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Bird’s eye view
Strategy

▶ Mixed action: möbius domain wall fermions (valence) on highly-improved
staggered quarks (Nf = 2 + 1 + 1)

▶ Work in isosymmetric limit

▶ mΩ for physical scale

▶ SU(2) χPT & Taylor expansions (with model averaging)

▶ In addition to w0,
√
t0 calculate improved scales with leading-order discretization

effects removed
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Why MDWF on HISQ?
Strategy

▶ MDWF circumvents Nielsen-Ninomiya



4

Why MDWF on HISQ?
Strategy

▶ MDWF circumvents Nielsen-Ninomiya

▶ Wanted to bootstrap our action with publicly availble data =⇒ use MILC’s
HISQ action



4

Why MDWF on HISQ?
Strategy

▶ MDWF circumvents Nielsen-Ninomiya

▶ Wanted to bootstrap our action with publicly availble data =⇒ use MILC’s
HISQ action

▶ QUDA provides excellent MDWF solvers: compute time optimized on GPUs such
that 95+% of wall clock cycles are spent on MDWF solves, not
contractions/smearing



4

Why MDWF on HISQ?
Strategy

▶ MDWF circumvents Nielsen-Ninomiya
▶ Wanted to bootstrap our action with publicly availble data =⇒ use MILC’s

HISQ action
▶ QUDA provides excellent MDWF solvers: compute time optimized on GPUs such

that 95+% of wall clock cycles are spent on MDWF solves, not
contractions/smearing

▶ Emprically, MDWF requires only around ∼ 1% statistics compared to clover
fermions for similar precision =⇒ offsets cost from simulating 5th dimension,
lack of multi-grid solver for MDWF
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Lever arms (2020)
Strategy

▶ 22 ensembles spanning
130 MeV ≲ mπ ≲ 400 MeV,
0.06 fm ≲ a ≲ 0.15 fm

▶ Strange dependence:
a12m220ms tuned at ∼ 60%
physical strange quark mass

▶ Volume dependence:
a15m310/L (2.4 fm vs 3.6
fm), a12m310/XL (2.9 fm vs
5.8 fm),
a12m310XL/a12m180L/a12m130

(same volume, different mπ)
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Lever arms (2025)
Strategy

▶ 5+1
−0 new ensembles

▶ 1 at physical pion mass

▶ 2+1
−0 at/below the current
finest lattice spacing
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Why mΩ?
Strategy

Figure: FLAG (2024)

▶ Stable in QCD+QED

▶ No valence light quarks =⇒ milder
chiral dependence for extrapolations

▶ Favorable Parisi-Lepage scaling
compared to other baryons:
SNR ∼ e−(mΩ−3mπ/2)t

▶ (pre-Edinburgh) Experimental value
for mΩ more precise than decay
constants

▶ (pre-Edinburgh) Experimental value
for Fπ contaiminated by QED,
potential BSM effects
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Fitting the Ω correlators
Strategy
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▶ Check for stability using multi-state fits up to N = 5

▶ Stabilize fits with wide priors, e.g. δE ∼ logN (2mπ,m
2
π)
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Fitting the Ω correlators
Strategy
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▶ Two different combinations of source/sinks, fit simultaneously
▶ Check for stability using multi-state fits up to N = 5
▶ Stabilize fits with wide priors, e.g. δE ∼ logN (2mπ,m

2
π)

▶ Use Bayes factors & relative stability for model selection
▶ Try to optimize tphysmin over all ensembles simultaneously
▶ Cross-checks with 3+ people
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Some systematic errors
Strategy

▶ Model selection is not a
replacement for model average!
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Some systematic errors
Strategy

▶ Model selection is not a
replacement for model average!

▶ Law of large numbers does not
necessarily apply to systematic
errors =⇒ posterior will often be
non-Gaussian

▶ Not sufficient to simply quote
statistical/systematic errors – we
must chain correlations forward

▶ Generalized linear least squares is
unbiased, but nonlinear least
squares is not
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Example from CLS ensemble B450
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Backbone for the analysis: choosing the appropriate effective field theory
Strategy

▶ Mixed-action EFT not advantageous per previous studies (e.g., FK/Fπ)

▶ SU(3) heavy baryon χPT converges too slowly =⇒ use SU(2) heavy baryon χPT
with only pions as degrees of freedom

▶ Fix ensembles near physical value of strange quark masses so that Taylor
corrections are sufficient
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Parameterizing the chiral dependence
Strategy

Generically write O = Oχ + Omqs ̸=m∗
qs + Odisc

▶ SU(3) heavy baryon χPT converges slowly =⇒ use SU(2) heavy baryon χPT w/
Taylor corrections for strange quark mass mistuning

▶ Ω baryon has no terms non-analytic in m2
π until O(m4

π), no odd powers of m2
π

until O(m7
π) =⇒ no odd powers of mπ for mΩw0 to working order

mχ
Ω = m0

{
1 + α2

m2
π

Λ2
χ

+
m4

π

Λ4
χ

[α4λπ + β4] +
m6

π

Λ6
χ

[
α6λ

2
π + β6λπ + γ6

]
+ . . .

