Scale setting the möbius domain wall fermion on HISQ action with M_{Ω} and the gradient-flow scales Phys. Rev. D 103, 054511 (2021)

Nolan Miller L. Carpenter E. Berkowitz C.C. Chang B. Hörz D. Howarth H. Monge-Camacho E. Rinaldi D.A. Brantley C. Körber C. Bouchard M.A. Clark A.S. Gambhir C.J. Monahan A. Nicholson P. Vranas A. Walker-Loud

March 5, 2025

Overview

Strategy

Results

Updates

Bayesian model averaging

Backup

Bird's eye view Strategy

- Mixed action: möbius domain wall fermions (valence) on highly-improved staggered quarks $(N_f = 2 + 1 + 1)$
- Work in isosymmetric limit
- m_{Ω} for physical scale
- SU(2) χ PT & Taylor expansions (with model averaging)
- ▶ In addition to w_0 , $\sqrt{t_0}$ calculate improved scales with leading-order discretization effects removed

$$\frac{t^2 \langle E(t) \rangle}{1 + \sum_n C_{2n} \frac{a^{2n}}{t^n}} \bigg|_{t=t_{0,\text{imp}}} = 0.3, \qquad t \frac{d}{dt} \left(\frac{t^2 \langle E(t) \rangle}{1 + \sum_n C_{2n} \frac{a^{2n}}{t^n}} \right) \bigg|_{t=w_{0,\text{imp}}^2} = 0.3$$

Why MDWF on HISQ? Strategy

MDWF circumvents Nielsen-Ninomiya

Why MDWF on HISQ? Strategy

- MDWF circumvents Nielsen-Ninomiya
- ► Wanted to bootstrap our action with publicly available data ⇒ use MILC's HISQ action

Why MDWF on HISQ? Strategy

- MDWF circumvents Nielsen-Ninomiya
- ► Wanted to bootstrap our action with publicly available data ⇒ use MILC's HISQ action
- QUDA provides excellent MDWF solvers: compute time optimized on GPUs such that 95+% of wall clock cycles are spent on MDWF solves, not contractions/smearing

Why MDWF on HISQ?

Strategy

- MDWF circumvents Nielsen-Ninomiya
- ► Wanted to bootstrap our action with publicly available data ⇒ use MILC's HISQ action
- QUDA provides excellent MDWF solvers: compute time optimized on GPUs such that 95+% of wall clock cycles are spent on MDWF solves, not contractions/smearing
- Emprically, MDWF requires only around ~ 1% statistics compared to clover fermions for similar precision => offsets cost from simulating 5th dimension, lack of multi-grid solver for MDWF

Lever arms (2020) Strategy

- ► 22 ensembles spanning 130 MeV $\lesssim m_{\pi} \lesssim$ 400 MeV, 0.06 fm $\lesssim a \lesssim$ 0.15 fm
- Strange dependence: a12m220ms tuned at ~ 60% physical strange quark mass
- Volume dependence: a15m310/L (2.4 fm vs 3.6 fm), a12m310/XL (2.9 fm vs 5.8 fm),

a12m310XL/a12m180L/a12m130 (same volume, different m_{π})

Lever arms (2025) Strategy

- ► 5^{+1}_{-0} new ensembles
- ▶ 1 at physical pion mass
- 2⁺¹₋₀ at/below the current finest lattice spacing

Why m_{Ω} ? Strategy

- ► Stable in QCD+QED
- No valence light quarks chiral dependence for extrapolations
- Favorable Parisi-Lepage scaling compared to other baryons: SNR $\sim e^{-(m_{\Omega}-3m_{\pi}/2)t}$
- (pre-Edinburgh) Experimental value for m_Ω more precise than decay constants
- (pre-Edinburgh) Experimental value for F_π contaiminated by QED, potential BSM effects

► Two different combinations of source/sinks, fit simultaneously

- ► Two different combinations of source/sinks, fit simultaneously
- Check for stability using multi-state fits up to N = 5

- Two different combinations of source/sinks, fit simultaneously
- Check for stability using multi-state fits up to N = 5
- Stabilize fits with wide priors, e.g. $\delta E \sim \log \mathcal{N}(2m_{\pi}, m_{\pi}^2)$

