Scale setting from precise Omega baryons

Daniel Mohler

Technische Universität Darmstadt

Trento, 5. March, 2025

Motivation – what physics are we interested in?

Main interests (among the authors)

- Hadron-hadron interactions in Lattice QCD and Effective field theory
- Quark-mass dependence of hadron masses, with a particular focus on strangeness physics and charmed hadrons
- Interface to FAIR experiments (including CBM, PANDA)
- Exotic hadrons and their structure

Approaches

• Lattice QCD and Effective field theory

What we encountered

- Scale setting uncertainty relevant in many (unexpected) places
- In some cases, determined point (finite a, fixed quark masses) uncertainties of QCD resonances seem better determined than the scale
- Scale-setting uncertainty very relevant for tuning of RHQ actions (charm and bottom)

What none of use care about:

• Flow scales

Daniel Mohler (TU Darmstadt)

R.J.Hudpsith, Matthias Lutz, DM, arXiv:2404.02769

- Precise determination of $I(J^P) = 0(3/2)^+$ and $= 0(3/2)^- \Omega$ -baryon ground states on Tr(M) = const. CLS ensembles.
- Description with N³LO SU(3)_f chiral perturbation theory. (This was surprisingly successful and had unexpected implications.)
- These fits allow for a determination of the lattice spacings.
- As an afterthought, we also determine $\sqrt{t_0}$.

くロット (過) (ヨマ (ヨ) (日) (日)

Outline

Features of our calculation

- Correlator methods
- Omega baryon masses
- Flavor SU(3) chiral fits

Results

-

EL OQC

Why the Ω -baryon?

- On the surface: Known very precisely from experiment. (some people think one should and can do better)
- M_{Ω} is relatively straight-forward to determine with high precision (using a combination of standard lattice spectroscopy methods). In our case: At small time separation more precise than the pion.
- The strange-quark propagators are relatively cheap; no large noise to signal ratio.
- No complicated improved currents and renormalization.
- QCD stable state; strong isospin-breaking effects expected to be negligible; QED effects expected to be small;

Outline

Features of our calculation

- Correlator methods
- Omega baryon masses
- Flavor SU(3) chiral fits

Results

4 Conclusions

EL OQC

Correlator basis and methods

• We use simple local Ω operators

$$\Omega_i^{\kappa}(x) = \epsilon_{abc}(s_a^T C \gamma_i s_b) s_c^{\kappa}(x).$$

• A parity projection is performed in the usual manner

$$C_{\Omega}^{\pm}(t-t') = \frac{1}{2}(1\pm\gamma_t)^{\kappa\kappa'}\frac{1}{3}\sum_{i=x,y,z}\sum_{x}^{L^3}\Omega_i^{\kappa}(x,t)(\Omega_i^{\kappa'}(0,t'))^{\dagger}$$

- Average over appropriate forward- and backward propagating states
- Truncated solver method

G.S. Bali, S. Collins, A. Schäfer, CPC **181**, 1570 (2010) Our setup: sloppy solves on every timeslice (periodic bc) or in the bulk (open bc) and a single high-precision solve.

⇒ ↓ ≡ ↓ ≡ |= √Q ∩

We use Coulomb-gauge-fixed wall sources

A. Billoire, E. Marinari, G. Parisi, Phys. Lett. B 162, 160 (1985) R. Gupta, G. Guralnik, G.W. Kilcup, S.R. Sharpe, PRD 43, 2003 (1991)

• Gauge fixing through a Fourier-accelerated non-linear conjugate gradient algorithm

R.J. Hudspith, CPC 187, 115 (2015)

- Negligible calculational overhead
- Superior volume-scaling of the signal compared to other choices \rightarrow Leverages large (lattice) volume of CLS ensembles with close-to-physical quark masses.
- Effective masses tend to approach their asymptotic values from below.

Generalized Pencil of Functions

C. Aubin, K. Orginos, AIP Conf. Proc. **1374**, 621 (2011) J.R. Green *et al.* PRD **90**, 074507 (2014) M. Fischer *et al.* EPJ A **56**, 206 (2020)

- The best way to deal with this is to form a generalized Pencil of Functions (PoF) matrix built from the Wall-point correlator $C_{\Omega}^{\pm}(t)$
- We use s simple 2x2 matrix

$$M_{\Omega}^{\pm}(t) = \begin{pmatrix} C_{\Omega}^{\pm}(t) & C_{\Omega}^{\pm}(t+1) \\ C_{\Omega}^{\pm}(t+1) & C_{\Omega}^{\pm}(t+2) \end{pmatrix}.$$
 (1)

- This is solved as a symmetric GEVP at fixed metric time τ_0 and with approximate diagonalization at a later reference time τ .
- τ_0 and τ are varied as appropriate; chosen dimension and $\Delta \tau$ of the PoF were investigated.
- This part is similar to BMW scale setting for $(g-2)_{\mu}$.

