Scale Setting with Gradient Flow on (2+1)-flavor HISQ ensembles

Johannes H. Weber (they/them) w. R.N. Larsen, S. Mukherjee, P. Petreczky, H.-T. Shu

[Larsen:2025wvg]

[Technische Universität Darmstadt]

Scale setting: Precision lattice QCD for particle and nuclear physics, ECT*, Trento, Italy, 03/03/2025

- Standard Model of Particle Physics: most elementary, precisely tested theory of nature; inconsistencies would provide hints of New Physics.
 - Nuclear matter (quarks, gluons): Quantum Chromodynamics (QCD).
 - Flavors: *u*, *d*, *s*: light; *c*: intermediate; *b*: heavy; *t*: (irrelevant in QCD).

- **Confinement:** neither quarks nor gluons are observable, but only hadrons.
- Non-perturbative QCD with fully-controlled systematics ⇒ lattice QCD.

Introduction			
00000			
Physical vs	theory scales		

- No explicit lattice scale, determine $a(g^2,...)$ in scale setting.
- Good: Cheap, precise, simple. ✔
- Bad: Cutoff, N_f, mass, volume dependence. Non-QCD effects. X

Introduction	Gradient flow	Physical results	Weak coupling	
00000	00000	000000	00	
Physical vs t	heory scales			

- No explicit lattice scale, determine $a(g^2,...)$ in scale setting.
- Good: Cheap, precise, simple. ✔
- Bad: Cutoff, N_f, mass, volume dependence. Non-QCD effects. X

Absolute scale setting with physical scales

- Absolute scale setting: LQCD observable ↔ real world physical scale.
- Quark mass dependence or non-QCD effects are relevant.
- **Low precision** of LQCD observables and real-world data may be an issue.

Introduction			
00000			
Physical vs	theory scales		

- No explicit lattice scale, determine $a(g^2,...)$ in scale setting.
- Good: Cheap, precise, simple. ✓
- Bad: Cutoff, N_f, mass, volume dependence. Non-QCD effects. X

Absolute scale setting with physical scales

- Absolute scale setting: LQCD observable ↔ real world physical scale.
- Quark mass dependence or non-QCD effects are relevant.
- **Low precision** of LQCD observables and real-world data may be an issue.

Relative scale setting with theory scales

- **Relative scale setting**: LQCD observable ↔ **another LQCD observable**.
- Quark mass dependence or non-QCD effects are largely irrelevant.
- High precision of certain LQCD observables is easy to achieve.

Introduction	Grac OO	lient flow P DOO C	hysical results			
Two di	fferent types	of physical scal	es			
De	cay constants ((isospin limit)				
η_{i}	\sim $af_{\eta_s}^{\text{mea}}$	$a^{is} = af_0 + 2sam_s^{input}$	= 128.34(85)	MeV	Davies:2009tsa]	
ĸ	aon 🖌 🦷 af _K ^{mea}	$s^{ m is} = af_0 + s(am_l^{ m input} + am_l^{ m input})$	$m_s^{\text{input}}) = 110.10(64)$	MeV [н	otQCD:2014kol].	
Р	4S 🖌 af _{p4s} ^{mea}	$u^{\rm is} = af_0 + 2sa(0.4 m_s^{\rm input})$) = 108.89(49)	MeV	[MILC:2012znn].	
Р	ion λ af_{π}^{mea}	$a^{is} = af_0 + 2sam_l^{input}$	= 92.28(14)	MeV	[FLAG:2024oxs]	

Bottomonia splittings

Use spin averages in *S*, *P*-waves: $M_S = (M_\eta + 3M_\Upsilon)/4$,

$$M_{\chi_b} = (M_{\chi_{b0}} + 3M_{\chi_{b1}} + 5M_{\chi_{b2}})/9.$$

Differences
$$\Delta M_X = M_X - M_S(1S)$$
.

Splittings from [PDG 2024].

