The Prony Generalised Eigenvalue Method

arXiv:2004.10472; arXiv:2411.14981

Johann Ostmeyer, Aniket Sen, Carsten Urbach

DFG Deutsche Forschungsgemeinschaft

• Euclidean Correlation Functions

$$C(t) = \sum_{l=0}^{N_s} A_l \, e^{-E_l t}$$

 $E_0 < E_1 < \dots$

- obtained from stochastic (MC) simulations
- want to estimate energy levels E_l
- and amplitudes A_l (matrix elements)

• Euclidean Correlation Functions

$$C(t) = \sum_{l=0}^{N_s} A_l e^{-E_l t}$$

 $E_0 < E_1 < \dots$

- obtained from stochastic (MC) simulations
- want to estimate energy levels E_l
- and amplitudes A_l (matrix elements)

Challenge

signal-to-noise problem

StN $\propto \exp(-\Delta Et)$

with in general $\Delta E>0$ [Lepage (1989)]

- signal deteriorates exponentially
- increasing severity with *l*

Example: The Effective Mass of the Nucleon

• effective mass

$$M_{\rm eff}(t) = -\frac{1}{\delta t} \log \left(\frac{C(t+\delta t)}{C(t)} \right)$$

• since $E_0 < E_{l \neq 0}$

 $\lim_{t \to \infty} M_{\rm eff}(t) = E_0$

- all other contributions to *C* exponentially suppressed
- but t finite
 - \Rightarrow excited state contaminations

Example: The Effective Mass of the Nucleon

effective mass

$$M_{\rm eff}(t) = -\frac{1}{\delta t} \log \left(\frac{C(t+\delta t)}{C(t)} \right)$$

• since $E_0 < E_{l \neq 0}$

 $\lim_{t\to\infty}M_{\rm eff}(t)=E_0$

- all other contributions to *C* exponentially suppressed
- but t finite
 - \Rightarrow excited state contaminations

Example: The Effective Mass of the Nucleon

Here: Work at smaller *t*-values

algebraic methods

- generalised eigenvalue method
 [Michael, Teasdale (1983); Lüscher, Wolff (1990), Blossier et al.
 (2009)]
- Prony method

[Fleming (2004); Beane et al. (2009); ...]

• Prony generalised eigenvalue method [Fischer et al. (2020)]

generalised pencil of function method

[Aubin, Orginos (2011); Schiel (2015); Ottnad et al. (2018)]

Lanczos

[Wagman (2024)]

Here: Work at smaller *t*-values

algebraic methods

- generalised eigenvalue method [Michael, Teasdale (1983); Lüscher, Wolff (1990), Blossier et al. (2009)]
- Prony method

[Fleming (2004); Beane et al. (2009); ...]

• Prony generalised eigenvalue method [Fischer et al. (2020)]

generalised pencil of function method

[Aubin, Orginos (2011); Schiel (2015); Ottnad et al. (2018)]

Lanczos

[Wagman (2024)]

diagonalise the Euclidean transfer matrix in a larger subspace

e.g. by a "matrix effective mass"

 $M^{-1}(t) \cdot M(t + \delta t) v_l = \Lambda_l v_l$

with suitable M

The Prony GEVM

• construct a $n \times n$ Hankel matrix

$$H_{ij}(t) = C(t + i\Delta + j\Delta)$$

for $\Delta > 0$ and $i, j = 0, \dots, n-1$

The Prony GEVM

• construct a $n \times n$ Hankel matrix

• v_l : access to amplitudes

The Prony GEVM

• construct a $n \times n$ Hankel matrix

 $H_{ij}(t) = C(t + i\Delta + j\Delta)$

- for $\Delta > 0$ and $i, j = 0, \dots, n-1$
- solve the GEVP

 $H^{-1}(t_0) H(t) v_l = \Lambda_l(t, t_0) v_l$

• eigenvalues $\Lambda_l(t, t_0)$

$$\Lambda_l \approx e^{-E_l \delta t}$$

with $\delta t = t - t_0$

• v_l : access to amplitudes

what does pprox mean here?

