

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Recent Advances and Future Perspectives in Nuclear Astrophysics at

Cristian Massimi

Department of Physics and Astronomy

t i m e

20 Gev/c protons from the PS

n_TOF @ CERN

The advantages of n_TOF are a direct consequence of the characteristics of the **PS proton beam**: **high energy, high peak current, low duty cycle.**

proton beam momentum	20 GeV/c
intensity (dedicated mode)	~ 10 ¹³ protons/pulse
repetition frequency	1 pulse/1.2s
pulse width	6 ns (rms)
n/p	300
lead target dimensions	80x80x60 cm ³
cooling & moderation material	N^{2} & (H ² O + ¹⁰ B)
moderator thickness in the exit face	5 cm
neutron beam dimension in EAR-1 (capture mode)	2 cm (FWHM)

n_TOF @ CERN

3rd generation spallation target

pure Pb based

- N₂-gas cooled, water moderated
- Several innovations have been introduced

Cristian Massimi Key reactions in Nuclear Astrophysics || 17-21 February 2025 || Trento, Italy

Istituto Nazionale di Fisica Nuclea

Cristian Massimi Key reactions in Nuclear Astrophysics || 17-21 February 2025 || Trento, Italy

For nuclear astrophysics, what is important is the **Maxwellian Averaged Cross-Sections (MACS)** at various **temperatures** (kT depends on stellar site).

Reaction rate (cm⁻³s⁻¹): $r = N_A N_n v \sigma(v) \implies r = N_A N_n \langle \sigma \cdot v \rangle$

$$MACS \equiv \frac{\langle \sigma \cdot v \rangle}{v_T} = \frac{2}{\sqrt{\pi}(kT)^2} \int_0^\infty \sigma(E) E e^{-E/(kT)} dE$$

Key reactions in Nuclear Astrophysics || 17-21 February 2025 || Trento, Italy

Istituto Nazionale di Fisica Nucl

Cristian Massimi Key reactions in Nuclear Astrophysics || 17-21 February 2025 || Trento, Italy

n_TOF: nuclear data for science (and technology) ... so far

n_TOF: nuclear data for science (and technology)

weak: core He burning in massive stars main: He shell flashes in low mass TP-AGB stars

Cristian Massimi Key reactions in Nuclear Astrophysics || 17-21 February 2025 || Trento, Italy

Reducing the uncertainty in the stellar cross section (MACS) is not only a question of better nuclear data: higher accuracy in the reaction rates opens the possibility to investigate new astrophysical scenarios

[nuclear clocks, constrains on the BBN, AGB modelling, nucleosynthesis conditions in explosive scenarios, meteoritic grains, others]

