QCD has no free parameters. Other parts of the Standard Model provide the scale: Higgs-Yukawa couplings \curvearrowright quark masses m_i . Then $\Lambda_{QCD} \propto m_q$.

QCD has no free parameters. Other parts of the Standard Model provide the scale: Higgs-Yukawa couplings \curvearrowright quark masses m_i . Then $\Lambda_{QCD} \propto m_q$.

Lattice and $\overline{\text{MS}}$ are **massless** schemes: $a(g^2)$, not $a(g^2, \{m_i\})$ (up to lattice artefacts). \sim Define *a* from $a = M^{\text{latt}}/m^{\text{phys}}$.

QCD has no free parameters. Other parts of the Standard Model provide the scale: Higgs-Yukawa couplings \curvearrowright quark masses m_i . Then $\Lambda_{QCD} \propto m_q$.

Lattice and $\overline{\text{MS}}$ are **massless** schemes: $a(g^2)$, not $a(g^2, \{m_i\})$ (up to lattice artefacts). \sim Define *a* from $a = M^{\text{latt}}/m^{\text{phys}}$.

 $m^{\rm phys}$ must be defined at a fixed set of quark masses, $\{m_i\}$, e.g., at the physical point (line of constant physics).

QCD has no free parameters. Other parts of the Standard Model provide the scale: Higgs-Yukawa couplings \curvearrowright quark masses m_i . Then $\Lambda_{QCD} \propto m_q$.

Lattice and $\overline{\text{MS}}$ are **massless** schemes: $a(g^2)$, not $a(g^2, \{m_i\})$ (up to lattice artefacts). \sim Define *a* from $a = M^{\text{latt}}/m^{\text{phys}}$.

 $m^{\rm phys}$ must be defined at a fixed set of quark masses, $\{m_i\}$, e.g., at the physical point (line of constant physics).

Most convenient are quantities that (for $a \rightarrow 0$) depend little on the quark masses, i.e. gluonic quantities. To leading ChPT order these only depend on $\sum_{i} m_{i}$.

The scale setting quantity should be easily and precisely calculable.

QCD has no free parameters. Other parts of the Standard Model provide the scale: Higgs-Yukawa couplings \curvearrowright quark masses m_i . Then $\Lambda_{QCD} \propto m_q$.

Lattice and $\overline{\text{MS}}$ are **massless** schemes: $a(g^2)$, not $a(g^2, \{m_i\})$ (up to lattice artefacts). \sim Define *a* from $a = M^{\text{latt}}/m^{\text{phys}}$.

 $m^{\rm phys}$ must be defined at a fixed set of quark masses, $\{m_i\}$, e.g., at the physical point (line of constant physics).

Most convenient are quantities that (for $a \rightarrow 0$) depend little on the quark masses, i.e. gluonic quantities. To leading ChPT order these only depend on $\sum_{i} m_{i}$.

The scale setting quantity should be easily and precisely calculable.

 $M^{\text{latt}} = R_i^{-1} (m^{\text{phys}} = r_i^{-1})$ are such examples: r_i at physical quark masses or at some other well-defined point in the quark mass plane.

• What precision can be achieved for $R_i = r_i/a$? How does this depend on a? How does this compare to, e.g., $\sqrt{t_0}/a$?

- What precision can be achieved for $R_i = r_i/a$? How does this depend on a? How does this compare to, e.g., $\sqrt{t_0}/a$?
- There is an original definition for obtaining $F(R)R^2$ from the static tree-level $O(a^2)$ improved on-axis potential and interpolating this to obtain the Sommer scale R_0 . Is this the "best" one?

- What precision can be achieved for $R_i = r_i/a$? How does this depend on *a*? How does this compare to, e.g., $\sqrt{t_0}/a$?
- There is an original definition for obtaining $F(R)R^2$ from the static tree-level $O(a^2)$ improved on-axis potential and interpolating this to obtain the Sommer scale R_0 . Is this the "best" one?
- In view of the necessary interpolation, ideally a/R_i should be small. What is the maximal *a* for which R_1 makes sense?

- What precision can be achieved for $R_i = r_i/a$? How does this depend on a? How does this compare to, e.g., $\sqrt{t_0}/a$?
- There is an original definition for obtaining $F(R)R^2$ from the static tree-level $O(a^2)$ improved on-axis potential and interpolating this to obtain the Sommer scale R_0 . Is this the "best" one?
- In view of the necessary interpolation, ideally a/R_i should be small. What is the maximal *a* for which R_1 makes sense?
- At short distances α_s^(N_f=4)(r⁻¹) > α_s^(N_f=3)(r⁻¹) if these theories are matched in the infrared. (The N_f = 3 coupling runs faster towards small values.) This means f^(N_f=4)(r) > f^(N_f=3)(r) and, therefore, r_i^(N_f=4) < r_i^(N_f=3). This effect should be bigger for r₁ than for r₀? How big is it?