- $\approx \rightarrow =$ for exactly n states in C
- $n < N_s$: corrections depending on strategy
- strategy here: increase n with $t, \delta t$ fixed
- form of corrections: next slide

recast the problem

$$C(t) = \langle \psi | \varphi_t \rangle, \quad |\varphi_t \rangle = T^t | \psi \rangle$$

- *T*: Euclidean transfer matrix
- Krylov space

 $\mathcal{K}_k = \{ |\varphi_0\rangle, |\varphi_1\rangle, \dots, |\varphi_k\rangle \}$

• Lanczos: based on \mathcal{K}_{2n} find tri-diagonal

 $T_n = V_n^{\mathsf{T}} \cdot T \cdot V_n$

[Wagman (2024)]

• T_n similar to T on the sub-space \mathcal{K}_{2n}

• eigenvalues of T_n

$$\Lambda_l \approx e^{-E_l}$$

Lanczos theory: corrections of order

$$\exp\left(-4n\sqrt{\Delta E\delta t}\right)$$

[Kaniel (1966); Paige (1971); Saad (1980)]

- ΔE splitting to the nearest by state
- Lanczos run-time asymptotically $\mathcal{O}(n^2)$ PGEVM $\mathcal{O}(n^3)$

PGEVM mathematically equivalent to Lanczos

one can show

$$T_n \sim H^{-1}(t_0) H(t)$$

[Ostmeyer, Sen, Urbach (2024)]

- ⇒ they share all eigenvalues and eigenvectors
- PGEVM and Lanczos identical
- they also share all convergence properties
- clearly observed in artificial data

• correlator *C* can be replaced by a correlator matrix

$$C_{\alpha\beta}(t) = \langle O_{\alpha}(t) O_{\beta}^{\dagger}(0) \rangle$$

 \Rightarrow build a Hankel matrix of correlator matrices \Rightarrow Block PGEVM

also known as generalised pencil of function (GPOF) method

[Aubin, Orginos (2011); Schiel, 2015; Ottnad et al. (2018)]

then:

Block PGEVM = GPOF \equiv Block Lanczos (for $\Delta = 1$ only)

theoretical input:

- C(t) real valued
- spectral decomposition $E_0 < E_1 < \dots$

$$C(t) = \sum_{l=0}^{N_s} A_l \, e^{-E_l t}$$

PGEVM:

- complex valued *E* possible
- need to come in pairs E, E^\ast for C to be real

theoretical input:

- C(t) real valued
- spectral decomposition $E_0 < E_1 < \dots$

$$C(t) = \sum_{l=0}^{N_s} A_l e^{-E_l t}$$

PGEVM:

- complex valued *E* possible
- need to come in pairs E, E^* for C to be real

consequence

- PGEVM will find approximations to physical energy levels
- effective noise model

```
e^{\operatorname{Re}(E)t}e^{\operatorname{i}\operatorname{Im}(E)t}
```

• phoney levels $E \in \mathbb{R}$ possible

- $\Rightarrow \ {\rm remove} \ {\rm all} \ \Lambda \ {\rm with} \ {\rm Im}(\Lambda) > \epsilon$
- \Rightarrow keep only $\Lambda \in \left]0,1\right]$
- leaves us only with physical and spurious eigenvalues in]0,1]
- ⇒ highly overestimated errors due to outliers
 - even after some outlier removal treatment

Changing the Estimator for the Expectation Value

- need an outlier-robust estimator
- use the median μ^{\star} over bootstrap samples
- for its error apply double bootstrap

[Wagman (2024) arXiv version 3, Ostmeyer, Sen, Urbach (2024)]

- \Rightarrow error estimate reasonable
- only few instabilities left due to misidentification of eigenvalues

more details on filtering

- **1** given n, chose all $\Lambda \in]0,1]$
- 2 sort $\Lambda_0^r > \Lambda_1^r > \ldots$, $\forall r$
- compute pivot value

 $L_p = \mathsf{median}_r \Lambda_0^r$

over all (bootstrap) samples *r* gick on all (bootstrap) samples

$$\Lambda^r = \min_i(|\Lambda^r_i - L_p|)$$

Signal-to-Noise Problem Solved...?

- unfortunately, not!
- results at larger and larger n-values more and more correlated
- flattening out eventually
- consistent with two more (noisy) correlator values added from n to n + 1

Lanczos / PGEVM / GPOF

algebraically deliver estimates for energy levels and amplitudes with minimal assumptions

well controlled systematics

no fitting and model averaging needed

- comparison on C80 ETMC physical point ensemble
- high stat. proton correlator compare to multi-state fit

[ETMC (2024)]

- comparison on C80 ETMC physical point ensemble
- high stat. proton correlator compare to multi-state fit [ETMC (2024)]
- PGEVM allows to extract ≥ 3 levels
- use result and error at n = 20

- comparison on C80 ETMC physical point ensemble
- high stat. proton correlator compare to multi-state fit [ETMC (2024)]
- PGEVM allows to extract ≥ 3 levels
- use result and error at n = 20