ΔM_{h_b}	= 454.5(0.9)	MeV.
ΔM_{χ_b}	= 455.0(0.6)	MeV.
$\Delta M_S(2S)$	= 584.5(2.3)	MeV.

■ Bottom mass ⇒ cutoff effects ×

Potential scales

- Static $Q\bar{Q}$ 4D-correlator via Wilson loops or gauge-fixed Wilson line corr.
 - \mathbf{r}_{i} $c_{i} = (r/a)^{2} \frac{\mathrm{d}}{\mathrm{d}(r/a)} \left[\langle a E_{0}(\mathbf{r}/a) \rangle \right]|_{r=r_{i}}$ $c_{1,2} = 1.0, 0.5$ [Sommer:1993ce].
- For coarse lattices: r_0 with $c_0 = 1.65$
- For most lattices: r_1 with $c_1 = 1.00$
- For fine lattices: r_2 with $c_2 = 0.50$
- Static $Q\bar{Q}$ separation r: non-smooth, discrete, O(3) to cubic SB \checkmark .

[Sommer:1993ce].

[Bernard:2000gd].

[Bazavov:2017dsv].

- **HotQCD ensembles**, $\frac{m_l}{m_s} = \frac{1}{20}$ or $\frac{1}{5}$ [HotQCD:2014kol],[Bazavov:2017dsy],[Altenkort:2023oms].
- Generated with MILC or SIMULATeQCD codes
- Tree-level improved Lüscher-Weisz action
- (2+1) flavors with HISQ action
- Almost physical **light quarks**: $M_{\pi} = 161$ or 322 MeV, respectively.
- Physical strange quarks: unmixed $M_{\eta_s} = 695$ MeV instead of 685.8 MeV.

β	am _s	am _l	N_{σ}	$N_{ au}$	# conf.
7.030	0.0356	0.00178	48	48	900
7.150	0.0320	0.00160	48	64	395
7.280	0.0280	0.00142	48	64	398
7.373	0.0250	0.00125	48	64	554
7.596	0.0202	0.00101	64	64	577
7.825	0.0164	0.0082	64	64	471
8.000	0.01299	0.002598	64	64	1004
8.200	0.01071	0.002142	64	64	961
8.249	0.01011	0.002022	64	64	2241
8.400	0.00887	0.001774	64	64	2372

[MILC].[HotQCD:2023ghu].

[Follana:2006rc].

[Luscher:1984xn], [Luscher:1985zq].

Introduction		Weak coupling	
000000			
Overview			

- 1 Introduction
 - Scales
 - (2+1)-flavor HISQ ensembles
- 2 Gradient flow
 - Improved flow
 - Flow scale ratios
 - Ratios with potential scales

3 Physical results

- Leptonic decay constants
- Bottomonia splittings
- Comparison à la FLAG
- 4 Weak coupling
 - $\Lambda_{\overline{\text{MS}}}$ from gradient flow coupling

5 Summary

	Gradient flow ●○○○○	Physical results 000000		
Formalism				
Grad	ient flow is a contin	uous, analytic smearir	Ig [Narayanan:2006rf], [Lusc	her:2009eq],
B_{μ}	$_{\iota}(x,\tau_{F}=0)=A_{\mu}(x)$	$, \partial \tau_{F} B_{\mu}(x, \tau_{F}) =$	$= D_{\nu} G_{\nu\mu}$.	
١	$V(x,\mu) _{\tau_{F}=0}=U(x,\mu)$), $\partial_{\tau_{F}} V(x, \mu, \tau_{F}) =$	$= -g_0^2 \{\partial_{x,\mu} S_G(V)\} V($	(x, μ, τ_{F}) .
Reali	zes a diffusive proce	e ss at tree level	[Lus	cher:2010iy],
$B_{\mu}(x)$	$(au_{F}) = \int \mathrm{d}^4 y K_{\tau_{F}}(x - t)$	$y)A_{\mu}(y), K_{\tau_{F}}(z) = \int$	$\int \frac{\mathrm{d}^4 p}{(2\pi)^4} \mathrm{e}^{\mathrm{i} p z} \mathrm{e}^{-\tau_{F} p^2} = \frac{\mathrm{e}}{2}$	$\frac{-z^2/4\tau_{\rm F}}{(4\pi\tau_{\rm F})^2}$.
suppr	esses UV fluctuatior	ns: reduces noise, ach	ieves renormalizatio	n.
Zeut	hen flow $(\mathcal{O}(a^2)$ -imp	proved evolution) for {	$\partial_{x,\mu}S_G(V)$: [Ram	os:2015baa].