- Two different combinations of source/sinks, fit simultaneously
- Check for stability using multi-state fits up to N = 5
- Stabilize fits with wide priors, e.g. $\delta E \sim \log \mathcal{N}(2m_{\pi}, m_{\pi}^2)$
- Use Bayes factors & relative stability for model selection

Fitting the Ω correlators

- Two different combinations of source/sinks, fit simultaneously
- Check for stability using multi-state fits up to N = 5
- Stabilize fits with wide priors, e.g. $\delta E \sim \log \mathcal{N}(2m_{\pi}, m_{\pi}^2)$
- Use Bayes factors & relative stability for model selection
- Try to optimize t_{\min}^{phys} over all ensembles simultaneously

Fitting the Ω correlators

- Two different combinations of source/sinks, fit simultaneously
- Check for stability using multi-state fits up to N = 5
- Stabilize fits with wide priors, e.g. $\delta E \sim \log \mathcal{N}(2m_{\pi}, m_{\pi}^2)$
- Use Bayes factors & relative stability for model selection
- Try to optimize t_{\min}^{phys} over all ensembles simultaneously
- Cross-checks with 3+ people

Probability Model selection is not a replacement for model average! 0.452 0.450 0.454 0.456 0.458 0.460 E0::octet/0 Example from CLS ensemble B450

- Model selection is not a replacement for model average!
- Law of large numbers does not necessarily apply to systematic errors => posterior will often be non-Gaussian

Example from CLS ensemble B450

- Model selection is not a replacement for model average!
- Law of large numbers does not necessarily apply to systematic errors => posterior will often be non-Gaussian
- Not sufficient to simply quote statistical/systematic errors – we must chain correlations forward

Example from CLS ensemble B450

- Model selection is not a replacement for model average!
- Law of large numbers does not necessarily apply to systematic errors => posterior will often be non-Gaussian
- Not sufficient to simply quote statistical/systematic errors – we must chain correlations forward
- Generalized linear least squares is unbiased, but *nonlinear* least squares is not

Backbone for the analysis: choosing the appropriate effective field theory $_{\mbox{\scriptsize Strategy}}$

- Mixed-action EFT not advantageous per previous studies (e.g., F_K/F_{π})
- ► SU(3) heavy baryon χ PT converges too slowly \implies use SU(2) heavy baryon χ PT with only pions as degrees of freedom
- Fix ensembles near physical value of strange quark masses so that Taylor corrections are sufficient

Parameterizing the chiral dependence Strategy

Generically write $O = O^{\chi} + O^{m_{q_s} \neq m_{q_s}^*} + O^{\text{disc}}$

- ► SU(3) heavy baryon \(\chi PT\) converges slowly ⇒ use SU(2) heavy baryon \(\chi PT\) w/ Taylor corrections for strange quark mass mistuning
- Ω baryon has no terms non-analytic in m_{π}^2 until $\mathcal{O}(m_{\pi}^4)$, no odd powers of m_{π}^2 until $\mathcal{O}(m_{\pi}^7) \implies$ no odd powers of m_{π} for $m_{\Omega}w_0$ to working order

$$m_{\Omega}^{\chi} = m_0 \left\{ \begin{array}{ccc} 1 & +\alpha_2 \frac{m_{\pi}^2}{\Lambda_{\chi}^2} & + \frac{m_{\pi}^4}{\Lambda_{\chi}^4} \left[\alpha_4 \lambda_{\pi} + \beta_4 \right] & + \frac{m_{\pi}^6}{\Lambda_{\chi}^6} \left[\alpha_6 \lambda_{\pi}^2 + \beta_6 \lambda_{\pi} + \gamma_6 \right] + \dots \right.$$
$$w_0^{\chi} = w_{0, ch} \left\{ \begin{array}{ccc} 1 & + k_1 \frac{m_{\pi}^2}{\Lambda_{\chi}^2} & + \frac{m_{\pi}^4}{\Lambda_{\chi}^4} \left[k_2 \lambda_{\pi} + k_3 \right] & + \dots \end{array} \right.$$

where $\lambda_{\pi} = \log(m_{\pi}^2/\mu^2)$ (and we take $\mu = \Lambda = \{4\pi F_{\pi}, m_{\Omega}\})$