}

wχ
0 = w0,ch

{
1 + k1

m2
π

Λ2
χ

+
m4

π

Λ4
χ

[k2λπ + k3] + . . .

}

where λπ = log(m2
π/µ

2) (and we take µ = Λ = {4πFπ,mΩ})
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Visualizing the chiral dependence (improved scales)
Strategy
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▶ Despite having very different trajectories, both results agree at physical point
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“Fixing” the renormalization scale
Strategy

▶ Chiral logs depend on the renormalization scale: λl = log(m2
π/µ

2)

▶ One natural choice is to use the pion decay constant in the SU(2) limit, µ0 = 4πF0
▶ Consider instead µens = 4πF ens

π , with Fπ taken on a given lattice ensemble.

Fπ = 1 +

NLO︷ ︸︸ ︷
α
m2

π

Λ2
+ β

m2
K

Λ2
− m2

π

Λ2
λl −

1

2

m2
K

Λ2
λK + . . .

=⇒ log

(
m2

π

µ2
0

µ2
0

(µens)2

)
= log

(
m2

π

µ2
0

)
− 2δNLOFπ

+O(m4,m4λ,m4λ2, a2, a2αS)

▶ To working order, we can aborb these terms into the N3LO terms

▶ But at higher order, these corrections potentially become important
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Parameterizing the strange quark mass mistuning
Strategy

Generically write O = Oχ + Omqs ̸=m∗
qs + Odisc

▶ All but what ensemble tuned near the strange quark mass =⇒ a Taylor
expansion for strange dependence should suffice

m
mqs ̸=m∗

qs
Ω = c ′ss

2
Λ + c ′sss

4
Λ + c ′ssss

6
Λ + . . .

w
mqs ̸=m∗

qs
0 = c ′′s s

2
Λ + c ′′sss

4
Λ + c ′′ssss

6
Λ + . . .

where s2Λ = (2m2
π −m2

K )/Λ
2
χ
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Strange quark mass mistuning
Strategy
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Representative model: N3LO w/ chiral logs, Λ = 4πFπ
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Parameterizing the discretation effects (w/o FV corrections)
Strategy

Generically write O = Oχ + Omqs ̸=m∗
qs + Odisc

▶ Similar Taylor expansion for a-dependence, but now must also include radiative
corrections from the Symanzik effective theory

mdisc
Ω = d̃ ′

aϵ
2
aαS + d ′

aϵ
2
a + d ′

aaϵ
4
a + d ′

aaaϵ
6
a . . .

wdisc
0 = d̃ ′′

a ϵ
2
aαS + d ′′

a ϵ
2
a + d ′′

aaϵ
4
a + d ′′

aaaϵ
6
a . . .



15

Parameterizing the discretation effects (w/o FV corrections)
Strategy

Generically write O = Oχ + Omqs ̸=m∗
qs + Odisc

▶ Similar Taylor expansion for a-dependence, but now must also include radiative
corrections from the Symanzik effective theory

mdisc
Ω = d̃ ′

aϵ
2
aαS + d ′

aϵ
2
a + d ′

aaϵ
4
a + d ′

aaaϵ
6
a . . .

wdisc
0 = d̃ ′′

a ϵ
2
aαS + d ′′

a ϵ
2
a + d ′′

aaϵ
4
a + d ′′

aaaϵ
6
a . . .

More generally, δSymanzik
a ∼ a2αn+γ

S

▶ n = 0 for MDWF, n = 1 for HISQ

▶ γ unknown for our action
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Proxies for the lattice spacing
Strategy

▶ We define our small parameters such that l2Λ ∼ s2Λ ∼ ϵ2a
▶ In previous work (for FK/Fπ) we parameterized the lattice dependence via

ϵ2a,fixed = a2

(2w0,orig)2

▶ But in this work, in order to give all the gradient flow scales equal footing, we also
consider the parameterization

ϵ2a,var =



a2

(2w0,orig)2
, y = w0,origmΩ

a2

(2w0,imp)2
, y = w0,impmΩ

a2

4t0,orig
, y =

√
t0,origmΩ

a2

4t0,imp
, y =

√
t0,impmΩ
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Lattice spacing dependence
Strategy
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Finite volume corrections
Strategy