	Gradient flow ●○○○○	Physical results 000000		
Formalism	1			
∎ G	radient flow is a continu	ious, analytic smear	ing [Narayanan:2006rf], [Luso	:her:2009eq],
	$B_{\mu}(x,\tau_{F}=0)=A_{\mu}(x)\;,$	$\partial \tau_{F} B_{\mu}(x, \tau_{F})$	$= D_{ u} G_{ u\mu}$.	
	$V(x,\mu) _{\tau_{F}=0}=U(x,\mu)$, $\partial_{\tau_{F}} V(x,\mu,\tau_{F})$	$= -g_0^2 \{\partial_{x,\mu} S_G(V)\} V$	(x,μ, au_{F}) .
R	ealizes a diffusive proce s	ss at tree level	[Lus	cher:2010iy],
B	$\mu(x, au_{F}) = \int \mathrm{d}^4 y \; K_{ au_{F}}(x-y)$	$Y)A_{\mu}(y), K_{\tau_{F}}(z) =$	$\int \frac{\mathrm{d}^4 p}{(2\pi)^4} \mathrm{e}^{\mathrm{i} p z} \mathrm{e}^{-\tau_{F} p^2} = \underline{\mathrm{e}}$	$\frac{-z^2/4\tau_{\rm F}}{(4\pi\tau_{\rm F})^2}$.
SL	ppresses UV fluctuations	s: reduces noise, ac	chieves renormalizatio	n.
∎ Z ∎ A	euthen flow $(\mathcal{O}(a^2)$ -impr ction density as observa	roved evolution) for ble (four-volume av	$\{\partial_{x,\mu}S_G(V)\}$: [Rameraged),	.os:2015baa].
	$E(au_{F}, x)$	$= -\frac{1}{2} \operatorname{Tr} \{ F_{\mu\nu}(x, \tau_{F}) F_{F} \}$	$(\mu\nu(x, au_{F}))\}$.	
∎ F	ield strength with clover	or improved discre	etizations [Bilson-Thomp	son:2002xlt],
	$\hat{F}^{ m clo}_{\mu u}(n) = -$	$\frac{i}{8}\Big(Q_{\mu\nu}(n)-Q_{\nu\mu}(n)$	$ ight)\equiv C^{(1,1)}_{\mu u}(n)\;,$	
	$\hat{F}^{\mathrm{imp}}_{\mu u}(n) = rac{5}{3}$	$C^{(1,1)}_{\mu u}(n) - rac{1}{3}C^{(1,2)}_{\mu u}(n)$	ו) .	_

 $Q_{\mu\nu}(n)$: sum of μ, ν plaquettes around site *n*; $C^{(a,b)}_{\mu\nu}(n)$ is generalization.