Visualizing the chiral dependence (improved scales) _{Strategy}

Despite having very different trajectories, both results agree at physical point

"Fixing" the renormalization scale Strategy

- Chiral logs depend on the renormalization scale: $\lambda_I = \log(m_{\pi}^2/\mu^2)$
- One natural choice is to use the pion decay constant in the SU(2) limit, $\mu_0 = 4\pi F_0$
- Consider instead $\mu^{ens} = 4\pi F_{\pi}^{ens}$, with F_{π} taken on a given lattice ensemble.

 $F_{\pi} = 1 + \alpha \frac{m_{\pi}^2}{\Lambda^2} + \beta \frac{m_K^2}{\Lambda^2} - \frac{m_{\pi}^2}{\Lambda^2} \lambda_I - \frac{1}{2} \frac{m_K^2}{\Lambda^2} \lambda_K + \dots$ $\implies \log\left(\frac{m_{\pi}^2}{\mu_0^2} \frac{\mu_0^2}{(\mu^{\text{ens}})^2}\right) = \log\left(\frac{m_{\pi}^2}{\mu_0^2}\right) - 2\delta_{F_{\pi}}^{\text{NLO}} + \mathcal{O}(m^4, m^4\lambda, m^4\lambda^2, a^2, a^2\alpha_S)$

To working order, we can aborb these terms into the N³LO terms
 But at higher order, these corrections potentially become important

Parameterizing the strange quark mass mistuning Strategy

Generically write $O = O^{\chi} + O^{m_{q_s} \neq m_{q_s}^*} + O^{\text{disc}}$

All but what ensemble tuned near the strange quark mass a Taylor expansion for strange dependence should suffice

$$m_{\Omega}^{m_{qs} \neq m_{qs}^{*}} = c'_{s}s_{\Lambda}^{2} + c'_{ss}s_{\Lambda}^{4} + c'_{sss}s_{\Lambda}^{6} + \dots$$
$$w_{0}^{m_{qs} \neq m_{qs}^{*}} = c''_{s}s_{\Lambda}^{2} + c''_{ss}s_{\Lambda}^{4} + c''_{sss}s_{\Lambda}^{6} + \dots$$

where $s_{\Lambda}^2 = (2m_{\pi}^2 - m_K^2)/\Lambda_{\chi}^2$

Strange quark mass mistuning Strategy

Representative model: N³LO w/ chiral logs, $\Lambda = 4\pi F_{\pi}$

Parameterizing the discretation effects (w/o FV corrections) $_{\rm Strategy}$

Generically write $O = O^{\chi} + O^{m_{q_s} \neq m^*_{q_s}} + O^{\text{disc}}$

Similar Taylor expansion for a-dependence, but now must also include radiative corrections from the Symanzik effective theory

$$m_{\Omega}^{\text{disc}} = \tilde{d}'_{a}\epsilon_{a}^{2}\alpha_{S} + d'_{a}\epsilon_{a}^{2} + d'_{aa}\epsilon_{a}^{4} + d'_{aaa}\epsilon_{a}^{6} \dots$$
$$w_{0}^{\text{disc}} = \tilde{d}''_{a}\epsilon_{a}^{2}\alpha_{S} + d''_{a}\epsilon_{a}^{2} + d''_{aa}\epsilon_{a}^{4} + d''_{aaa}\epsilon_{a}^{6} \dots$$

Parameterizing the discretation effects (w/o FV corrections) $_{\rm Strategy}$

Generically write $O = O^{\chi} + O^{m_{q_s} \neq m_{q_s}^*} + O^{\text{disc}}$

Similar Taylor expansion for a-dependence, but now must also include radiative corrections from the Symanzik effective theory

$$m_{\Omega}^{\text{disc}} = \tilde{d}'_{a} \epsilon^{2}_{a} \alpha_{S} + d'_{a} \epsilon^{2}_{a} + d'_{aa} \epsilon^{4}_{a} + d'_{aaa} \epsilon^{6}_{a} \dots$$
$$w_{0}^{\text{disc}} = \tilde{d}''_{a} \epsilon^{2}_{a} \alpha_{S} + d''_{a} \epsilon^{2}_{a} + d''_{aa} \epsilon^{4}_{a} + d''_{aaa} \epsilon^{6}_{a} \dots$$