イロト (過) (ヨ) (ヨ) (ヨ) ()

Wall-point sources versus PoF - consistency check

- Principal correlator from the PoF approaches asymptotic behavior fast; benefit at the expense of noisier data
- Empirically, the PoF leads to reduced correlations in time
- Methods lead to consistent results
 - \rightarrow Final results from PoF (less afflicted by systematics)

Representative result from the C101 ensemble. $\Rightarrow < \Rightarrow = \circ$

Daniel Mohler (TU Darmstadt)

Precise Omega baryons from LQCD

Trento, 5. March, 2025

Wall-point sources versus PoF – consistency check

- Principal correlator from the PoF approaches asymptotic behavior fast; benefit at the expense of noisier data
- Empirically, the PoF leads to reduced correlations in time
- Methods lead to consistent results
 - \rightarrow Final results from PoF (less afflicted by systematics)

Daniel Mohler (TU Darmstadt)

Precise Omega baryons from LQCD

Trento, 5. March, 2025

Consistency check: p-value histogram

- We use correlated fits based on separated/binned measurements \rightarrow meaningful χ^2 /d.o.f and p-values
- We can test if resulting p-values are distributed as expected.
- We see no need to attach a systematic uncertainty to our mass determination.

Cumulative histogram of our fit p-values

Precise Omega baryons from LQCD

Ensembles and overview of the data

- We use 2+1 flavor CLS ensembles on the Tr(M) = const. trajectory
- 27 ensembles at 6 lattice spacing (one non-CLS)
- This will turn out to be an unfortunate choice

Trento, 5. March, 2025

-

- As can be seen, our data shows significant slope in $\varphi_{\pi} = 8t_0 m_{\pi}^2$.
- Several pairs of ensembles used differ only by volume
 - (U103, H101) and (H200, N202) are such pairs at the $SU(3)_f$ symmetric point
 - (H105, N101) and (X451, N451) are at intermediate pion masses
 - We see the largest finite-volume effects for ensembles with

 $m_{\pi} = m_K = m_{\eta}.$

- At intermediate pion masses, we have large $m_{\pi}L$ differences but observe tiny differences in the Ω baryon mass.
- \rightarrow Non-trivial finite-volume effects

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 < の Q (P)

Comparing our masses to the RQCD results I

- Most of the results consistent within 1 standard deviation
- Largest tension on E300 with 2.3 σ (we would expect some deviations > 1σ)
- Data most precise in large volumes (low pion masses, finer lattice spacing)

Comparing our masses to the RQCD results II

- For small-volume lattices our data is only slightly more precise.
- For large volumes the wall sources are more efficient.
- On E250: Method significantly cheaper yet much more precise.

SU(3) chiral fits

• Simplified approach compared to

```
M.F.M. Lutz, Y. Heo, X.-Y. Guo, EPJ C 83, 440 (2023);
M.F.M. Lutz, Y. Heo, R.J. Hudspith, PRD 110, 094046 (2024)
+ many references therein
```

- There, $SU(3)\chi$ PT fits are done for the whole octet and decuplet.
- Particular emphasis on on-shell masses in the one-loop contributions.
- Lead to improved convergence properties in earlier studies.
- Well-known Lüscher-type finite-box effects are included.
- Baryon masses obtained through solving coupled non-linear equations.
- Simplified approach uses lattice values in the loop expressions, focuses on the Ω baryon, and employs some other simplifications to the full setup.