	ion O		Gradient f	low		Physical re 000000						
Impr	oved	flow										
	β	7.03	7.15	7.28	7.373	7.596	7.825	8.000	8.200	8.249	8.400	
-	$\frac{\sqrt{t_0}}{a}$ (c)	1.8259(5)	2.0217(8)	2.2636(13)	2.4549(19)	2.9847(28)	3.634(9)	4.228(33)	5.083(79)	5.262(50)	6.076(108)	
	$\frac{\sqrt{t_0}}{a}$ (i)	1.7298(5)	1.9334(7)	2.1831(13)	2.3799(19)	2.9218(30)	3.586(7)	4.184(33)	5.044(78)	5.225(50)	6.045(106)	
	$\frac{\sqrt{t_2}}{a}$ (c)	1.3891(2)	1.5276(4)	1.6076(5)	1.8320(7)	2.2048(12)	2.669(3)	3.096(12)	3.688(21)	3.837(26)	4.399(32)	
	$\frac{\sqrt{t_2}}{a}$ (i)	1.2593(2)	1.4056(3)	1.5841(4)	1.7244(7)	2.1116(12)	2.591(3)	3.027(11)	3.629(20)	3.780(25)	4.347(29)	
	$\frac{w_0}{a}(c)$	2.0730(13)	2.3159(21)	2.6203(36)	2.8575(48)	3.5194(73)	4.292(24)	4.978(83)	6.156(345)	6.233(81)	7.293(330)	
	$\frac{w_0}{a}$ (i)	2.0674(13)	2.3121(22)	2.6178(37)	2.8558(50)	3.5193(72)	4.304(19)	4.978(83)	6.156(345)	6.233(81)	7.297(333)	
	$\frac{w_2}{a}(c)$	1.6832(8)	1.8826(13)	2.1302(15)	2.3258(27)	2.8653(40)	3.510(13)	4.083(47)	4.999(188)	5.109(60)	5.954(199)	
	$\frac{w_2}{a}(i)$	1.6883(8)	1.8893(14)	2.1380(16)	2.3341(27)	2.8740(44)	3.524(11)	4.089(47)	5.006(189)	5.115(60)	5.962(201)	

Allton fits at red. $\chi^2 = 0.8...1.9$, except $\frac{\sqrt{t_2}}{a}$ (clov) at red. $\chi^2 = 15.5$.

000000		000000	OO	O Summary
Flow scale r	atios			
Scale rat	ios			

- $\frac{m_l}{m_s} = \frac{1}{20}$ ensembles: ratios of flow scales $\frac{\sqrt{t_0}}{w_0}, \frac{\sqrt{t_0}}{w_2}, \frac{\sqrt{t_0}}{\sqrt{t_2}}, \frac{w_0}{w_2}$, via clov./imp.
- Binning/bootstrapping determined by larger auto-correlation time.

Clov. as a^2 , imp. as $\alpha_s a^2$, a^2 , a^4 via 3...6 betas, red. $\chi^2 \simeq 0.3...1.9$.

OOOOOO	Gradient flow	OOOOOO	Weak coupling OO	Summary O
Flow scale r	atios			
Scale rat	ios			

- $\frac{m_l}{m_s} = \frac{1}{20}$ ensembles: ratios of flow scales $\frac{\sqrt{t_0}}{w_0}, \frac{\sqrt{t_0}}{w_2}, \frac{\sqrt{t_0}}{\sqrt{t_2}}, \frac{w_0}{w_2}$, via clov./imp.
- Binning/bootstrapping determined by larger auto-correlation time.

Clov. as a^2 , imp. as $\alpha_s a^2$, a^2 , a^4 via 3...6 betas, red. $\chi^2 \simeq 0.3...1.9$.

Stat. error from wgt. mean of best fits (red. $\chi^2 \simeq 1.0$) of each form.
Syst. error due to max deviation from weighted mean, symmetrized. $\frac{\sqrt{\tau_0}}{w_0} = 0.8292(26)(15)$, $\frac{\sqrt{\tau_0}}{\sqrt{\tau_2}} = 1.3867(18)(68)$, $\frac{\sqrt{\tau_2}}{w_2} = 0.7314(15)(67)$, $\frac{w_0}{w_2} = 1.2235(19)(41)$.