More generally, $\delta_a^{\text{Symanzik}} \sim a^2 \alpha_s^{n+\gamma}$

- ▶ n = 0 for MDWF, n = 1 for HISQ
- γ unknown for our action

Proxies for the lattice spacing _{Strategy}

- We define our small parameters such that $l_{\Lambda}^2 \sim s_{\Lambda}^2 \sim \epsilon_a^2$
- ► In previous work (for F_{κ}/F_{π}) we parameterized the lattice dependence via $\epsilon_{a,\text{fixed}}^2 = \frac{a^2}{(2w_{0,\text{orig}})^2}$
- But in this work, in order to give all the gradient flow scales equal footing, we also consider the parameterization

$$\epsilon_{a,\text{var}}^{2} = \begin{cases} \frac{a^{2}}{(2w_{0,\text{orig}})^{2}}, & y = w_{0,\text{orig}}m_{\Omega} \\ \frac{a^{2}}{(2w_{0,\text{imp}})^{2}}, & y = w_{0,\text{imp}}m_{\Omega} \\ \frac{a^{2}}{4t_{0,\text{orig}}}, & y = \sqrt{t_{0,\text{orig}}}m_{\Omega} \\ \frac{a^{2}}{4t_{0,\text{imp}}}, & y = \sqrt{t_{0,\text{imp}}}m_{\Omega} \end{cases}$$

Lattice spacing dependence Strategy

Representative model: N³LO w/ chiral logs, $\Lambda = 4\pi F_{\pi}$, $\epsilon_a = \epsilon_{a,\text{fixed}}$

Finite volume corrections

Correct for finite volume by modifying the tadpole integral:

$$\log\left(rac{m^2}{\mu^2}
ight)
ightarrow \log\left(rac{m^2}{\mu^2}
ight) + 4k_1(mL)$$

where
$$k_1(mL) \sim e^{-ML}/(mL)^{3/2}$$

- Determined corrections to N³LO
- k_1 has no free parameters
- Conclusion: F.V. corrections are negligible

Putting it all together Strategy

Generically write $O = O^{\chi} + O^{\text{disc}} + O^{m_{q_s} \neq m_{q_s}^*}$

Expand everything, remembering the cross-terms

$$w_0 m_{\Omega} = c_0 + \delta_{ls,\Lambda}^{\mathsf{NLO}} + \delta_{ls,\Lambda}^{\mathsf{N}^2\mathsf{LO}} + \delta_{ls,\Lambda}^{\mathsf{N}^3\mathsf{LO}} + \delta_{a,\Lambda}^{\mathsf{NLO}} + \delta_{a,\Lambda}^{\mathsf{N}^2\mathsf{LO}} + \delta_{a,\Lambda}^{\mathsf{N}^3\mathsf{LO}}$$