F. Käppeler, R. Gallino, S. Bisterzo, and Wako Aoki Rev. Mod. Phys. 83, 157 – Published 1 April 2011

MACS uncertainties

Istituto Nazionale di Fisica Nucl

Key reactions in Nuclear Astrophysics || 17-21 February 2025 || Trento, Italy

F. Käppeler, R. Gallino, S. Bisterzo, and Wako Aoki Rev. Mod. Phys. **83**, 157 – Published 1 April 2011

Sample	Half-life (yr)	Q value (MeV)	Comment			
⁶³ Ni	100.1	$\beta^{-}, 0.066$	TOF work in progress (Couture, 2009), sample with low enrichment			
⁷⁹ Se	2.95×10^{5}	$\beta^{-}, 0.159$	Important branching, constrains s-process temperature in massive stars			
⁸¹ Kr	2.29×10^{5}	EC, 0.322	Part of ⁷⁹ Se branching			
⁸⁵ Kr	10.73	$\beta^{-}, 0.687$	Important branching, constrains neutron density in massive stars			
⁹⁵ Zr	64.02 d	$\beta^{-}, 1.125$	Not feasible in near future, but important for neutron density low-mass AGB stars			
¹³⁴ Cs	2.0652	β^{-} , 2.059	Important branching at $A = 134, 135$, sensitive to <i>s</i> -process temperature in low-mass AGB stars, measurement not feasible in near future			
¹³⁵ Cs	$2.3 imes 10^{6}$	$\beta^{-}, 0.269$	So far only activation measurement at $kT = 25$ keV by Patronis <i>et al.</i> (2004)			
¹⁴⁷ Nd	10.981 d	$\beta^{-}, 0.896$	Important branching at $A = 147/148$, constrains neutron density in low-mass AGB stars			
¹⁴⁷ Pm	2.6234	$\beta^{-}, 0.225$	Part of branching at $A = 147/148$			
¹⁴⁸ Pm	5.368 d	$\beta^{-}, 2.464$	Not feasible in the near future			
¹⁵¹ Sm	90	$\beta^{-}, 0.076$	Existing TOF measurements, full set of MACS data available (Abbondanno <i>et al.</i> , 2004a; Wisshak <i>et al.</i> , 2006c)			
¹⁵⁴ Eu	8.593	β^- , 1.978	Complex branching at $A = 154, 155$, sensitive to temperature and neutron density			
¹⁵⁵ Eu	4.753	$\beta^{-}, 0.246$	So far only activation measurement at $kT = 25$ keV by Jaag and Käppeler (1995)			
¹⁵³ Gd	0.658	EC, 0.244	Part of branching at $A = 154, 155$			
¹⁶⁰ Tb	0.198	$\beta^{-}, 1.833$	Weak temperature-sensitive branching, very challenging experiment			
¹⁶³ Ho	4570	EC, 0.0026	Branching at $A = 163$ sensitive to mass density during s process, so far only activation measurement at $kT = 25$ keV by Jaag and Käppeler (1996b)			
¹⁷⁰ Tm	0.352	$\beta^{-}, 0.968$	Important branching, constrains neutron density in low-mass AGB stars			
¹⁷¹ Tm	1.921	$\beta^{-}, 0.098$	Part of branching at $A = 170, 171$			
¹⁷⁹ Ta	1.82	EC, 0.115	Crucial for s-process contribution to ¹⁸⁰ Ta, nature's rarest stable isotope			
^{185}W	0.206	$\beta^{-}, 0.432$	Important branching, sensitive to neutron density and <i>s</i> -process temperature in low-mass AGB stars			
²⁰⁴ Tl	3.78	$\beta^{-}, 0.763$	Determines ²⁰⁵ Pb/ ²⁰⁵ Tl clock for dating of early Solar System			