		000000	OO	O Summary
Flow scale r	ratios			
Scale rat	ioc			

- $\frac{m_l}{m_s} = \frac{1}{20}$ ensembles: ratios of flow scales $\frac{\sqrt{t_0}}{w_0}, \frac{\sqrt{t_0}}{w_2}, \frac{\sqrt{t_0}}{\sqrt{t_2}}, \frac{w_0}{w_2}$, via clov./imp.
- Binning/bootstrapping determined by larger auto-correlation time.

Clov. as a^2 , imp. as $\alpha_s a^2$, a^2 , a^4 via 3...6 betas, red. $\chi^2 \simeq 0.3...1.9$.

	Gradient flow	Physical results	Weak coupling	
	00000			
Ratios with	notential scales			

 $\frac{m_l}{m_s} = \frac{1}{20} \text{ ensembles: ratios } \frac{\sqrt{r_0}}{r_1}, \frac{w_0}{r_1}, \text{ via clov./imp.}$ $\frac{m_l}{m_s} = \frac{1}{20} \text{ combined w. } \frac{m_l}{m_s} = \frac{1}{5} \text{ ensembles: ratios } \frac{\sqrt{r_0}}{r_0}, \frac{w_0}{r_0}, \text{ via imp..}$

	Gradient flow	Physical results	Weak coupling	
	00000			
Ratios with	notential scales			

 $\frac{m_l}{m_s} = \frac{1}{20} \text{ ensembles: ratios } \frac{\sqrt{r_0}}{r_1}, \frac{w_0}{r_1}, \text{ via clov./imp.}$ $\frac{m_l}{m_s} = \frac{1}{20} \text{ combined w. } \frac{m_l}{m_s} = \frac{1}{5} \text{ ensembles: ratios } \frac{\sqrt{r_0}}{r_0}, \frac{w_0}{r_0}, \text{ via imp..}$

	Gradient flow	Physical results	Weak coupling	
	00000			
Ratios with	notential scales			

 $\frac{m_l}{m_s} = \frac{1}{20} \text{ ensembles: ratios } \frac{\sqrt{t_0}}{t_1}, \frac{w_0}{t_1}, \text{ via clov./imp.}$ $\frac{m_l}{m_s} = \frac{1}{20} \text{ combined w. } \frac{m_l}{m_s} = \frac{1}{5} \text{ ensembles: ratios } \frac{\sqrt{t_0}}{t_s}, \frac{w_0}{t_s}, \text{ via imp..}$

■ Consistent w. HotQCD, HPQCD, or combined TUMQCD & MILC:

$\frac{r_1}{w_0} = 1.7797(67)$	@ N _f =2+1	[HotQCD: 2014kol],
$\frac{r_1}{w_0} = 1.789(26)$	@ N _f =2+1+1	[Dowdall: 2013rya],
$\frac{r_1}{\sqrt{t_0}} = 2.1601(83)$	@ N _f =2+1+1	[<i>MILC</i> : 2015 <i>tqx</i>],
$\frac{r_1}{w_0} = 1.7749(96)$	@ N _f =2+1+1	[Brambilla : 2022het] .

Extrapolation to	nhusical naint			
		••••		
	Gradient flow	Physical results	Weak coupling	Summary

Extrapolation to physical point

Pseudoscalar decay constants from conserved axial current with HISQ.

Avoid via strange quarks much taste-breaking or noise (due to light q.).

		Physical results		
000000	00000	••••	00	

Extrapolation to physical point

- Pseudoscalar decay constants from conserved axial current with HISQ.
- Avoid via strange quarks much taste-breaking or noise (due to light q.).
- $\begin{aligned} & = \text{Extrapolate from } M_{\eta_s}^{\text{LCP}} = 695 \text{ MeV to } M_{\eta_s}^{\text{phys}} = 685.8 \text{ MeV, and } \frac{m_l}{m_s} = \frac{1}{27.3} \text{ ,} \\ & a f_{\eta_s}^{\text{phys}}(\beta) = a f_{\eta_s}^{\text{meas}}(\beta) + 2s \cdot \left[a m_s^{\text{LCP}}(\beta) \left(\frac{m_{\eta_s}^{\text{phys}}}{m_{\eta_s}^{\text{LCP}}} \right)^2 a m_s^{\text{input}}(\beta) \right], \\ & a f_K^{\text{phys}}(\beta) = a f_K^{\text{meas}}(\beta) + s \cdot \left[a m_s^{\text{LCP}}(\beta) \left(\frac{m_{\eta_s}^{\text{phys}}}{m_{\eta_s}^{\text{LCP}}} \right)^2 \cdot \frac{28.3}{27.3} a m_s^{\text{input}}(\beta) \cdot \frac{21}{20} \right]. \end{aligned}$