where

$$\begin{split} \delta_{ls,\Lambda}^{\text{NLO}} &= l_{\Lambda}^{2}c_{l} + s_{\Lambda}^{2}c_{s}, \\ \delta_{ls,\Lambda}^{\text{NLO}} &= l_{\Lambda}^{4}(c_{ll} + c_{ll}^{ln}\lambda_{\pi}) + l_{\Lambda}^{2}s_{\Lambda}^{2}c_{ls} + s_{\Lambda}^{4}c_{ss}, \\ \delta_{ls,\Lambda}^{\text{NLO}} &= l_{\Lambda}^{4}(c_{ll} + c_{ll}^{ln}\lambda_{\pi}) + l_{\Lambda}^{2}s_{\Lambda}^{2}c_{ls} + s_{\Lambda}^{4}c_{ss}, \\ \delta_{ls,\Lambda}^{\text{NLO}} &= l_{\Lambda}^{6}(c_{lll} + c_{lll}^{ln}\lambda_{\pi} + c_{lll}^{ln^{2}}\lambda_{\pi}^{2}) + l_{\Lambda}^{4}s_{\Lambda}^{2}\lambda_{\pi}c_{lls}^{ln} \\ + l_{\Lambda}^{4}s_{\Lambda}^{2}c_{lls} + l_{\Lambda}^{2}s_{\Lambda}^{4}c_{lss} + s_{\Lambda}^{6}c_{sss}, \\ &+ \ell_{a}^{4}(d_{all}l_{\Lambda}^{4} + d_{als}l_{\Lambda}^{2}) + \ell_{Ass}^{2}s_{\Lambda}^{4}c_{lls} \\ + \ell_{a}^{2}(d_{all}l_{\Lambda}^{4} + d_{als}l_{\Lambda}^{2}s_{\Lambda}^{2} + d_{ass}s_{\Lambda}^{4}). \end{split}$$

25 unknown LECs! Can we fit all of these terms?

Example Models Strategy

Instead of fitting the full expression, consider various truncations & model average

Setting priors with empirical Bayes Strategy

- Stabilize fits with priors
- Because we tune to the physical strange quark mass, light quark mass dependence can be guesstimated by eye
- Assume higher-order LECs are of similar size
- But what about the rest?

Setting priors with empirical Bayes $_{\mbox{\scriptsize Strategy}}$

Let $M = \{\Pi, f\}$ denote a model. Per Bayes's theorem:

 $p(\Pi|D, f) = \frac{p(D|\Pi, f)p(\Pi|f)}{p(D|f)}$

Assuming a uniform distribution for the hyperpriors $p(\Pi | f)$:

peak of $p(D|\Pi, f) \implies$ peak of $p(\Pi|D, f)$

where $p(D|\Pi, f) = \int d\theta P(D|\theta, \Pi, f) P(\theta|\Pi, f)$ is the marginal likelihood function • Implemented in lsqfit via lsqfit.empbayes_fit

Setting priors with empirical Bayes Strategy

Let $M = \{\Pi, f\}$ denote a model. Per Bayes's theorem:

 $p(\Pi|D, f) = \frac{p(D|\Pi, f)p(\Pi|f)}{p(D|f)}$

Assuming a uniform distribution for the hyperpriors $p(\Pi | f)$:

peak of $p(D|\Pi, f) \implies$ peak of $p(\Pi|D, f)$

where $p(D|\Pi, f) = \int d\theta P(D|\theta, \Pi, f) P(\theta|\Pi, f)$ is the marginal likelihood function

- Shouldn't use for everything only use for discretization terms
- Tune each model independently

Results

Model averaging Results

Weight fits with Bayes factor:

- like a likelihood ratio, but Bayesian
- automatically penalizes more complicated models
- ×2: Expand to N²LO or N³LO ×2: w/ or w/o chiral logs ×2: incl./excl. F.V. corrections ×2: incl./excl. $\alpha_{S}a^{2}$ ×2: $\Lambda = 4\pi F_{\pi}, M_{\Omega}$ ×2: $\epsilon_{a} = \epsilon_{a, \text{fixed}}, \epsilon_{a, \text{var}}$ 64: total choices

Most important variations Results

- Models with $\Lambda_{\chi} = 4\pi F_{\pi}$ have much greater weight than $\Lambda_{\chi} = M_{\Omega}$
- Next largest variations come from including/excluding radiative a²α_S discretization term (top), choice of ε_{a,variable} vs ε_{a,fixed} (bottom)

Measuring the lattice spacings Results

We can determine the lattice spacing (in physical units) on each ensemble by fitting the N^2LO expression for each lattice spacing

$$\frac{w_{0}}{a} = \frac{w_{0,ch}}{a} \left\{ 1 + k_{I}l_{F}^{2} + k_{s}s_{F}^{2} + k_{a}\epsilon_{a,ch}^{2} + k_{II}l_{F}^{4} + k_{IIn}l_{F}^{4} \ln(l_{F}^{2}) + k_{Is}l_{F}^{2}s_{F}^{2} + k_{ss}s_{F}^{4} + k_{aa}\epsilon_{a,ch}^{4} + k_{aI}l_{F}^{2}\epsilon_{a,ch}^{2} + k_{as}s_{F}^{2}\epsilon_{a,ch}^{2} \right\}$$