SU(3) chiral fits

Rewrite in terms of dimensionless quantities ($\varphi_Q = \tilde{m}_Q^2 = 8t_0 m_Q^2$, etc.)

$$\begin{split} \frac{aM_{\Omega}^{\text{Latt.}}}{M_{\Omega}^{\text{Phys.}}} &= a \left\{ 1 - 4 \left(\tilde{d}_0 + \tilde{d}_D / 3 \right) \Delta (\tilde{m}_K^2 + \tilde{m}_\pi^2 / 2) - \frac{8}{3} \, \tilde{d}_D \, \Delta [\tilde{m}_K^2 - \tilde{m}_\pi^2] \right. \\ &+ \frac{1}{\tilde{f}^2} \, \tilde{c}_{\Omega}^2 \, \Delta [\tilde{J}_{K\Xi}(\tilde{M}_{\Omega}) / Z_{\Omega}] + \frac{1}{3 \, \tilde{f}^2} \, \tilde{h}_{\Omega}^2 \, \Delta [\tilde{J}_{\eta\Omega}(\tilde{M}_{\Omega}) / Z_{\Omega}] + \frac{1}{3 \, \tilde{f}^2} \, \tilde{h}_{\Omega}^2 \, \Delta [\tilde{J}_{K\Xi^*}(\tilde{M}_{\Omega}) / Z_{\Omega}] \\ &- \frac{1}{\tilde{f}^2} \, \sum_{Q=\pi,K,\eta} \left(\tilde{g}_{\Omega Q}^{(S)} \, \Delta [\tilde{m}_Q^2 \, \tilde{I}_Q^{(0)}] + \tilde{g}_{\Omega Q}^{(V)} \, \Delta [\tilde{I}_Q^{(2)}] \right) \\ &+ \tilde{e}_{\Omega}^{(\pi)} \, \Delta [\tilde{m}_\pi^4] + \tilde{e}_{\Omega}^{(K)} \, \Delta [\tilde{m}_K^4] + \tilde{e}_{\Omega}^{(\eta)} \, \Delta [(\tilde{m}_K^2 - \tilde{m}_\pi^2) \, (4 \, \tilde{m}_K^2 - \tilde{m}_\pi^2) / 3] \Big\}, \end{split}$$

The terms are organized by order in the chiral expansion

- terms with d_0 and d_D contribute at next-to-leading-order (NLO)
- "bubble" terms C_A and H_A contribute at N²LO
- "tadpole" terms $g^{(S/V)}_{\Omega(\pi/K/\eta)}, e^{(\pi/K/\eta)}_{\Omega}$ contribute at N³LO

くロット (過) (ヨマ (ヨ) (日) (日)

SU(3) chiral fits

- Δ[···] indicates subtraction by corresponding physical-point expression (i.e. at physical quark masses, infinite volume, and in the continuum)
- Note that we are using the values for t_0 on each ensemble to make most quantities dimensionless.

 \rightarrow To the order we work at, the small mass-dependence of t_0 can be absorbed into a redefinition of the LECs.

- Promoting the physical t_0 in the subtractions to a fit parameter provides our t_0 determination.
- There are 13 combinations of LECs and our current dataset for m_Ω is not sufficient to determine all.

More on the chiral fits

• We need N³LO for a good fit.

LO	NLO	N ² LO	N 3 LO (no $ ilde{g}_{\Omega\eta}^{(S/V})$	N ³ LO (no $\tilde{g}_{\Omega(\pi/\eta)}^{(S/V)}$)
323	4.1	3.1	0.54	0.69

- Observed volume effects are dominated by $m_{K/\eta}L$.
- The chosen approach $(SU(3)\chi PT)$ and the need for N^3LO terms limits our possibility for (sensible) fit variations.
- Note that the η contributions are estimated using the GMOR relation with $m_{\eta}^2 = (4m_K^2 - m_{\pi}^2)/3$.
- Along our trajectory, we cannot distinguish the finite-volume tadpole terms $\tilde{I}_{\eta}^{(n)}$ and $\tilde{I}_{K}^{(n)}$ and drop all tadpole and bubble terms with the η .

Outline

- Correlator methods
- Omega baryon masses
- Flavor SU(3) chiral fits

Results

Chiral parameter and resulting lattice scales

- Some (largely unimportant) chiral parameters are fixed form the literature.
- Results for the lattice scales as well as (most-important) LECs are shown.
- The remaining LECs are set to zero.
- Resulting lattice spacings with relative uncertainties of $0.17\% \dots 0.32\%$.