Correct for finite volume by
modifying the tadpole integral:

log

(
m2

µ2

)
→ log

(
m2

µ2

)
+4k1(mL)

where k1(mL) ∼ e−ML/(mL)3/2

▶ Determined corrections to
N3LO

▶ k1 has no free parameters

▶ Conclusion: F.V. corrections
are negligible
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FV (l2F ,mπL)

mπL = 5.36 mπL = 4.30 mπL = 3.25
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Putting it all together
Strategy

Generically write O = Oχ + Odisc + Omqs ̸=m∗
qs

▶ Expand everything, remembering the cross-terms

w0mΩ = c0 + δNLOls,Λ + δN
2LO

ls,Λ + δN
3LO

ls,Λ + δNLOa,Λ + δN
2LO

a,Λ + δN
3LO

a,Λ

where

δNLOls,Λ = l2Λcl + s2Λcs ,

δN
2LO

ls,Λ = l4Λ(cll + c lnll λπ) + l2Λs
2
Λcls + s4Λcss ,

δN
3LO

ls,Λ = l6Λ(clll + c lnlllλπ + c ln
2

lll λ
2
π) + l4Λs

2
Λλπc

ln
lls

+ l4Λs
2
Λclls + l2Λs

4
Λclss + s6Λcsss ,

δNLO
a,Λ = daϵ

2
a + d ′

aαSϵ
2
a ,

δN
2LO

a,Λ = daaϵ
4
a + ϵ2a

(
dal l

2
Λ + dass

2
Λ

)
,

δN
3LO

a,Λ = daaaϵ
6
a + ϵ4a(daal l

2
Λ + daass

2
Λ)

+ ϵ2a(dall l
4
Λ + dals l

2
Λs

2
Λ + dasss

4
Λ) .

25 unknown LECs! Can we fit all of these terms?
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Example Models
Strategy

▶ Instead of fitting the full expression, consider various truncations & model average

w0mΩ = c0︸︷︷︸
LO

+ δNLO(lF , sF )︸ ︷︷ ︸
chiral NLO

+ δNLOa,F︸ ︷︷ ︸
disc NLO

w0mΩ = c0︸︷︷︸
LO

+ δNLO(lF , sF )︸ ︷︷ ︸
chiral NLO

+ δN
2LO(lF , sF )︸ ︷︷ ︸
chiral N2LO

+ δN
2LO

ln︸ ︷︷ ︸
chiral log N2LO

+ δNLO
a,F︸ ︷︷ ︸

disc NLO

+ δN
2LO

a,F︸ ︷︷ ︸
disc N2LO

+ δN
2LO

L,F︸ ︷︷ ︸
FV N2LO

w0mΩ = c0︸︷︷︸
LO

+ δNLO(lF , sF )︸ ︷︷ ︸
chiral NLO

+ δN
2LO(lF , sF )︸ ︷︷ ︸
chiral N2LO

+ δN
3LO(lF , sF )︸ ︷︷ ︸
chiral N3LO

+ δN
2LO

ln︸ ︷︷ ︸
chiral log N2LO

+ δN
3LO

ln︸ ︷︷ ︸
chiral logs N3LO

+ δNLO
a,F︸ ︷︷ ︸

disc NLO

+ δN
2LO

a,F︸ ︷︷ ︸
disc N2LO

+ δN
3LO

a,F︸ ︷︷ ︸
disc N3LO

+ δN
2LO

L,F︸ ︷︷ ︸
FV N2LO

+ δN
3LO

L,F︸ ︷︷ ︸
FV N3LO
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Setting priors with empirical Bayes
Strategy

▶ Stabilize fits with priors

▶ Because we tune to the physical strange quark mass, light quark mass dependence
can be guesstimated by eye

▶ Assume higher-order LECs are of similar size

▶ But what about the rest?
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Setting priors with empirical Bayes
Strategy

Let M = {Π, f } denote a model. Per Bayes’s theorem:

p(Π|D, f ) =
p(D|Π, f )p(Π|f )

p(D|f )

Assuming a uniform distribution for the hyperpriors p(Π|f ):

peak of p(D|Π, f ) =⇒ peak of p(Π|D, f )

where p(D|Π, f ) =
∫
dθ P(D|θ,Π, f )P(θ|Π, f ) is the marginal likelihood function

▶ Implemented in lsqfit via lsqfit.empbayes fit
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Setting priors with empirical Bayes
Strategy