This requires us to use a different expansion parameter for ϵ_a

$$\epsilon_{a,\mathrm{ch}} = rac{1}{\left(2w_{0,\mathrm{ch}}/a
ight)}.$$

Measuring the lattice spacings Results

We can determine the lattice spacing (in physical units) on each ensemble by fitting the N^2LO expression for each lattice spacing

$$\frac{w_{0}}{a} = \frac{w_{0,ch}}{a} \left\{ 1 + k_{I}l_{F}^{2} + k_{s}s_{F}^{2} + k_{a}\epsilon_{a,ch}^{2} + k_{II}l_{F}^{4} + k_{IIn}l_{F}^{4} \ln(l_{F}^{2}) + k_{Is}l_{F}^{2}s_{F}^{2} + k_{ss}s_{F}^{4} + k_{aa}\epsilon_{a,ch}^{4} + k_{aI}l_{F}^{2}\epsilon_{a,ch}^{2} + k_{as}s_{F}^{2}\epsilon_{a,ch}^{2} \right\}$$

This requires us to use a different expansion parameter for ϵ_a

$$\epsilon_{a,\mathrm{ch}} = rac{1}{\left(2 w_{0,\mathrm{ch}}/a
ight)}\,.$$

$$a = w_0/(w_{0,ch}/a)$$

Continuum approach for different gradient flow scales $_{\mbox{\scriptsize Results}}$

Although $\sqrt{t_{0,\text{orig}}}$ and $\sqrt{t_{0,\text{imp}}}$ agree in the continuum, their approaches are quite different!

Charm reweighting (1/2) Results

- On our finest ensemble, charm quark mass mistuned by about \sim 10% of the physical value
- ► Although this might sound rather mild, the size of the mistuning is ~ the size of the strange quark mass
- Does the mistuning matter?

Charm reweighting (2/2) $_{\mbox{\tiny Results}}$

Updates

Ratio of flow scales $\sqrt{t_0}/w_0$ (preliminary) Updates

- ► In CalLat20, fits for $m_{\Omega}w_0$ and $m_{\Omega}\sqrt{t_0}$ were treated separately \rightarrow fit simultaneously to form correlated ratio $\sqrt{t_0}/w_0$ for each model
- This changes the model weights somewhat, leading to < 1σ shifts in w₀, √t₀.

Ratio of flow scales $\sqrt{t_0}/w_0$ (preliminary) Updates

- ▶ In CalLat20, fits for $m_0 w_0$ and $m_{\Omega}\sqrt{t_0}$ were treated separately \rightarrow fit simultaneously to form correlated ratio $\sqrt{t_0}/w_0$ for each model
- This changes the model weights somewhat, leading to $< 1\sigma$ shifts in w_0 , $\sqrt{t_0}$.

Redefining the physical point per the Edinburgh concensuSummarys (preliminary)

Updates

	Flag 2015	Edinburgh
n_{π} :	134.8(3) -	ightarrow 135.0
n _K :	494.2(3) -	ightarrow 494.6
f_{π} :	130.21(81) -	ightarrow 130.5

- Using FLAG as input avoids QED, possible BSM corrections
- Edinburgh choice reduces physical point uncertainty in error budget, but numbers otherwise nearly identical

Bayesian model averaging

Overview Bayesian model averaging

The issue of BMA can be roughly split into two parts:

- The estimation of model weights
- ▶ The procedure for computing the statistical, systematic errors

The issue of BMA can be roughly split into two parts:

- The estimation of model weights
- The procedure for computing the statistical, systematic errors

We concentrate on the latter point. Desiderata for our procedure:

- Able to separately estimate statistical, systematic errors
- Able to track correlations between different model-averaged observables
- Able to chain the results from model-averaged analysis A to a second model-averaged analysis B

Popularized by Neil & Jay:

١,

$$ar[X] = E[X^{2}] - E[X]^{2}$$

= $E[E[X^{2}|M]] - E[(E[X|M])]^{2}$
= $\sum_{M} p(M) \langle X^{2} \rangle_{M} - \left(\sum_{M} p(M) \langle X \rangle_{M}\right)^{2}$
= $\sum_{M} p(M) Var(X)_{M} + \sum_{M} p(M) \langle X \rangle_{M}^{2} - \left(\sum_{M} p(M) \langle X \rangle_{M}\right)^{2}$

Generalization to covariance follows directly from the law of total covariance:

$$\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|M]]$$

Cov $(X, Y) = \underbrace{\mathbb{E}[\text{Cov } (X, Y|\mathcal{M})]}_{\text{EVPC}} + \underbrace{\text{Cov } (\mathbb{E}[X|\mathcal{M}], \mathbb{E}[Y|\mathcal{M}])}_{\text{CHM}}$

(EVPC: expectation value of process covariance; CHM: covariance of hypothetical means) Is this model averaging?

Quadrature Bayesian model averaging

Generalization to covariance follows directly from the law of total covariance:

$$\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|M]]$$

Cov $(X, Y) = \mathbb{E}[Cov (X, Y|M)] + Cov (\mathbb{E}[X|M], \mathbb{E}[Y|M])$
EVPC CHM

(EVPC: expectation value of process covariance; CHM: covariance of hypothetical means)

Is this model averaging? Sort of?

$$p(X, Y) = \sum_{\mathcal{M}} p(X, Y|\mathcal{M}) p(\mathcal{M})$$

Total variance matches the marginal posterior, but none of the other moments are likely to match

Gaussian: Prediction

Bayesian model averaging

 $p(X, Y) \xrightarrow{\text{quadrature}} \mathcal{N}\left((\mathbb{E}[X], \mathbb{E}[Y]), \text{EVPC}\left(X, Y\right) + \text{CHM}\left(X, Y\right)\right)$

Stochastic: Prediction

Bayesian model averaging

• Boyle et al (2024): for each resample, pick a model $M^r \sim p(M)$

Some other options Bayesian model averaging

Desiderata for BMA:

- Able to separately estimate statistical, systematic errors
- Able to track correlations between different model-averaged observables
- Able to chain the results from model-averaged analysis A to a second model-averaged analysis B

Some options:

- Fermilab/HPQCD/MILC [hep-lat/2411.09656]: requires quadrature, higher-order moments lost
- BMW [hep-lat/2407.10913]: parametric bootstrap; different predictions for statistical & systematic errors; can construct pathological examples
- Boyle et al [hep-lat/2406.19193]: stochastic, semi-parametric bootstrap; appears to underestimate/overestimate stat/sys errors compared to Fermilab
- ► Frison [hep-lat/2302.06550]: fully Bayesian; complicated

Summary & future work

- ► Finite volume corrections explicitly worked out to N³LO, found to be negligible
- Even in cases of relatively severe charm quark mass mistuning, impact is relatively mild
- There is no standard procedure for BMA in our community
- For us, scale setting is our dominant uncertainty when extrapolating in physical units, e.g. in our current effort to measure the nucleon sigma term

Backup

BMW's approach Backup

Approximate marginal posterior as a Gaussian mixture:

$$X \sim \sum_{M} w_{M} N(\mu_{M}, \sigma_{M}) \rightarrow \sum_{M} w_{M} N(\mu_{M}, \sqrt{\lambda} \sigma_{M})$$

Let $I(\lambda) = Q(0.84; \lambda) - Q(0.16; \lambda)$ (with Q the quantile function) and

$$\sigma_{
m sys}^2 + \lambda \sigma_{
m stat}^2 \equiv I(\lambda)^2/4$$
 .

If the relationship between λ and $I(\lambda)^2$ is linear, statistical and systematic errors are uniquely defined by solving for two different values of λ . Use median for best estimate.

BMW: Prediction Backup

Although error estimated with confidence intervals, this is not a confidence interval

BMW: A pathological example Backup

Must check that residuals are normal, but procedures still not guaranteed to match