• ground state at n = 20

 $am_N = 0.3271(22)$

- with fit $(22) \rightarrow (12)$, but need to chose fit-range
- first excited at n = 20

 $aE_N = 0.523(29)$

• second excited at n = 20

 $aE_N = 1.01(5)$

[courtesy: Simone Bacchio]

Comparison to reduced Statistics

- original statistics 401 configs, 650 sources
- reduced to 101 configs
- compatible results
- error scales roughly as expected

 $am_N = 0.3324(36)$

Multi-state Fit versus PGEVM: Ω Baryon

- ETMC B64 physical point ensemble
- high stat. with valence strange $a\mu_s = 0.3323817$
- similar conclusion as for the nucleon
- result $am_{\Omega} = 0.6839(14)$ at n = 20additional fit: (14) \rightarrow (5)
- two-state fit for $t \ge 10$ $am_{\Omega} = 0.6825(8)$

Multi-state Fit versus PGEVM: Ω Baryon

- ETMC B64 physical point ensemble
- high stat. with valence strange $a\mu_s = 0.3323817$
- similar conclusion as for the nucleon
- result $am_{\Omega} = 0.6839(14)$ at n = 20additional fit: (14) \rightarrow (5)
- two-state fit for $t \ge 10$ $am_{\Omega} = 0.6825(8)$

Multi-state Fit versus PGEVM: Ω baryon

[courtesy: Simone Bacchio]

PGEVM for Time-Symmetric Correlators

- PGEVM resolves $\pm E$ separately
- leads to additional systematic effects
- underestimated at smallish n-values?
- of course: could take the largest n result
- but need to understand systematics

• consider single energy level E_0 plus noise $\eta(t)$ in symmetric correlator

$$C(t) = \left(e^{-E_0 t} + a e^{E_0 t}\right) \left(1 + b \eta(t)\right) \,.$$

• for n = 2 analytical solution to PGEVM $t = 0, \delta t = 1$

$$\Lambda_{\pm} = \frac{C(1)C(2) - C(0)C(3) \pm \sqrt{R}}{2(C(1)^2 - C(0)C(2))},$$

with

$$R = -3C(1)^{2}C(2)^{2} + 4C(0)C(2)^{3} + 4C(1)^{3}C(3) - 6C(0)C(1)C(2)C(3) + C(0)^{2}C(3)^{2}.$$

- now expand around b = 0
- result for the two eigenvalues

$$\Lambda_{-} = e^{-E_0} \left(1 + b \, \tilde{R}_{-} + \mathcal{O}(b^2) \right) \,, \qquad \Lambda_{+} = e^{+E_0} \left(1 - \frac{b}{a} \, \tilde{R}_{+} + \mathcal{O}(b^2) \right) \,.$$

- $ilde{R}_{\pm}$ depending on η,a and E_0
- for a < b the correction to Λ_+ becomes large
- this is the case for $a = \exp(-E_0T)$

solution A

- work where $a \approx 1$
- this is the case when t is chosen around T/2
- only feasible for the pion
- otherwise dominated by noise

solution **B**

- chose Δ maximal for given n
- reason

$$ilde{R}_+ \propto \exp(-2\Delta E_0)(\ldots)$$

which cancels the $a^{-1} = \exp(E_0 T)$ for $\Delta = T/2$

- in addition: \tilde{R}_{-} not affected significantly
- there is also a **solution C** (block stratifying *H*)
- we expect this to still work the same for n>2 and more levels

- fluctuations largely reduced
- stable estimate from n = 5 on
- also $+E_0$ estimated well
- averaging reduces uncertainty significantly

- η/η' significantly affected by noise
- B55 example, $aM_\eta=0.2481(8)$ [Ottnad, Urbach (2018)]
- **preliminary** GPOF / Block PGEVM with 2×2 correlator sub-matrices
- original Block PGEVM performs best
- significantly more phoney states
- \Rightarrow need to work on state identification

- Prony GEVM mathematically equivalent to Lanczos (more generally GPOF, Block Lanczos and Block PGEVM)
- bootstrap median as estimator is key for reliable error estimates
- full agreement to multi-state fits for nucleon and Ω
- more realistic uncertainty estimate without model averaging and fitting?
- phoney levels become issue for Block PGEVM

- Johann Ostmeyer and Aniket Sen
- Constantia Alexandrou and Simone Bacchio for the Baryon correlators
- the DFG for the funding

• ... and for your attention