f [MeV]	92.4	μ [MeV]	770	
M [MeV]	804.3	$M + \Delta$ [MeV] 1115.2		
$a(\beta = 3.34)$	0.09329(27)(5) fm	$a(\beta = 3.40)$	0.08262(18)(4) fm	
$a(\beta = 3.46)$	0.07380(14)(4) fm	$a(\beta = 3.55)$	0.06268(10)(3) fm	
$a(\beta = 3.70)$	0.04884(13)(3) fm	$a(\beta = 3.85)$	0.03806(12)(2) fm	
d_0	$-0.39(13) \mathrm{GeV^{-1}}$	d_D	$-0.51(15) \mathrm{GeV^{-1}}$	
C_A	1.7(4)	H_A	0.6(2)	
$g^{(S)}_{\Omega K}$	$-13(4) \mathrm{GeV}^{-1}$	$g^{(V)}_{\Omega K}$	$48(12)~{\rm GeV}^{-1}$	
$\underbrace{e_{\Omega}^{(\eta)}}$	$-0.13(4) \text{ GeV}^{-3}$	$\sqrt{t_0}$	to be shown	

Negative parity Ω ground state

- Comparison to the PDG 3-star $\Omega(2012)$ discovered by Belle; for the experimental state the width is plotted as the error bar.
- At intermediate pion masses we see a state well below $\Theta^* K$
- At light pion mass our results approach the $\Theta^* K$ threshold; Θ^* is a resonance decaying into $\Theta \pi$
- Small discretization and noticeable (pion-based) finite-volume effects.

Resulting determination of the flow-scale

• Initially we fixed t_0 to the Regensburg value. As a final step, we allowed it to float

 $\sqrt{t_0} = 0.14480(32)_{\text{Stat.}}(6)_{\text{QED}}(7)_{\text{Cuts}} \text{ fm}$.

- QED effects (input M_{Ω})
 - The Ω carries electric charge
 - This is expected to result in a mass-correction at or below the 0.2% level

R. Horsley et al. J. Phys. G 46, 115004 (2019).

- We use the prediction $M_{\Omega}^{(3/2)^+} = 1.6695$ GeV (from the Regensburg paper) close to this bound for another fit.
- The difference between the two results yields our QED uncertainty.
- Data cuts
 - Due to the need for an N³LO description and the (exclusive) use of the Tr(M) = const. trajectory, our options for sensible data cuts are limited.
- We are only aware of one well-motivated EFT-based approach describing low-energy QCD along our mass trajectory: $SU(3)\chi$ PT.

Additional data cuts performed

• Cutting more lattice spacings is not sensible with our data

Daniel Mohler (TU Darmstadt)

Precise Omega baryons from LQCD

Trento, 5. March, 2025

Consistency-check: Cutoff dependence in $\sqrt{t_0}$

- We can perform a naive chiral-extrapolation of $\sqrt{t_0}$ on each ensemble (grey)
- Using our lattice spacings the following plot results (no continuum extrapolation performed)

Outline

- Correlator methods
- Omega baryon masses
- Flavor SU(3) chiral fits

Used LECs and priors

• Unfortunately, we currently must add priors for the LECs for some of the flattest directions

$$egin{aligned} & ilde{d}_D = -0.07 \pm 0.03 \; , \ & ilde{c}_\Omega = 0.9 \pm 0.9 \; , \ & ilde{h}_\Omega = 0.4 \pm 0.2 \; . \end{aligned}$$

- We also set to zero $\tilde{e}_{\Omega}^{(\pi)}$ and $\tilde{e}_{\Omega}^{(K)}$.
- Our final result also omits $\tilde{g}_{\Omega\pi}^{(S)}$ and $\tilde{g}_{\Omega\pi}^{(V)}$; this has negligible influence on the lattice spacings.
- Our final fit has 27 data points, 14 fit parameters and 3 priors.

(日) (周) (日) (日) (日) (日) (000

Mass-dependent discretization effects: A non-trivial story

- Mass-independent discretization effects are absorbed into scales a.
- Exclusively using data along the CLS Tr(M) =constant trajectory limits our control over the SU(3) chiral LECs and over the leading mass-dependent discretization effects.
- This can be seen by the poor precision of the NLO LECs

$$\tilde{d}_0 = -0.054(18)$$
 $\tilde{d}_D = -0.071(20)$

• The following lattice-scale dependence has previously been considered

$$d_0 \to d_0 + a^2 \gamma_{d_0}$$
$$d_D \to d_D + a^2 \gamma_{d_D}$$

M.F.M. Lutz, Y. Heo, X.-Y. Guo, EPJ C **83**, 440 (2023); M.F.M. Lutz, Y. Heo, R.J. Hudspith, PRD **110**, 094046 (2024).

• Contributions are much smaller than our uncertainties on these LECs.