U. Abbondanno, et al. (The n_TOF Collaboration), Phys. Rev. Lett. 94 (2004) 161103

C. Lederer, et al. (The n_TOF Collaboration), Phys. Rev. Lett 110 (2013) 022501

C. Guerrero, et al. (The n_TOF Collaboration), Phys. Rev. Lett. 125 (2020) 142701

A. Casanovas-Hoste, et al., (The n TOF Collaboration) Phys. Rev. Lett. 133 (2024) 052702

Sample Half-life (vr) O value (MeV) Comment ⁶³Ni 100.1 $\beta^{-}, 0.066$ TOF work in progress (Couture, 2009), sample with low enrichment ⁷⁹Se 2.95×10^{5} $\beta^{-}, 0.159$ Important branching, constrains s-process temperature in massive stars 81Kr 2.29×10^{2} EC, 0.322 Part of ⁷⁹Se branching European Research Council erc ⁸⁵Kr 10.73 $\beta^{-}, 0.687$ Important branching, constrains neutron density in massive stars ⁹⁵Zr 64.02 d Not feasible in near future, but important for neutron density low-mass $\beta^{-}, 1.125$ AGB stars 134Cs 2.0652 $\beta^{-}, 2.059$ Important branching at A = 134, 135, sensitive to s-process temperature in low-mass AGB stars, measurement not feasible in near future 135Cs 2.3×10^{6} $\beta^{-}, 0.269$ So far only activation measurement at kT = 25 keV by Patronis *et al.* (2004) 147 Nd 10.981 d $\beta^{-}, 0.896$ Important branching at $A = \frac{147}{148}$, constrains neutron density in low-mass AGB stars ¹⁴⁷Pm 2.6234 $\beta^{-}, 0.225$ Part of branching at A = 147/148¹⁴⁸Pm 5.368 d β^{-} , 2.464 Not feasible in the near future ¹⁵¹Sm 90 $\beta^{-}, 0.076$ Existing TOF measurements, full set of MACS data available (Abbondanno et al., 2004a; Wisshak et al., 2006c) ¹⁵⁴Eu 8.593 $\beta^{-}, 1.978$ Complex branching at A = 154, 155, sensitive to temperature and neutron density 155 Eu 4.753 $\beta^{-}, 0.246$ So far only activation measurement at kT = 25 keV by Jaag and Käppeler (1995)¹⁵³Gd 0.658 EC. 0.244 Part of branching at A = 154, 155¹⁶⁰Tb 0.198 β^{-} , 1.833 Weak temperature-sensitive branching, very challenging experiment ¹⁶³Ho 4570 EC, 0.0026 Branching at A = 163 sensitive to mass density during s process, so far only activation measurement at kT = 25 keV by Jaag and Käppeler (1996b) ¹⁷⁰Tm 0.352 $\beta^{-}, 0.968$ Important branching, constrains neutron density in low-mass AGB stars ¹⁷¹Tm 1.921 $\beta^{-}, 0.098$ Part of branching at A = 170, 171¹⁷⁹Ta 1.82 EC, 0.115 Crucial for s-process contribution to ¹⁸⁰Ta, nature's rarest stable isotope 185 W0.206 $\beta^{-}, 0.432$ Important branching, sensitive to neutron density and s-process temperature in low-mass AGB stars 204 Tl Determines ²⁰⁵Pb/²⁰⁵Tl clock for dating of early Solar System 3.78 $\beta^{-}, 0.763$

F. Käppeler, R. Gallino, S. Bisterzo, and Wako Aoki Rev. Mod. Phys. **83**, 157 – Published 1 April 2011

Some cross sections measured in 2001 - 2024

Branching point isotopes:

¹⁵¹Sm, ⁶³Ni, ¹⁴⁷Pm, ¹⁷¹Tm, ²⁰³Tl, ⁷⁹Se

- Abundances in presolar grains: 28,29,30Si, 91,92,93,94,96Zr, 94,96Mo, 146Nd
- Magic Nuclei and end-point: ¹³⁹La, ¹⁴⁰Ce, ⁹⁰Zr, ⁸⁹Y, ⁸⁸Sr, ^{204,206,207,208}Pb, ²⁰⁹Bi
- ✤ Seeds isotopes:

^{54,56,57}Fe, ^{58,60,62,64}Ni, ⁵⁹Ni(n,α)

✤ Isotopes of special interest:

^{186,187,188}Os (cosmochronometer),¹⁹⁷Au (reference cross section), ^{24,25,26}Mg, ³³S(n,α), ¹⁴N(n,p), ³⁵Cl(n,p),
²⁶Al(n,p), ²⁶Al(n,α) (neutron poison), ¹⁵⁴Gd (s-only isotopes), ⁴⁰K(n,p), ⁴⁰K(n,α), ^{63,65}Cu, ^{93,94}Nb, ⁶⁸Zn,
^{69,71}Ga, ^{70,72,73,74,76}Ge, ^{77,78,80}Se (weak component), ^{155,157,160}Gd, ⁷Li(n,p), ⁷Li(n,α) BBN

• Neutron Sources ²²Ne(α ,n)²⁵Mg and ¹³C(α ,n)¹⁶O:

Some recent results

- ²⁶Al(n,p), ²⁶Al(n,α)
- ➢ ¹⁴⁰Ce(n,γ)

The cosmic γ -ray emitter ²⁶Al

INTEGRAL Measured abundance 2.8(8) Solar Masses [R. Diehl, *Nature* **439**, *45*(2006)]