Let M = {Π, f } denote a model. Per Bayes’s theorem:

p(Π|D, f ) =
p(D|Π, f )p(Π|f )

p(D|f )
Assuming a uniform distribution for the hyperpriors p(Π|f ):

peak of p(D|Π, f ) =⇒ peak of p(Π|D, f )

where p(D|Π, f ) =
∫
dθ P(D|θ,Π, f )P(θ|Π, f ) is the marginal likelihood function

▶ Shouldn’t use for everything –
only use for discretization
terms

▶ Tune each model
independently
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Results
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Model averaging
Results

Weight fits with Bayes factor:

▶ like a likelihood ratio, but
Bayesian

▶ automatically penalizes
more complicated models

×2 : Expand to N2LO or N3LO
×2 : w/ or w/o chiral logs
×2 : incl./excl. F.V. corrections
×2 : incl./excl. αSa

2

×2 : Λ = 4πFπ,MΩ

×2 : ϵa = ϵa,fixed, ϵa,var
64 : total choices

0.1420.1440.1460.1480.1500.1520.154
t0  (fm)

ALPHA [2013]
BMWc [2012]

HotQCD [2014]
RBC [2014]

QCDSF-UKQCD [2015]
CLS [2017]
CLS [2021]

RQCD [2022]
Hudspith [2024]

Saez [2025]
HPQCD [2013]

MILC [2015]
ETM [2021]

BMWc *  [2020]
 

variable 2
a

fixed 2
a

exclude S

include S

= m
= 4 F

N2LO
N3LO
pt-ct

pt-full
 

model average

0.1700.1720.1740.1760.1780.1800.182
w0 (fm)

Nf = 2

Nf = 2 + 1

Nf = 2 + 1 + 1

Nf = 1 + 1 + 1 + 1
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Most important variations
Results

▶ Models with Λχ = 4πFπ
have much greater
weight than Λχ = MΩ

▶ Next largest variations
come from
including/excluding
radiative a2αS

discretization term (top),
choice of ϵa,variable vs
ϵa,fixed (bottom)

0.166 0.168 0.170 0.172 0.174
w0 (fm)

All
True
False

0.138 0.139 0.140 0.141 0.142 0.143 0.144 0.145 0.146
t1/2
0  (fm)

All
False
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Measuring the lattice spacings
Results
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We can determine the lattice spacing (in physical
units) on each ensemble by fitting the N2LO
expression for each lattice spacing
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This requires us to use a different expansion
parameter for ϵa

ϵa,ch =
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(2w0,ch/a)
.
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Results
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We can determine the lattice spacing (in physical
units) on each ensemble by fitting the N2LO
expression for each lattice spacing
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This requires us to use a different expansion
parameter for ϵa

ϵa,ch =
1

(2w0,ch/a)
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Continuum approach for different gradient flow scales
Results
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▶ Although
√
t0,orig and

√
t0,imp agree in the continuum, their approaches are quite

different!



27

Charm reweighting (1/2)
Results

▶ On our finest ensemble, charm quark mass mistuned by about ∼ 10% of the
physical value

▶ Although this might sound rather mild, the size of the mistuning is ∼ the size of
the strange quark mass

▶ Does the mistuning matter?
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Charm reweighting (2/2)
Results
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Updates
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Ratio of flow scales
√
t0/w0 (preliminary)

Updates

▶ In CalLat20, fits for mΩw0

and mΩ
√
t0 were treated

separately → fit
simultaneously to form
correlated ratio

√
t0/w0 for

each model

▶ This changes the model
weights somewhat, leading to
< 1σ shifts in w0,

√
t0.
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Ratio of flow scales
√
t0/w0 (preliminary)

Updates

▶ In CalLat20, fits for mΩw0

and mΩ
√
t0 were treated

separately → fit
simultaneously to form
correlated ratio

√
t0/w0 for

each model

▶ This changes the model
weights somewhat, leading to
< 1σ shifts in w0,

√
t0.

0.815 0.820 0.825 0.830 0.835 0.840 0.845
t0 /w0

Correlated ratio

Correlated ratio (orig)

Correlated ratio (impr)

ETM 21

HPQCD 13

ETM 21

CalLat 20

MILC 15

HPQCD 13

Published
Max & min var

max/min Var

(
X

Y

)
=

(
X

Y

)2
[(

σX
X

)2

+

(
σY
Y

)2

± 2
σXσY
XY

]



31

Redefining the physical point per the Edinburgh concensuSummarys
(preliminary)
Updates
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Flag 2015 Edinburgh

mπ : 134.8(3) → 135.0

mK : 494.2(3) → 494.6

fπ : 130.21(81) → 130.5

▶ Using FLAG as input avoids QED,
possible BSM corrections

▶ Edinburgh choice reduces physical
point uncertainty in error budget, but
numbers otherwise nearly identical
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Bayesian model averaging
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Overview
Bayesian model averaging