Daniel Mohler (TU Darmstadt)

Mass-dependent discretization effects: A non-trivial story

- Our conclusion: Effects on d_0 and d_D are small compared to uncertainties on these LECs: Resolving them needs data on other CLS trajectories.
- Additional fit to test that mass-independent discretization effects get absorbed as intended:
 - Fit with an explicit $O(a^2)$ -correction term (replacing the 1 with $1 + C_a a^2$)
 - Prior of 0 ± 0.1 to stabilize the fit
 - Fit yielded a coefficient compatible with zero:

$$C_a = 0.00058(150)$$

- This resulted in $\sqrt{t_0} = 0.14477(38)$ fm
- Additional fit with a mass-dependent discretization correction term to the NLO parameter \tilde{d}_D :
 - This resulted in the mild change $\sqrt{t_0} = 0.14482(18)$ fm

What other challenges exist?

• Pole masses and t_0 values in Eq. 17 are mostly taken from CLS papers.

G.S. Bali et al., JHEP 05, 035 (2023); M. Cè et al., PRD 106, 114502 (2022).

- We do not have the bootstrap samples for these.
- We draw a pseudo-resampling from random Gaussian noise distributions with widths corresponding to the total uncertainty. We treated them either as uncorrelated or fully correlated with a negligible effect on our t_0 uncertainty.
- To investigate this procedure, we calculate the actual correlations between aM_{Ω} , φ_{π} and φ_{K} on a newly generated ensemble.

	aM_{Ω}	φ_{π}	φ_K
aM_{Ω}	1.0000	0.0503	0.1583
φ_{π}		1.0000	0.6122
φ_K			1.0000

Scheme for iso-symmetric QCD

- In our preprint we use $m_{\pi} = 134.8(3)$ MeV and $m_K = 494.2(3)$ MeV.
- (Preliminary) plot shows our result for the definitions from FLAG2018 (left), FLAG(2021)(right) and the consensus from Monday (middle)

Comparison provided by FLAG

- In our view: All current calculations have clear limitations
- No tension among the recent 2+1 flavor results, but we are surely not at a satisfactory level yet

- ₹ 🖻 🕨

EL OQC

Outline

- Correlator methods
- Omega baryon masses
- Flavor SU(3) chiral fits

Conclusions

- Chiral behavior of the Omega baryon masses can be surprisingly-well described by the used SU(3) formalism
- Finite-volume effects are often modeled too naively.
- Reliable determinations of SU(3) LECs will require more ensembles and more observables. Interesting steps in

M.F.M. Lutz, Y. Heo, X.-Y. Guo, EPJ C **83**, 440 (2023); M.F.M. Lutz, Y. Heo, R.J. Hudspith, PRD **110**, 094046 (2024).

- People should stop using point-sources when better alternatives exist (and they are not needed).
- The (experimentally not-known) quantum numbers of the $\Omega(2012)$ are likely $I(J^P) = 0(\frac{3}{2}^{-})$.

(日)

In an ideal world: better data

- Use all three CLS trajectories
- Calculate all pseudoscalar mesons and all baryons occurring in χPT description
- Use full data covariance (bootstrap or pseudo-resampling)
- Prolong several HMC chains

• We currently pursue other (scientific) hobbies.

Backup slides

Daniel Mohler (TU Darmstadt)

Precise Omega baryons from LQCD

Trento, 5. March, 2025

Fit ranges and p values

Ensemble	$(t_{\min}, t_{\max})/a$	р	Ensemble	$(t_{\min}, t_{\max})/a$	р
A653	(3, 17)	0.32	H200	(4, 11)	0.50
A654	(3, 12)	0.52	N202	(5, 16)	0.61
GSI_B650	(4, 23)	0.14	N203	(8, 22)	0.13
U103	(4, 13)	0.71	N200	(10, 21)	0.76
H101	(4, 15)	0.91	D200	(3, 23)	0.71
H102	(3, 23)	0.62	E250	(4, 21)	0.22
H105	(3, 17)	0.73	N300	(4, 12)	0.40
N101	(5, 20)	0.48	N302	(12, 25)	0.76
C101	(6, 21)	0.78	J303	(15, 32)	0.66
B450	(4, 19)	0.52	E300	(15, 31)	0.38
S400	(4, 17)	0.81	J500	(24, 36)	0.38
X451	(3, 16)	0.46	J501	(18, 39)	0.42
N451	(5, 17)	0.91			
D450	(7, 25)	0.13			
D452	(5, 25)	0.56			

Comparison to other CLS results

Trento, 5. March, 2025