## Scale setting: motivation and FLAG overview

## Alexei Bazavov, Sara Collins, Simon Kuberski, Rainer Sommer

Trento, 3 March 2025

#### FLAG 2024 review

Some simple considerations

Compilations / review of g-2 by S. Kuberski

## Lattice gauge theory for low energy processes

Framework

low energy effective theory

QCD + QED

Approximation QCD

renormalizable QFTs (perturbative in  $\alpha \equiv \alpha_{em}$ )

"scale setting" = part of renormalization

#### Perturbative schemes

 $\alpha_s \equiv \alpha_{\overline{MS}}(m_Z), \, \bar{m}_j(x \; GeV)$ 

 $(+ \alpha_{em})$ 

impractical need RGI's  $\Lambda_{\overline{MS}}$ ,  $M_j^{\text{RGI}}$  for precise definitions/values —> step scaling or faith often gauge fixing

#### Hadronic renormalization schemes

 $(+ \alpha_{em})$ 

Natural + common practice + theoretically sound

-> we only consider those

hadron masses/bareproperties/ $-> g_0, m_{0,i}$ -> predictionsscalesparameters

#### **Renormalization conditions**

$$\frac{M_i(g_0, \{am_{0,j}\})}{M_1(g_0, \{am_{0,j}\})} = \frac{M_i^{\exp}}{M_1^{\exp}}, \quad i = 2...N_f + 1, \quad j = 1...N_f. \quad (+\alpha_{em})$$

(with hadron masses  $M_i$ ) define LCP

 $am_{0,j} = \mu_j(g_0)$ 

Observable  $\mathcal{O}$  with dimension  $[\mathcal{O}] = d_{\mathcal{O}}$  is then predicted as

$$\mathcal{O}^{\text{cont}} = \left(M_1^{\exp}\right)^{d_{\mathcal{O}}} \lim_{aM_1 \to 0} \hat{\mathcal{O}}(aM_1) \text{ with } \hat{\mathcal{O}}(aM_1) = \frac{\mathcal{O}}{M_1^{d_{\mathcal{O}}}} \bigg|_{am_{0,j} = \mu_j(g_0)}$$

"The" scale:  $M_1 \equiv \mathcal{S}$  .

Useful to replace  $M_1$  by theory scales,  $S^{-1} = r_0, r_1, \dots, \sqrt{t_0}, w_0$  because of

- excited state corrections
- extrapolation to physical point
- statistical precision

#### theory scales predicted as above

Predictions for phenomenology do depend on the precision of the LCP in general. Scale + other quantities "setting the quark masses".

Often the uncertainty of the scale may be dominant /relevant.

**Examples follow** 

### Impact / relevance 1

Lambda-parameter  $\Lambda = \Lambda_{\overline{MS}}$  (or  $\alpha_s(m_z)$ )

recent ALPHA-result:  $\Lambda = 343.9(8.4) \text{ MeV}$ ,  $\frac{\delta \Lambda}{\Lambda} = 2.4 \%$  (most precise result) [2501.06633]

 $\left(\frac{\delta\Lambda}{\Lambda}\right)^2 = \dots + \left(\frac{\delta t_0}{2t_0}\right)^2$ ,  $\frac{\delta t_0}{2t_0} = 1.3\%$  —> unpleasant 25% in squared error

note: FLAG 2024, 2+1:  $\sqrt{t_0} = 0.1447(6)$  (0.4%) difference: 2+1+1:  $\sqrt{t_0} = 0.1429(10)$  (0.7%) 1.3%

The result is very relevant: to be used in the analysis of LHC data etc.