The issue of BMA can be roughly split into two parts:

▶ The estimation of model weights

▶ The procedure for computing the statistical, systematic errors
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Overview
Bayesian model averaging

The issue of BMA can be roughly split into two parts:

▶ The estimation of model weights

▶ The procedure for computing the statistical, systematic errors

We concentrate on the latter point. Desiderata for our procedure:

▶ Able to separately estimate statistical, systematic errors

▶ Able to track correlations between different model-averaged observables

▶ Able to chain the results from model-averaged analysis A to a second
model-averaged analysis B
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Quadrature
Bayesian model averaging

Popularized by Neil & Jay:

Var[X ] = E[X 2]− E[X ]2

= E[E[X 2|M]]− E[(E[X |M])]2

=
∑
M

p(M) ⟨X 2⟩M −
(∑

M

p(M) ⟨X ⟩M

)2

=
∑
M

p(M)Var(X )M +
∑
M

p(M) ⟨X ⟩2M −
(∑

M

p(M) ⟨X ⟩M

)2
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Quadrature
Bayesian model averaging

Generalization to covariance follows directly from the law of total covariance:

E[X ] = E[E[X |M]]

Cov (X ,Y ) = E[Cov (X ,Y |M)]︸ ︷︷ ︸
EVPC

+Cov (E[X |M],E[Y |M])︸ ︷︷ ︸
CHM

(EVPC: expectation value of process covariance; CHM: covariance of hypothetical
means)
Is this model averaging?
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Quadrature
Bayesian model averaging

Generalization to covariance follows directly from the law of total covariance:

E[X ] = E[E[X |M]]

Cov (X ,Y ) = E[Cov (X ,Y |M)]︸ ︷︷ ︸
EVPC

+Cov (E[X |M],E[Y |M])︸ ︷︷ ︸
CHM

(EVPC: expectation value of process covariance; CHM: covariance of hypothetical
means)
Is this model averaging? Sort of?

p(X ,Y ) =
∑
M

p(X ,Y |M)p(M)

Total variance matches the marginal posterior, but none of the other moments are
likely to match
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Gaussian: Prediction
Bayesian model averaging

X

p(
X

)

Statistical

Systematic

Stochastic

p(X ,Y )
quadrature−→ N ((E[X ],E[Y ]),EVPC (X ,Y ) + CHM(X ,Y ))
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Stochastic: Prediction
Bayesian model averaging

X

p(
X

)

Statistical

Systematic

Stochastic

▶ Boyle et al (2024): for each resample, pick a model M r ∼ p(M)
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Some other options
Bayesian model averaging

Desiderata for BMA:

▶ Able to separately estimate statistical, systematic errors

▶ Able to track correlations between different model-averaged observables

▶ Able to chain the results from model-averaged analysis A to a second
model-averaged analysis B

Some options:

▶ Fermilab/HPQCD/MILC [hep-lat/2411.09656]: requires quadrature, higher-order
moments lost

▶ BMW [hep-lat/2407.10913]: parametric bootstrap; different predictions for
statistical & systematic errors; can construct pathological examples

▶ Boyle et al [hep-lat/2406.19193]: stochastic, semi-parametric bootstrap; appears
to underestimate/overestimate stat/sys errors compared to Fermilab

▶ Frison [hep-lat/2302.06550]: fully Bayesian; complicated
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Summary & future work

▶ Finite volume corrections explicitly worked out to N3LO, found to be negligible

▶ Even in cases of relatively severe charm quark mass mistuning, impact is relatively
mild

▶ There is no standard procedure for BMA in our community

▶ For us, scale setting is our dominant uncertainty when extrapolating in physical
units, e.g. in our current effort to measure the nucleon sigma term
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Backup
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BMW’s approach
Backup

Approximate marginal posterior as a Gaussian mixture:

X ∼
∑
M

wMN(µM , σM) →
∑
M

wMN(µM ,
√
λσM)

Let I (λ) = Q(0.84;λ)− Q(0.16;λ) (with Q the quantile function) and

σ2
sys + λσ2

stat ≡ I (λ)2/4 .

If the relationship between λ and I (λ)2 is linear, statistical and systematic errors are
uniquely defined by solving for two different values of λ.
Use median for best estimate.
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BMW: Prediction
Backup

X

p(
X

)

Statistical

Systematic

Stochastic

▶ Although error estimated with confidence intervals, this is not a confidence interval
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BMW: A pathological example
Backup
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▶ Must check that residuals are normal, but procedures still not guaranteed to match
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