential fits to check the single-exponential fits $A_0 e^{-M_0 t} + A_1 \xrightarrow{(-1)^t} e^{-M_1 t} + A_2 e^{-M_2 t} + A_3 (-1)^t e^{-M_3 t} + A_4 e^{-M_4 t}$ with (wide) priors from PDG values

Omega results

- 30k gauge configurations
- 10M propagator measurements
- GPU code based on QUDA and Qlattice
- correlated/uncorrelated fits are consistent
- different taste operators are consistent
- multi-exponential fits are consistent with single-exponential

Omega fitrange

correlated fit with regulated small eigenvalues [Michael '94, ...]

- take improved estimator for fit-quality [Bruno,Sommer'22]
- perform Kolmogorov-Smirnov test across all ensembles \rightarrow for $t_{\rm min}=0.9/1.0$ fm pvalue is 0.27/0.57

Omega scattering states

- scattering excited states might be possible $\Xi + K$, $\Xi + K + \pi$, lowest (1860) might spoil the ground state extraction
- point three quark operators are possibly weakly coupled
- how about smeared operators?

scattering states are spread out over the volume, change coupling by

- 1 changing smearing size
- 2 changing volume

Omega smearing study

- changing smearing size changes localization radius of the operator
- larger smearing should couple more to scattering states

23 \rightarrow **46** \rightarrow **144** increases operator eff. volume by factor \approx **16**

ground state seems to be unaffected

Omega volume study

• do GEVP in two volumes : a = 0.0793 fm, L = 40 and 80

■ simple volume scaling of masses and amplitudes,

 $M^2 + (2\pi/L)^2$ A/L^3 , gives very little contamination on the large volume

more elaborate estimate requires Ω – Xi – K coupling, might be extracted from the finite-size effect of ground state mass?

$w_0 M_\Omega$ cont. extrap.

*w*₀ from logarithmic derivative of gauge action density along gradient-flow time

- use fit functions like $Y = A_0 + A_1 a^2 + A_2 a^4 + A_3 a^6$
- in general leading behavior is $a^2 \alpha^n(a)$ [Husung et al '19] taste violation seems to scale with $n \approx 3$ also use $a^2 \rightarrow \Delta_{KS}(a)$

$w_0 M_{\Omega}$ histogram

estimate stat/syst errors and make error budgets

Median	172.35 am	
Total error	0.51 am	0.30 %
Statistical error	0.22 am	0.13 %
Systematic error	0.46 am	0.27 %
Pseudoscalar fit range	0.01 am	< 0.01 %
Omega baryon fit range	0.24 am	0.14 %
Physical value of M_{Ω}	0.06 am	0.03 %
Lattice spacing cuts	0.09 am	0.05 %
Order of fit polynomials	0.17 am	0.10 %
Continuum parameter (Δ_{KS} or a^2)	0.30 am	0.17 %

 apply flat weighting for systematic ingredients like omega operator, omega/pseudoscalar fit range

apply AIC weighting for order of continuum extrapolation, $a^2 \text{ vs } \Delta_{KS}$, beta cuts

$$\exp\left(-\chi^2/2+n_{
m par}-n_{
m data}/2
ight)$$
 [Akaike]

• build histogram 8640 different fits \rightarrow median, $1\sigma/2\sigma$ bands

$w_0 M_{\Omega}$ alternative analyses

• mixed a^2 and Δ_{KS} , $\alpha_s(a)^n a^2$ instead of Δ_{KS} , only a^2

■ drop 0, 1, 2 or 3 coarsest lattice completely

apply fits only upto quadratic

consistent within our systematical error

$w_0 M_{\Omega}$ along Zeuthen flow

 using improved Symanzik and unimproved clover energy densites

$w_0 M_\Omega$ e.m. effects

- add photon background and compute derivative $\partial/\partial e^2$ numerically or analytically
- photon can connect valence-valence, sea-valence and sea-sea quarks, w₀ has only ss contribution only, M_Ω all three
- there are also contributions from e.m. corrections on the quark masses

 \rightarrow 0.00010 fm effect [BMW'21]

Final Result $w_0 = 0.17245(22)(46)[51]$ fm [BMW'24]

w₀ from other inputs

• consider alternatives to M_{Ω}

• use $f_{\pi} = 130.5$ MeV from [FLAG]

• use $\sqrt{t_0} = 0.1416(+8/-5)$ fm from [MILC'15] (from f_{π})

 continuum extrapolated values are consistent (different isospin schemes, but we expect only small differences)

Decay constant f.v. effects

■ aiming for per-mill precision → have to take many effects into account, eg. finite-volume

- finite-size effects are 0.1% in the continuum
- staggered artefacts considerably increase finite-size effects (pions become heavier, etas become lighter)
- use SXPT to control them [Aubin,Bernard,Bailey,...]

$w_0 f_{\pi}$ cont. extrap.

- aim for 0.1% precision on isospin symmetric analysis
- add e.m. effects in quenched QED [Giusti et al] and also in dynamical QED

Summary

$w_0 = 0.17245(22)(46)[51]$ fm from omega 0.3%

• w_0 from pion decay under construction