C Illiadis et al., Ast. J. Supp. 193, 16 (2011) Sensitivity study of ²⁶Al abundance in Massive stars

Factor changes of final $^{26}\rm{AL}^g$ abundance resulting from reaction rate variations for convective shell C/Ne burning^a , assuming five species of $^{26}\rm{AL}$

Reaction ^b	Rate multiplied by							
	100	10	2	0.5	0.1	0.01	Source ^c	Uncertainty ^d
$^{26}\mathrm{Al}^{g}(\mathrm{n,p})^{26}\mathrm{Mg}$	0.017	0.16	0.63	1.3	1.9	2.0	present	
$^{25}Mg(p,\gamma)^{26}Al^{g}$	2.9	5.4	1.5	0.63	0.35	0.29	il10	5%
$^{25}Mg(p,\gamma)^{26}Al^m$	6.7	3.0			0.75	0.71	il10	6%
$^{26}\mathrm{Al}^{g}(\mathrm{n},\alpha)^{23}\mathrm{Na}$	0.12	0.54					present	
${}^{26}\mathrm{Al}^m(\mathrm{n,p}){}^{26}\mathrm{Mg}$	0.58						present	

→ ²⁶Al(n,p) and ²⁶Al(n, α) reaction rates represent critical uncertainties for ²⁶Al material processed by explosive and convective burning in massive stars and ejected into the ISM by core collapse supernovae

The cosmic γ -ray emitter ²⁶Al

C. Lederer-Woods et al. (The n_TOF Collaboration), Phys. Rev. C 104 L032803 (2021) C. Lederer-Woods et al. (The n TOF Collaboration), Phys. Rev. C 104 L022803 (2021)

- Abundances in s-process enhanced stars in M22 show a strong overproduction of Ce wrt AGB-models (Strainero, 2014)
- > Ce abundance should be dominated by 140Ce, 80% s process (Prantzoset al. 2020)
- Neutron-magic (very low CS) implies that previous CS determinations may be affected by neutron-sensitivity effects

¹³⁹Ba

Neutrons

¹³⁷Ba

¹³⁸Ba

¹³⁶Ba

One of the ongoing projects: RAMEN

> 63,65 Cu(n, γ) and (n,tot)

rame + n = ramen Copper is "rame" in italian

^{63,65}Cu(n,γ) and ^{63,65}Cu(n,tot)

How copper was produced?

Not clear! Candidates:

- 1. Weak *s* process (Massive stars)
- 2. Main *s* process (AGB)
- 3. SNe la
- 4. SNe II

⁶¹ Zn	⁶² Zn	⁶³ Zn	⁶⁴ Zn	⁶⁵ Zn	66Zn	⁶⁷ Zn
1.48 m	9.19 h	38.47 m	48.63	243.63 d	27.9	▶ 4.1
β ⁺	β ⁺	β ⁺	59 mb	162 mb, β ⁺	35 mb	153 mb
⁶⁰ Cu	⁶¹ Cu	⁶² Cu	63Cu	⁶⁴ Cu	65 _{Cu}	66Cu
23.70 m	3.33 h	9.67 m	69.17	12.70 h	30.83	5.12 m
β ⁺	β ⁺	β ⁺	94 mb	β ⁺	41 mb	β ⁻
⁵⁹ Ni	⁶⁰ Ni	61 _{Ni}	62 _{Ni}	⁶³ Ni	⁶⁴ Ni	⁶⁵ Ni
75.99 ka	26.223	→ 1.14	▶ 3.634	100.11 a	0.926	2.52 h
87 mb, β ⁺	30 mb	82 mb	22.3 mb	31 mb, β ⁻	8.7 mb	β ⁻
⁵⁸ Co	⁵⁹ Co	⁶⁰ Co	⁶¹ Co	⁶² Co	⁶³ Co	⁶⁴ Co
70.86 d	100	5.27 a	1.65 h	1.50 m	27.40 s	300.00 ms
β ⁺	38 mb	β ⁻	β ⁻	β ⁻	β ⁻	β ⁻
⁵⁷ Fe	⁵⁸ Fe	⁵⁹ Fe	⁶⁰ Fe	⁶¹ Fe	⁶² Fe	⁶³ Fe
2.119	0.282	44.50 d	1.50 Ma	5.98 m	1.13 m	6.01 s
40 mb	12.1 mb	β ⁻	β ⁻	β ⁻	β ⁻	β ⁻