#### **Impact / relevance 2**

#### Light quark masses







Spread partially due to scales? not investigated by FLAG

### **Impact / relevance 2**

#### Light quark masses







Spread partially due to scales? not investigated by FLAG

#### relevant at the level of these errors (2+1+1)

| ETM 21A                        | [7]  | А | *       | *       | * | *       | _   | $3.636(66)(^{+60}_{-57})$ | $98.7(2.4)(^{+4.0}_{-3.2})$ |
|--------------------------------|------|---|---------|---------|---|---------|-----|---------------------------|-----------------------------|
| $\mathrm{HPQCD}\ 18^{\dagger}$ | [17] | А | *       | $\star$ | * | $\star$ | _   |                           | 94.49(96)                   |
| FNAL/MILC/TUMQCD 18            | [9]  | А | $\star$ | $\star$ | * | $\star$ | - ( | 3.404(14)(21)             | 92.52(40)(56)               |

#### Heavy quark masses

b-quark, approximately, HQET-inspired:

$$m_b = m_B^{\exp} + \mathcal{S} \times \left[\frac{m_b - m_B}{\mathcal{S}}\right]_{\text{lat}}, \quad \frac{\delta m_b}{m_b} \approx \frac{1}{10} \frac{\delta \mathcal{S}}{\mathcal{S}}$$



FNAL/MILC/TUM 18

1/10 suppression —> not very relevant

anyway, different problems for b-quarks

but some very small uncertainties are cited:

[9] 2+1+1 A  $\star$   $\circ$   $\star$  -  $\checkmark$  4.201(12)(1)(8)(1)

muon g-2: 
$$a_{\mu}^{\text{hvp}}$$

S. Kuberski, Santa Fe workshop 2023 :

#### SCALE DEPENDENCIES

• Scale enters via muon mass in  $\tilde{K}(t)$ . Determine the scale dependence via

$$\frac{\partial (a_{\mu}^{\text{hvp}})^{i}}{\partial_{\Lambda}} = \left(\frac{\alpha}{\pi}\right)^{2} \sum_{0}^{\infty} dt \left[ \left(\frac{\partial}{\partial_{\Lambda}} \widetilde{K}(t)\right) W^{i}(t;t_{0};t_{1}) + \widetilde{K}(t) \left(\frac{\partial}{\partial_{\Lambda}} W^{i}(t;t_{0};t_{1})\right) \right] G(t)$$

■ Using a parametrization of the R-ratio, the Mainz group estimated  $\frac{\Delta a_{\mu}^{\text{hvp},\Lambda}}{a_{\mu}^{\text{hvp}}} \approx 1.8 \frac{\Delta \Lambda}{\Lambda} \text{ [Della Morte et al., 1705.01775]} \rightarrow \text{What about the windows?}$ 

• My rough estimates for 
$$\frac{\Delta(a_{\mu}^{\text{hvp},\Lambda})^{i}\Lambda}{(a_{\mu}^{\text{hvp}})^{i}\Delta\Lambda}$$
 at  $m_{\pi}^{\text{phys}}$ :  
 $\frac{\delta a_{\mu}^{\text{hvp}}}{1.8} \frac{\delta(a_{\mu}^{\text{hvp}})^{\text{SD}}}{0.0} \frac{\delta(a_{\mu}^{\text{hvp}})^{\text{ID}}}{0.5} \frac{\delta(a_{\mu}^{\text{hvp}})^{\text{LD}}}{2.7}$ 

• Need a highly precise scale setting for precision in  $a_{\mu}^{\text{hvp}}$ .

### Impact / relevance 3.2

VD continued

#### light-quark connected contribution

compilation by S. Kuberski



 $a_{\mu}^{\rm hvp}$  continued: light-quark connected contribution, long distance window



correlation to  $t_0$ ,  $w_0$ 

be aware of continuum + finite volume extrapolations

no LD in BMW 2024;

I'm sure they want to help clarify the situation and still publish their updated LD contribution

# Baryon matrix elements

Quantites of interest (nucleon): Weak charges,  $g_A$ ,  $g_S$ ,  $g_T$ . Form factors, electromagnetic,  $G_E$ ,  $G_M$ , axial,  $G_A$ ,  $G_{\tilde{P}}$ ,  $G_P$ , ... Moments of unpolarised, helicity and transversity PDFs,  $g_{A,S,T}^q$ ,  $\langle x \rangle_{q,\Delta q,\delta q}$ , ... Quasi- and pseudo-PDFs.

