Key Reactions in Nuclear Astrophysics, ECT*, Trento, February 17-21, 2025

The many ways in which stars modify their surface lithium

Andreas Korn

Dept of Physics and Astronomy, Uppsala University, Sweden

Lithium depletion in stars

Li is pretty fragile and suffers proton capture at $T \ge 2.5$ MK.

Look no further than the Sun:

 $\log \varepsilon(\text{Li})_{\text{surface}} \sim 1 \text{ vs. } \log \varepsilon(\text{Li})_{\text{meteorites}} \sim 3.3$ I.e., the Sun has destroyed 99.5% of its initial lithium.

The only Li feature in the solar spectrum

Not easy to get an accurate solar Li abundance from the solar flux spectrum! (Better in intensity spectra.)

Is log $\epsilon(Li) \sim 1$ typical for stars with solar properties? More or less.

Xiaoting Fu's lithium concept map

Lithium depletion in stars

Li is pretty fragile and suffers proton capture at $T \ge 2.5$ MK.

Look no further than the Sun:

 $\log \varepsilon(\text{Li})_{\text{surface}} \sim 1 \text{ vs. } \log \varepsilon(\text{Li})_{\text{meteorites}} \sim 3.3$ I.e., the Sun has destroyed 99.5% of its initial lithium.

Are halo stars equally negligent about Li?

To survive to the present day, old halo stars must have masses not exceeding 0.8 M_{\odot} . This would make them more convective than the Sun, i.e. more Li destruction! Metallicity to the rescue. The lower opacities make these stars more compact, they evolve at higher T_{eff} .

Expectations from stellar structure & evolution

Deliyannis et al. (1990)

Expectations from stellar structure & evolution

Li-7 in old stars: homogeneous and flat?

Li-7 in old stars: homogeneous and flat?

The beautiful mess of atomic diffusion

Elements can move (*diffuse*) throughout stars under the prevailing forces (gradients of pressure, temperature and concentration). E.g. lithium will settle (and burn at $T \ge 2.5$ MK).

Diffusion moderated by some mixing

Diffusion moderated by some mixing

Atomic diffusion in NGC6397 (10s of stars)

Subsequent analyses (100s of stars)

Subsequent analyses (updated T_{eff} scale)

Nordlander et al. (2012)

Caught in the act: lithium dredge-up

When the stars evolve towards the red-giant branch, a slight (~0.1 dex) **increase in surface lithium abundance** signals the onset of the first dredge-up. (Eventually, surface lithium is reduced by a factor of ~20.) So far, we have only seen this **"Li hump"** in NGC 6397, in accord with the predictions from Richard models.

Inference for lithium in NGC 6397

Inference for lithium in NGC 6397

Lithium in other globular clusters

NGC 6752 @ [Fe/H]=-1.5:

log ϵ (Li)_{AD-corr} = **2.52** / **2.58** vs log ϵ (Li)_{BBN} = 2.69 ± 0.04 1.5 σ agreement with BBN. (Gruyters *et al.* 2013, 2014) **Messier 30** @ [Fe/H]=-2.3:

log ε (Li)_{AD-corr} = **2.48 ± 0.1** vs log ε (Li)_{BBN} = 2.66 ± 0.06 BBN agreement *possible*. (Gruyters *et al.* 2016)

Lithium in other globular clusters

NGC 6752 @ [Fe/H]=-1.5:

log ϵ (Li)_{AD-corr} = **2.52** / **2.58** vs log ϵ (Li)_{BBN} = 2.69 ± 0.04 1.5 σ agreement with BBN. (Gruyters *et al.* 2013, 2014) **Messier 30** @ [Fe/H]=-2.3:

log ε (Li)_{AD-corr} = **2.48 ± 0.1** vs log ε (Li)_{BBN} = 2.66 ± 0.06 BBN agreement *possible*. (Gruyters *et al.* 2016)

ADiOS series of papers

THE ASTROPHYSICAL JOURNAL, 671:402–419, 2007 December 10 \otimes 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A

ATOMIC DIFFUSION AND MIXING IN OLD STARS. I. VERY LARGE TELESCOPE FLAMES-UVES OBSERVATIONS OF STARS IN NGC 6397¹

A. J. KORN Department of Astronomy and Space Physics, Uppsala University, 75120 Uppsala, Sweden; akorn@astro.uu.se

E Commun

A&A 490, 777–786 (2008) DOI: 10.1051/0004-6361:200810051 © ESO 2008 Astronomy Astrophysics

Atomic diffusion and mixing in old stars

II. Observations of stars in the globular cluster NGC 6397 with VLT/FLAMES-GIRAFFE*,**

K. Lind^{1,2}, A. J. Korn¹, P. S. Barklem¹, and F. Grundahl³

THE ASTROPHYSICAL JOURNAL, 753:48 (9pp), 2012 July 1 © 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