63Zn 617n 627n ⁶⁴Zn 657n ⁶⁶Zn ⁶⁷Zn 38.47 m 48.63 243.63 d 27.9 4.1 β⁺ 59 mb 162 mb, β⁺ 35 mb 153 mb 62Cu 63Cu 64Cu 66Cu 65Cu 9.67 m 69.17 12.70 h 30.83 5.12 m β+ 94 mb β+ 41 mb β⁻ 61_{Ni} 62_{Ni} 63Ni 64Ni 65Ni 1.14 3.634 100.11 a 0.926 2.52 h 82 mb 22.3 mb 31 mb, β⁻ 8.7 mb β⁻ ⁶⁰Co ⁶¹Co 62Co 63Co ⁶⁴Co 5.27 a 1.65 h 1.50 m 27.40 s 300.00 ms ß B⁻ ßβ-B-⁵⁹Fe ⁶⁰Fe ⁶¹Fe 62Fe ⁶³Fe 44.50 d 1.50 Ma 5.98 m 1.13 m 6.01 s β⁻ β⁻ β⁻ β⁻ β⁻

With accurate determination of Cu MACS, it would be possible to clarify what is the s-process contribution to Cu. Once this is done, it will be possible to constrain the Cu production by other nucleosynthesis processes, where stellar and nuclear uncertainties are much larger.

CERN-INTC-2024-006 / INTC-P-689

^{63,65}Cu(n,γ) and ^{63,65}Cu(n,tot)

tendl15,endfb71,jendl40. Uncertainty is the deviation between different evaluations plus 4% exp. uncertainty from HKU08. Note the large deviation between the activation measurement and the TOF measurements. More investigation needed! Last review: April 2017

^{63,65}Cu(n,γ) and ^{63,65}Cu(n,tot)

^{63,65}Cu(n,γ) and ^{63,65}Cu(n,tot)

Some future perspectives

²⁵Mg(n,γ)

➤ (cyclic) Activation @ NEAR

➢ NEUTRON POISON:

• 25,26 Mg are the most important neutron poisons due to neutron capture on Mg stable isotopes, i.e. 25,26 Mg(n, γ), in competition with neutron capture on 56 Fe (the basic sprocess seed for the production of heavier isotopes).

> CONSTRAINTS for ²²Ne(α ,n)²⁵Mg and ²²Ne(α , γ)²⁶Mg:

 \circ ²²Ne(α,n)²⁵Mg is one of the most important neutron source in Red Giant stars. Its reaction rate is very uncertain because of the poorly known property of the states in ²⁶Mg. From neutron measurements the energy, **J**^π and **energy** of ²⁶Mg states can be deduced, in addition to Γ_{γ} and Γ_{n} .

> CONSTRAINTS for ²²Ne(α ,n)²⁵Mg and ²²Ne(α , γ)²⁶Mg:

 \circ ²²Ne(α,n)²⁵Mg is one of the most important neutron source in Red Giant stars. Its reaction rate is very uncertain because of the poorly known property of the states in ²⁶Mg. From neutron measurements the energy, **J**^π and **energy** of ²⁶Mg states can be deduced, in addition to Γ_{γ} and Γ_{n} .

Reevaluation of the 22 Ne (α, γ) 26 Mg and 22 Ne (α, n) 25 Mg reaction rates

Philip Adsley ©^{1,2,3,*}, Umberto Battino ©^{4,†}, Andreas Best^{5,6}, Antonio Caciolli^{7,8}, Alessandra Guglielmetti ©⁹, Gianluca Imbriani ©^{5,6}, Heshani Jayatissa¹⁰, Marco La Cognata ©¹¹, Livio Lamia^{12,11,13} et al.