Dimensionless quantities, that, generally, have a fairly mild dependence on the light quark mass. Uncertainties at a few percent or higher. The signal to noise problem and excited state contamination are the main difficulties, ...

Exceptions: [CalLat][1805.12130]  $g_A$  1%, [1912.08321] 0.74%, aim for 0.2%. Don't need scale to < 1%.

Sigma term  $\sigma_{\pi N} = \frac{1}{2}(m_u + m_d)\langle N | u\bar{u} + d\bar{d} | N \rangle \propto m_{\pi}^2$  [MeV]. High precision not required. Radii  $\langle r^2 \rangle = -\frac{6}{G} \left. \frac{dG}{dQ^2} \right|_{Q^2 = 0}$  [fm<sup>2</sup>],  $\langle r_E^2 \rangle^{p-n}$  diverges as  $m_{\pi}^2 \to 0$ .

Proton  $\langle r_E^2 \rangle^{1/2,p}$ : tension between muonic hydrogen and some ep scattering results ~ 5%. If want  $\langle r_E^2 \rangle^{1/2,p}$  with ~ 1%, need scale with better precision. Currently, [Mainz][2309.06590]  $\langle r_E^2 \rangle^{1/2,p}$  with 2%.

## Finite temperature physics

# **Decay constants**

Regensburg / Münster computation of  $f_{D_s}$  [2405.04506]

Contributions to  $(\Delta f_{D_s})^2$ 



| should also be | Collaboration               | Ref. $N_f$ | 2054224         | $f_D$      | $f_{D_s}$  | $f_{D_s}/f_D$ |
|----------------|-----------------------------|------------|-----------------|------------|------------|---------------|
| relevant here: | ETM 21B                     | [453] 2+1+ | 1 C ★ ★ ★ ★ ✓ 2 | 210.1(2.4) | 248.9(2.0) | 1.1838(115)   |
| (2+1+1)        | FNAL/MILC 17 $\nabla\nabla$ | [20] 2+1+  | 1 A ★ ★ ★ ★ √ 2 | 212.1(0.6) | 249.9(0.5) | 1.1782(16)    |

## **Decay constants**

note  $f_B$ ,  $f_{B_s}$  presently not as precise (heavy quark problem)

# relevance depends on the quantity

both on its precision and on its sensitivity to scales

very relevant for g-2 (in fact a bit worrying)

 reduced by new BMW: very long distance from phenomenology

25% of error squared in new  $\alpha_s(m_Z)$ 

dominant in some decay constant computations

### FLAG 2024: 1

### **GF** scales



agreement could be better -> stretching of errors of averages

2+1+1:  $\chi^2/dof = 3.3$ 2+1+1:  $\chi^2/dof = 2.6$ 2+1:  $\chi^2/dof = 1.1$ 2+1:  $\chi^2/dof = 1.5$ 

### FLAG 2024: 1

## **GF** scales



difference 2+1+1 vs. 2+1 seems too large

expecting a small sea-quark  $1/m_c$  effect (see ALPHA papers)

### FLAG 2024: 1

## **GF** scales



assuming a small sea-quark  $1/m_c$  effect

quite some difference rooted vs. local formulations

### **Potential scales**



agreement could be better -> stretching of errors of averages

2+1+1:  $\chi^2/dof = 2.0$ 2+1+1:  $\chi^2/dof = 3.7$ 2+1:  $\chi^2/dof = 1.3$ 2+1:  $\chi^2/dof = 2.5$ 

my guess: likely due to excited state effects

. . .

# Discuss status again and the way forward

updates (a number of computations are quite old)

discuss the challenges

excited states continuum extrapolations

(iso)QCD definition and relevance