ATOMIC DIFFUSION AND MIXING IN OLD STARS. III. ANALYSIS OF NGC 6397 STARS UNDER NEW CONSTRAINTS

T. NORDLANDER¹, A. J. KORN¹, O. RICHARD², AND K. LIND³

A&A 555, A31 (2013) DOI: 10.1051/0004-6361/201220821 © ESO 2013

Atomic diffusion and mixing in old stars

IV. Weak abundance trends in the globular cluster NGC 6752*,**

P. Gruyters¹, A. J. Korn¹, O. Richard³, F. Grundahl², R. Collet^{5.6}, L. I. Mashonkina⁴, Y. Osorio¹, and P. S. Barklem¹

¹ Department of Physics and Astronomy, Division of Astronomy and Space Physics, Uppsala University, Box 516, 75120 Uppsala, Sweden

e-mail:pieter.gruyters@physics.uu.se

² Stellar Astrophysics Centre, Department of Physics and Astronomy, Århus University, Ny Munkegade 120, 8000 Århus C, Denmark

³ LUPM, Université Montpellier II, CNRS, CC072, Place E. Bataillon, 34095 Montpellier Cedex, France

⁴ Institute of Astronomy, Russian Academy of Science, 119017 Moscow, Russia

A&A 567, A72 (2014) DOI: 10.1051/0004-6361/201423590 © ESO 2014 Astronomy Astrophysics

Atomic diffusion and mixing in old stars

V. A deeper look into the globular cluster NGC 6752*,**

Pieter Gruyters, Thomas Nordlander, and Andreas J. Korn

A&A 589, A61 (2016) DOI: 10.1051/0004-6361/201527948 © ESO 2016

Astronomy Astrophysics

Atomic diffusion and mixing in old stars

VI. The lithium content of M30*,**

Pieter Gruyters^{1,2}, Karin Lind¹, Olivier Richard³, Frank Grundahl⁴, Martin Asplund⁵, Luca Casagrande⁵, Corinne Charbonnel^{6,7}, Antonino Milone⁵, Francesca Primas⁸, and Andreas J. Korn¹

A&A 652, A75 (2021) https://doi.org/10.1051/0004-6361/202140770 © ESO 2021

Astronomy Astrophysics

Atomic diffusion and mixing in old stars

VII. Abundances of Mg, Ti, and Fe in M 30*

Alvin Gavel¹⁰, Pieter Gruyters¹, Ulrike Heiter¹, Andreas J. Korn¹, Thomas Nordlander^{2,3},

Monthly Notices of the ROYAL ASTRONOMICAL SOCIETY

MNRAS **527**, 12120–12139 (2024) Advance Access publication 2023 December 23

https://doi.org/10.1093/mnras/stad397

Atomic diffusion and mixing in old stars – VIII. Chemical abundance variations in the globular cluster M4 (NGC 6121)

T. Nordlander⁶,^{1,2,3}*† P. Gruyters,^{3,4} O. Richard⁵ and A. J. Korn³

¹Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia

²ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia
³Division of Astronomy and Space Physics, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden

⁴Lund Observatory, Division of Astrophysics, Department of Physics, Lund University, Box 43, SE-221 00 Lund, Sweden

⁵Laboratoire Univers et Particules de Montpellier, CNRS, Université de Montpellier, CC072, Place E. Bataillon, F-34095 Montpellier, Cedex, France

Astronomy Jermany Astrophysics

120 U

Another plateau with new properties

Mucciarelli *et al.* (2022) identified a thin and flat plateau of lithium among lower-RGB stars.

This **plateau does not melt down** like the one among dwarfs/subgiants.

Richard models can explain it starting from BBN abundance, modulo 0.15 dex (40% in linear abundance).

The stellar take on lithium

A *purely stellar solution* to the cosmological lithium problem is *still probable*. (See Fu *et al.* 2015, Piau *et al.* 2006, Takeda 2019 and Deal & Martins 2021 for related/other stellar solutions)

In any case, a significant *stellar alleviation* of the problem is *inevitable*.

We are not done yet: we do not understand Li depletion in the Sun and in very metal-poor stars. Our best models have tuneable parameters.

The stellar take on lithium

A *purely stellar solution* to the cosmological lithium problem is *still probable*. (See Fu *et al.* 2015, Piau *et al.* 2006, Takeda 2019 and Deal & Martins 2021 for related/other stellar solutions)

In any case, a significant *stellar alleviation* of the problem is *inevitable*.

Nuclear/particle physicists should try to solve the remaining 0.1-0.15 dex / 25-50% problem (?) in lithium abundance.

Let's do this together!

Thank you for you time and attention!

Li-6 in old stars?

Individual local halo stars seemed to show Li-6 at the level of a few percent of lithium-7 (e.g. Smith *et al.* 1993). However, one swallow does not signal the onset of summer...

In 2006, Asplund *et al.* **claimed** the **existence of a Li-6 plateau**. Highly controversial, as pre-MS destruction would tilt the plateau (requiring an extrapolation to Fe/H=0 and thus rather low Li-6 abundances). Still, this finding really got BBN modellers excited as they now had *two lithium problems* as two potential constraints for modified BBN calculations.

No significant Li-6, it's all gone!

Using the latest 3D+NLTE modelling techniques, Lind *et al.* (2013) could show that **none of the previous detections** were in fact **real**.

The line asymmetry produced by stellar convection had previously been mistaken for a finite amount of Li-6. Had been feared, but could only be shown after 3D models could be combined with NLTE line formation.

This is a good example of the importance of a high degree of modelling realism in stellar spectroscopy! See also Wang *et al.* (2022).