Show more 🗸 🗸

Phys. Rev. C **103**, 015805 – **Published 19 January, 2021** DOI: <u>https://doi.org/10.1103/PhysRevC.103.015805</u>

	FIG.	1.	Frac	tiona	al co	ntrib	utio	\mathbf{ns}	of s	elec	ted	res	ona	nce	s tc	o th
	(top)	22	Ne(o	$(\alpha,\gamma)^2$	²⁶ Mg	and	(bc	otto	om)	^{22}N	le(a	(n,n)	25 N	lg ı	eac	etioi
1	cates.	T	hese	frac	tiona	al con	trib	ut	ions	are	for	$_{\mathrm{the}}$	rec	om	mer	\mathbf{de}
				1	· 1				. 1	m			۸.	1		

Reevaluation of the 22 Ne (α, γ) 26 Mg and 22 Ne (α, n) 25 Mg reaction rates

Philip Adsley ©^{1,2,3,*}, Umberto Battino ©^{4,†}, Andreas Best^{5,6}, Antonio Caciolli^{7,8}, Alessandra Guglielmetti ©⁹, Gianluca Imbriani ©^{5,6}, Heshani Jayatissa¹⁰, Marco La Cognata ©¹¹, Livio Lamia^{12,11,13} et al.

Show more E_α = 832 keV Phys. Rev. C 103, 015805 - Published 19 January, 2021 E_{CM} = 706 keV DOI: https://doi.org/10.1103/PhysRevC.103.015805 $^{22}Ne(\alpha,n)^{25}Mg$ 10^{2} 10 Yield [arb. units] 1 10^{-1} 10 0.80 0.83 0.86 10^{-2} Harms et al. 10^{-3} 10^{-4} This work 10^{-5} △ Drotleff et al. Others 10^{-6} 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 53 Energy E_{α} [MeV]

Resonance strength ²²Ne(α,γ)²⁶Mg: $\omega_{\gamma} = g \Gamma_{\alpha}\Gamma_{\gamma} / (\Gamma_{\alpha} + \Gamma_{\gamma} + \Gamma_{n})$

ω_{α}	Γ_n
$\overline{\omega_{\gamma}}^{-}$	Γ_{γ}

Publication	YEAR	Result	comment
Shahina, PRC	2024	$\Gamma_{\rm n}$ / Γ_{γ} = 2.85(71)	ω_{α} res. strength
M. Wiescher, EPJA	2023	Γn = 0.4 - 1.0 eV Γγ = 1.33 eV	Re-evaluation
Y. Chen, PRC	2021	$\Gamma_n = 0.4 \text{ eV}$ $\Gamma_\gamma = 1.33 \text{ eV}$	²⁵ Mg(d,p) ²⁶ Mg transfer
S. Ota, PLB	2020	Γ_n / Γ_γ = 1.14(26)	transfer

 $^{25}Mg(n,\gamma)$ cross section

60

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

61

ALMA MATER STUDIORUM Università di Bologna

Proposal: ${}^{25}Mg(n,\gamma){}^{26}Mg @ n_TOF$

Our proposal is to **repeat the measurement in EAR1** with a factor 4 higher statistics and with some improvements:

- Combined use of C₆D₆ and LaBr detectors
- use of a thicker enriched ²⁵Mg sample
- o combine with a capture measurement in EAR2

Activation at NEAR

During the design studies of the new shielding around the neutrontarget station the opportunity for a new near-target experimental area appeared (NEAR station)

Activation at NEAR

During the design studies of the new shielding around the neutrontarget station the opportunity for a new near-target experimental area appeared (NEAR station)