■ LCP strange quark mass at each beta via [HotQCD:2014kol] $\frac{r_1}{a} \cdot am_s^{\text{LCP}} = \frac{r_1}{a} \cdot am^{\text{RGI}} \left(\frac{20b_0}{\beta}\right)^{4/9} \frac{1+m_1\frac{10}{\beta}f^2(\beta)+m_2(\frac{10}{\beta})^2f^2(\beta)+m_3\frac{10}{\beta}f^4(\beta)}{1+dm_1\frac{10}{\beta}f^2(\beta)}$ $= \frac{r_1}{a}, am^{\text{RGI}}, m_1, m_2, m_3, dm_1, \text{ prop. errors of } \frac{r_1}{a}, am^{\text{RGI}} \text{ via Gaussian bootstrap.}$

		Physical results		
000000	00000	••••	00	

Extrapolation to physical point

- Pseudoscalar decay constants from conserved axial current with HISQ.
- Avoid via strange quarks much taste-breaking or noise (due to light q.).

■ LCP strange quark mass at each beta via [HotQCD:2014kol] $\frac{r_1}{a} \cdot am_s^{\text{LCP}} = \frac{r_1}{a} \cdot am^{\text{RGI}} \left(\frac{20b_0}{\beta}\right)^{4/9} \frac{1+m_1\frac{10}{\beta}f^2(\beta)+m_2(\frac{10}{\beta})^2f^2(\beta)+m_3\frac{10}{\beta}f^4(\beta)}{1+dm_1\frac{10}{\beta}f^2(\beta)}$ $= \frac{r_1}{a}, am^{\text{RGI}}, m_1, m_2, m_3, dm_1, \text{ prop. errors of } \frac{r_1}{a}, am^{\text{RGI}} \text{ via Gaussian bootstrap.}$

• Assume theory scales $\frac{\sqrt{t_0}}{2}$, $\frac{w_0}{2}$, $\frac{r_1}{2}$ are independent of LCP/mistuning.

C TECHNISCHE UNIVERSITÄT DARMSTADT

0.080

0.078

0.076

 $\frac{0.2}{a^2/w_0^2}$

0.0943

0.0940

0.0935

 $\frac{0.2}{a^2/w_0^2}$

0.094

0.092

0.090

 $\frac{0.2}{a^2/w_0^2}$

0.108

0.106

 $\frac{0.2}{a^2/w_0^2}$

All extrapolations agree, quoting $\alpha_s a^2$ and imp.:

 $\frac{0.2}{a^2/w_0^2}$ 0.3

0.094

0.092

0.090

0.108

0.106

 $\frac{0.2}{a^2/w_0^2}$

	$f_{\eta_s}^{ m meas} w_0$	$f_{\eta_s}^{ m meas} \sqrt{t_0}$	$f_K^{ m meas}\sqrt{t_0}$	$f_K^{\rm meas} w_0$	$\frac{r_1}{\sqrt{t_0}}$	$\frac{r_1}{w_0}$
clover	0.11132(56)	0.09292(44)	0.07893(36)	0.09455(45)	2.1530(78)	1.7866(74)
impr.	0.11148(52)	0.09261(42)	0.07876(32)	0.09480(41)	2.1506(86)	17835(80)

0.08

0.076

 $\frac{0.2}{a^2/u_0^2}$

0.0943

0.0940

0.0935

 $\frac{0.2}{a^2/w_0^2}$

- Products of r_1 with $\sqrt{t_0}$, w_0 , f_{η_s} , f_K .
- Continuum extrapolation of $r_1 f_{K,\eta_s}$ with more, coarser lattices [HotQCD:2014kol].

