
Scale setting with r0 or r1

QCD has no free parameters. Other parts of the Standard Model provide the scale:
Higgs-Yukawa couplings ↷ quark masses mi . Then ΛQCD ∝ mq.

Lattice and MS are massless schemes: a(g2), not a(g2, {mi}) (up to lattice artefacts).
↷ Define a from a = M latt/mphys.

mphys must be defined at a fixed set of quark masses, {mi}, e.g., at the physical point
(line of constant physics).

Most convenient are quantities that (for a → 0) depend little on the quark masses, i.e. gluonic
quantities. To leading ChPT order these only depend on

∑
i mi .

The scale setting quantity should be easily and precisely calculable.

M latt = R−1
i (mphys = r−1

i ) are such examples: ri at physical quark masses or at some other
well-defined point in the quark mass plane.
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Some questions

What precision can be achieved for Ri = ri/a? How does this depend on a? How does
this compare to, e.g.,

√
t0/a?

There is an original definition for obtaining F (R)R2 from the static tree-level O(a2)
improved on-axis potential and interpolating this to obtain the Sommer scale R0.
Is this the “best” one?

In view of the necessary interpolation, ideally a/Ri should be small. What is the maximal
a for which R1 makes sense?

At short distances α
(Nf =4)
s (r−1) > α

(Nf =3)
s (r−1) if these theories are matched in the

infrared. (The Nf = 3 coupling runs faster towards small values.)
This means f (Nf =4)(r) > f (Nf =3)(r) and, therefore, r (Nf =4)

i < r (Nf =3)
i .

This effect should be bigger for r1 than for r0? How big is it?
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