Need for a moderator

Activation at NEAR

67

Activation at NEAR

courtesy of J. Lerendegui-Marco

Istituto Nazionale di Fisica Nuclear

ALMA MATER STUDIORUM Università di Bologna

Requisites

Beam period: Rep. rate of n_TOF (max 0.8 Hz) is well suited for short lived (seconds) Operate a high resolution γ -ray detector in **the harsh radiation environment in the NEAR bunker**

Conclusions

Istituto Nazionale di Fisica Nuclear

Key reactions in Nuclear Astrophysics || 17-21 February 2025 || Trento, Italy

Conclusions

- Efforts in neutron-beam facilities (EAR2, NEAR, etc.), detection systems, and sample production techniques (ILL, PSI, ISOLDE) have enabled significant progress in the measurement of challenging neutron-capture cross-sections.
- However, there are still many neutron-capture cross-sections whose accuracy needs to be improved to the 5% level or lower. Achieving this should be possible for stable isotopes with state-of-the-art instrumentation and facilities.
- > For unstable nuclei, further developments in detection systems and facilities will be required.

Thank you for your attention

Thanks to the organizers

FONDAZIONE BININ VERSI FO BININ VERSI FO

Key Reactions in Nuclear Astrophysics

Many thanks to the n_TOF Collaboration

Cristian Massimi

Department of Physics and Astronomy

cristian.massimi@unibo.it

www.unibo.it

BBN successfully predicts the abundances of primordial elements such as ⁴He, D and ³He. Large **discrepancy** for ⁷Li, which is produced from electron capture decay of ⁷Be

produced by the decay of ⁷Be $(T_{1/2}=53.2 \text{ d})$

⁷Be is the key

ALMA MATER STUDIORUM Università di Bologna

BBN successfully predicts the abundances of primordial elements such as ⁴He, D and ³He. Large **discrepancy** for ⁷Li, which is produced from electron capture decay of ⁷Be

81

Istituto Nazionale di Fisica Nuclear

Key reactions in Nuclear Astrophysics || 17-21 February 2025 || Trento, Italy

ALMA MATER STUDIORUM Università di Bologna

M. Barbagallo et al. (The n TOF Collaboration), Phys. Rev. Lett. 117 152701 (2016)

Bassi et al. (1963)

The (n,p) reaction cross section in very high

Q-value=1.6 MeV

Silicon counter telescope ΔE -E

A few ng of 100% **enriched** sample is needed.

Sample

- 200 GBq of ⁷Be extracted from the cooling water of the SINQ spallation source at PSI
- Transported to ISOLDE at CERN and installed in the ion source to produce 30 keV ion beam.
- ⁷Be beam separated by means of a magnetic dipole, and implanted on a 20 m thick aluminum backing.
- Sample of <u>**1 GBq**</u>⁷Be (~80 ng) transported to EAR2@n_TOF and placed in the neutron beam.

⁷Be(n,p)

- 200 GBq of ⁷Be extracted from the cooling water of the SINQ spallation source at PSI
- Transported to ISOLDE at CERN and installed in the ion source to produce 30 keV ion beam.
- ⁷Be beam separated by means of a magnetic dipole, and implanted on a 20 m thick aluminum backing.
- Sample of <u>**1**</u> *GBq* ⁷Be (~80 ng) transported to EAR2@n_TOF and placed in the neutron beam.

⁷Be(n,α) and ⁷Be(n,p) results exclude these channels as a solution for the problem

• 200 GBq of ⁷Be extracted from the cooling water of the SINQ spallation source at PSI

Cosmological lithium problem and ⁷Be

- Transported to ISOLDE at CERN and installed in the ion source to produce 30 keV ion beam.
- ⁷Be beam separated by means of a magnetic dipole, and implanted on a 20 m thick aluminum backing.
- Sample of <u>1 GBq</u>⁷Be (~80 ng) transported to EAR2@n_TOF and placed in the neutron beam.