- Products of r_1 with $\sqrt{t_0}$, w_0 , f_{η_s} , f_K .
- Continuum extrapolation of $r_1 f_{K,\eta_s}$ with more, coarser lattices [HotQCD:2014kol].

- Products of r_1 with $\sqrt{t_0}$, w_0 , f_{η_s} , f_K .
- Continuum extrapolation of $r_1 f_{K,\eta_s}$ with more, coarser lattices [HotQCD:2014kol].

■ Consistent w. TUMQCD, lower than MILC, RBC, or HPQCD:

	Physical results	Weak coupling	
	000000		
Lattice NR(

Lattice INRQUD

- Bottomonia splittings for scale setting [Gray:2005ur], [Davies:2009tsa], [HPQCD:2011qwj].
- Heavy quarks via $\mathcal{O}(v^6)$ -improved lattice NRQCD [Meinel:2009rd] [Meinel:2010pv].
- Bottomonia levels computed on HotQCD ensembles [Larsen:2019zgv], [Ding:2025fvo],

state	ΔM [MeV]	$\Delta M(PDG)$ [MeV]
Υ(3 <i>S</i>)	906.0(25.0)(5.2)	910.3(0.7)
$h_b(2P)$	804.4(35.8)(4.7)	814.9(1.3)
$\chi_{b2}(2P)$	809.2(36.2)(4.7)	823.8(0.9)
$\chi_{b1}(2P)$	802.2(34.9)(4.7)	810.6(0.7)
$\chi_{b0}(2P)$	786.8(32.7)(4.6)	787.6(0.8)
Ƴ(2 <i>S</i>)	582.7(9.8)(3.4)	578.4(0.6)
$h_b(1P)$	454.5(4.7)(2.6)	454.4(0.9)
$\chi_{b2}(1P)$	463.3(4.8)(2.7)	467.3(0.6)
$\chi_{b1}(1P)$	448.9(4.6)(2.6)	447.9(0.6)
$\chi_{b0}(1P)$	421.3(4.7)(2.4)	414.5(0.7)
nyperfine(3S)	13.4(6.2)(0.1)	NA
nyperfine(2S)	24.1(1.0)(0.1)	24.5(4.5)

■ Lattice NRQCD levels deviate from PDG by 0.2-1.2% .

• $\frac{m_l}{m_s} = \frac{1}{20}$ ensembles: extrapolate **products** of ΔM_X with $\sqrt{t_0}, w_0, r_1$ via imp.?

Due to lattice NRQCD levels estimate 1% systematic error on ΔM_X .

• $\frac{m_l}{m_r} = \frac{1}{20}$ ensembles: extrapolate **products** of ΔM_X with $\sqrt{t_0}, w_0, r_1$ via imp.?

Due to lattice NRQCD levels estimate 1% systematic error on ΔM_X .

TECHNISCHE UNIVERSITAT DARMSTADT

Systematically higher than $\sqrt{t_0}$, w_0 , r_1 from decay constants, agrees w. MILC.

	Physical results Weak coupling		
	000000		
<u> </u>			

Comparison à la FLAG

Choice of the physical scale matters at one sigma level!

	$\sqrt{t_0}$ [fm]	<i>w</i> ₀ [fm]	<i>r</i> 1 [fm]
f_{η_s}	0.14239(65)(94)	0.17139(80)(113)	0.3062(23)
f_K	0.14133(57)(82)	0.17012(74)(98)	0.3065(22)
$h_b - 1S$	0.1453(17)(15)	0.1752(21)(18)	0.3105(18)(31)
$\chi_b - 1S$	0.1441(17)(14)	0.1739(21)(17)	0.3104(18)(31)
2S - 1S	0.1477(40)(15)	0.1783(49)(18)	0.3119(76)(31)
wgt. avg.	0.14229 (98)	0.17190 (140)	0.3072 (22)

Comparison à la FLAG

Choice of the physical scale matters at one sigma level!

