

Electron-Positron Emission from Deuterated Zirconium

Matej Lipoglavšek

Jožef Stefan Institute, Ljubljana, Slovenia

Trento, 2025

Astrophysical S-factor

Cross section:

⁷Li(p, α)⁴He Cross section

$$\sigma(E) = \frac{S(E)}{E} e^{-2\pi\eta}$$

Sommerfeld parameter:

$$\eta = \frac{Z_1 Z_2 e^2}{4\pi\varepsilon_0 \hbar c} \sqrt{\frac{\mu c^2}{2E}}$$

C. Rolfs and R.W.Kavanagh, Nucl. Phys. A455 (1986) 179.

Electron Screening

Electron screening potential U_e :

$$\sigma(E) = \frac{S(E)}{\sqrt{E(E+U_e)}} e^{-2\pi\eta(E+U_e)}$$

Screened Sommerfeld parameter:

$$\eta = \frac{Z_1 Z_2 e^2}{4\pi\varepsilon_0 \hbar c} \sqrt{\frac{\mu c^2}{2(E+U_e)}}$$

A. Cvetinović et al., Phys. Rev. C 92, (2015) 065801.

Warning

$$\sigma(E) \to \sigma(E+U_e) = \frac{S(E+U_e)}{E+U_e} e^{-2\pi\eta(E+U_e)}$$

$$\sigma(E) = \frac{S(E)}{E} e^{-2\pi (E+U_e)}$$

$$\sigma(E) = \frac{S(E)}{\sqrt{E(E+U_e)}} e^{-2\pi\eta(E+U_e)}$$

Deuteron fusion reaction

 $d + d \rightarrow p + {}^{3}H \approx 50\%$ branching ratio

K. Czerski et al., submitted to Nature

Threshold resonance in ⁴He?

PHYSICAL REVIEW C 106, L011601 (2022)

Letter

Deuteron-deuteron nuclear reactions at extremely low energies

Konrad Czerski^{®*} Institute of Physics, University of Szczecin, 70-451 Szczecin, Poland

lon gun

Tectra IonEtch microwave plasma ion gun Deuterium is implanted into graphite or zirconium at 3.5 kV resulting in up to 200 at. % deuterium concentration.

p=5·10⁻⁵ mbar

$$D_3^+: 86\%$$

 $D_2^+: 12\%$
 $D^+: 2\%$
 $\langle E \rangle = 1.3 \text{ keV}$

S. Markelj et al., Nucl. Fusion **59** (2019) 086050.

Electron detector

Underground measurements

Underground measurements

Underground parameters

Underground 150 m horizontally, 35 m vertically Reduction of cosmic ray count rate by a factor of 20 vertically, 12 horizontally compared to the surface

3 months of measurements Graphite target: 13 days and 14 hours Zirconium target: 37 days and 4 hours Background without target: 19 days and 18 hours

Measurement protocol: 4-8 hours with beam on target followed by 2-3 days without beam on target

Underground results

Simulation: Gokul Das Haridas

Underground results

Electron counts above 3 MeV: the same rate for: Zr target with beam, Zr target without beam,

the same but lower rate: background without target graphite target without beam

331 ± 18 counts

220 ± 15 counts

undecided: graphite target with beam due to too low statistics

difference taking into account measuring times:

70 ± 25 counts

Muon spectra

Cosmic neutron monitors

Jungfraujoch, Switzerland

Cosmic neutron counts

Neutron Monitor Database, Paris Observatory-PSL; <u>https://www.nmdb.eu/nest/</u> Data from Jungfraujoch, Switzerland

Positron annihilation

Cross section estimate

D to Zr ratio almost 2 uniformly over the whole target, checked by Nuclear Reaction Analysis as a result of long term bombardment with the ion gun

$$N_e = 2\eta N_b N_t \sigma / S,$$

Taking into account the diffusion $D = 1.1 \cdot 10^{-12} \text{ cm}^2/\text{s}$

$$\sigma = \frac{N_e}{t2\eta N_b} \cdot \frac{St}{N_t} = (5.1 \pm 1.8) \cdot 10^{-1} \ b$$

Taking into account the S-factor S = 59 keV·b for bare nuclei for the proton channel

$$\sigma = \frac{S(E)}{\sqrt{E(E+U_e)}} e^{-2\pi\alpha\sqrt{\mu c^2/2(E+U_e)}}$$

The result is $U_e = 400 \pm 10 \text{ eV}$

Measurement in a Bunker

Underground 140 m horizontally, 70 m vertically Reduction of cosmic ray count rate by a factor of 3 vertically compared to the mine

Background: 21 counts in 10 days Zirconium target: 32 counts in 8 days Palladium target: 27 counts in 6 days

Conclusions

- We have seen for the first time spontaneous electron and positron emission from a deuterated Zr foil lasting for at least three days.
- Positive result in Zr, negative in graphite due to the difference in diffusion.
- All measured parameters support the existence of the predicted 0⁺ threshold resonance in ⁴He.
- The e⁺e⁻ pair to proton ratio is larger than 10.

Outlook

• Go even deeper underground.