Extra slides

Constraints for the ${}^{22}Ne(\alpha,n){}^{25}Mg$ reaction

Element	Spin/ parity
²² Ne	0+
⁴ He	0+

$$\vec{J} = \vec{I} + \vec{i} + \vec{\ell}$$
$$\vec{J} = 0 + \vec{\ell}$$

Only **natural-parity** (0⁺, 1⁻, 2⁺, 3⁻, 4⁺, ...) **states in** ²⁶Mg can participate in the $^{22}Ne(\alpha,n)^{25}Mg$ reaction

Cristian Massimi Key reactions in Nuclear Astrophysics || 17-21 February 2025 || Trento, Italy

Extra slides

Cristian Massimi Key reactions in Nuclear Astrophysics || 17-21 February 2025 || Trento, Italy

Origin of the heaviest s-only isotope ²⁰⁴Pb: Neutron capture on ²⁰⁴Tl (3.78y)

Irradiated

1 2 3 4 5 Horizontal of EAR1 (cm)

Pellet containing 225 mg of ²⁰³Tl, 99.5% isotopic purity, produced at **PSI** by machine pressing and inserted into quartz container

Irradiated at ILL reactor with thermal neutrons for 55 days: 9 mg of ²⁰⁴Tl produced

180 GBq of β activity plus radioactive impurities and bremsstrahlung

A Casanovas-Hoste et al. (The n_TOF Collaboration) Physical Review Letters 133, 052702 (2024) DOI: 10.1103/PhysRevLett.133.052702

The uncertainty arising from the 204 TI(n, γ) cross section on the *s*-process abundance of 204 Pb has been reduced from ~30% down to +8%/-6%, and the s-process calculations are in agreement with K. Lodders in 2021.

Some ongoing activities: ⁷⁹Se(n,γ)

- ⁸⁰Kr and ⁸²Kr are s-only isotopes
- Kr isotopic ratios measured in SiC grains
- branching ratio provides information on the thermodynamical conditions of the star

Timeline:

2018 Sample produced @ ILL (France)
2019 Sample characterize at PSI (Switzerland)
2019 test of an innovative (n,γ) detector i-TED¹
2021 Time-of-flight measurement @ EAR1

ILL: ~3 mg of ⁷⁹Se via ⁷⁸Se n-activation

6MBq γ-ray emmiters 3 mg of ⁷⁹Se 1.6 MBq of ⁶⁰Co 5 MBq of ⁷⁵Se

Nadine M. Chiera *, Emilio Andrea Maugeri*, Ivan Danilov*, Javier Balibrea-Corr Cesar Domingo-Pardo¹, Ulli Köster², Jorge Lerendegui-Marco¹, Mario Veicht^{*,d}, Ivan Zivadinovic^{*,d}, Dorothea Schumant^{*}, the n_TOF collaboration *Pail scheme instant, semerinal *Paile Action Computing Computing Superior de Investigations Configurationation de Valonia, Spain *factor Physical Relation (Computing Computing States) *factor Physical Relation (Computing States)

.MA MATER STUDIORUM Jiversità di Bologna

Some ongoing activities: 79 Se(n, γ)

J. Lerendegui-Marco et al. (analysis in progress)

PHYSICAL REVIEW ACCELERATORS AND BEAMS 20, 044701 (2017)

Spallation-based neutron target for direct studies of neutron-induced reactions in inverse kinematics

René Reifarth,^{*} Kathrin Göbel, Tanja Heftrich, and Mario Weigand Goethe-Universität Frankfurt, Frankfurt am Main, 60438 Frankfurt, Germany

> Beatriz Jurado CENBG, 33175 Gradignan, France

Franz Käppeler Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

Yuri A. Litvinov GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany (Received 29 November 2016; published 6 April 2017)

We discuss the possibility to build a neutron target for nuclear reaction studies in inverse kinematics utilizing a storage ring and radioactive ion beams. The proposed neutron target is a specially designed spallation target surrounded by a large moderator of heavy water (D_2O). We present the resulting neutron spectra and their properties as a target. We discuss possible realizations at different experimental facilities.

DOI: 10.1103/PhysRevAccelBeams.20.044701