- $N_{\rm f} = 2 + 1$ or $N_{\rm f} = 2 + 1 + 1$ results are **consistent due to decoupling**.
- Our $N_{\rm f} = 2 + 1$ results are lower than FLAG averages.
- No obvious link between staggered ensembles and values of scales.

Solid lines: extrapolations w. red. $\chi^2 < 1.5$. Focus on imp/quartic.

Solid lines: extrapolations w. red. $\chi^2 < 1.5$. Focus on imp/quartic.

Scheme change from gradient flow to MS known at NNLO

0.00

[Harlander:2021esn]

0.20

$$\begin{split} \alpha_{\rm flow} &= \alpha_{\overline{\rm MS}} \left(1 + k_1 \alpha_{\overline{\rm MS}} + k_2 \alpha_{\overline{\rm MS}}^2 \right) \quad \text{for} \quad \mu_{\overline{\rm MS}}^2 = \mu_{\rm flow}^2 \ , \\ k_1 &= 1.098 + 0.008 N_f \ , \quad k_2 = -0.982 - 0.070 N_f + 0.002 N_f^2 \end{split}$$

- To control both continuum extrapolation and scheme conversion choose a reference point above $\mu_{\text{flow}} \ge 1.278 \text{ GeV}$ (i.e. $\sqrt{8\tau_{\text{F}}} \le 0.1543 \text{ fm}$).
- g_{flow}^2 from gradient flow to \overline{MS} , ran up from ref. point $\mu_{flow} \ge 1.278$ GeV vs $g_{\overline{MS}}^2$ ran down from $g_{\overline{MS}}^2 = 0$ using $\Lambda_{\overline{MS}} = 338$ MeV, at different loop orders.

- To control both continuum extrapolation and scheme conversion choose a reference point above $\mu_{\text{flow}} \ge 1.278 \text{ GeV}$ (i.e. $\sqrt{8\tau_{\text{F}}} \le 0.1543 \text{ fm}$).
- g_{flow}^2 from gradient flow to \overline{MS} , ran up from ref. point $\mu_{flow} \ge 1.278$ GeV vs $g_{\overline{MS}}^2$ ran down from $g_{\overline{MS}}^2 = 0$ using $\Lambda_{\overline{MS}} = 338$ MeV, at different loop orders.
- Strong dependence of $\Lambda_{\overline{MS}}$ on τ_F in conversion, below $\Lambda_{\overline{MS}} = 338$ MeV:

 $\Lambda^{N_{\rm f}=3}_{\overline{\rm MS}} = 311.0^{+0.7}_{-0.7-4.8} {}^{+34.0}_{-11.7} \ {\rm MeV} \ , \quad \alpha^{(N_{\rm f}=5)}_{\overline{\rm MS}}(M_Z) = 0.1162^{+0.0023}_{-0.0009} \ . \label{eq:Mz}$

- Stat. error via bootstrap; symmetrized cont. error (leaving out $\beta = 8.0$).
- **Truncation error estimate** by including $\alpha_{\overline{MS}}^3$ with coefficient $k_3 = \pm 2k_2$.

We obtain gradient flow and potential scales in (2+1)-flavor QCD.
 Consistency between (2+1)- or (2+1+1)-flavor QCD: decoupling!

We obtain gradient flow and potential scales in (2+1)-flavor QCD.
 Consistency between (2+1)- or (2+1+1)-flavor QCD: decoupling!

Thank you for your attention!

Effects of toplogy on $\frac{\sqrt{t_0}}{a}$

Effects of toplogy on $\frac{\sqrt{t_0}}{a}$

