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At the intersection of nuclear physics and astrophysics

Heavy ion reactions during carbon burning in massive stars

▶ M ≥ 7.5 . . . 9.5 M⊙
▶ core made of oxygen and carbon
▶ Coulomb well
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→ 20Ne + α

→ 23Na + p

→ 23Mg + n
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Exit channels of light fusing systems: 12C+12C
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▶ Q − value

▶ measure particles
▶ measure gammas

cascades!

▶ ground state: α0, p0, etc.
▶ excited states: α0, α1, α3, ..

▶ 24Mg: compound nucleus from 12C+12C

fusion of 0+ particles
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▶ 24Mg: compound nucleus from 12C+12C

fusion of 0+ particles

(evaluated) positive even parity states

M. Notani et al., PRC 85 (2012), 014607
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Exit channels of light fusing systems: 12C+12C

Angular momentum conservation and angular distributions

N. Bohr hypothesis of independence: compound formation and decay are independent

but angular momentum conservation

fusion of spinless particles:

z

I=LI=0I=0

Ca A

▶ L perpendicular to z
▶ equal probability ± z

(
dσ
dΩ

)
=

kmax∑
k=0

ak Pk (cos(θ)), k = 0, 2, 4, ..
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Angular momentum conservation and angular distributions

N. Bohr hypothesis of independence: compound formation and decay are independent

but angular momentum conservation

fusion of spinless particles:

z

I=LI=0I=0

Ca A

▶ L perpendicular to z
▶ equal probability ± z

(
dσ
dΩ

)
=

kmax∑
k=0

ak Pk (cos(θ)), k = 0, 2, 4, ..

z

I=LI=0I=0

Cb B

→ compound state spin from fusion
measurements

▶ normalisation of cross sections:

P0(cos(θ))
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Exit channels of light fusing systems: 12C+12C

Fusion formation and population of compound states

identical 0+ particles:

12C +12 C→ 24Mg∗

0+ + 0+ → ??

wave function:

|Ψ⟩ = |Φ⟩space ⊗ |Φ⟩spin ⊗ |Φ⟩isospin

|Φ⟩space =Rn(r)Ym
l (θ, ϕ)

Ym
l (π − θ, ϕ+ π) = − 1lYm

l (θ, ϕ)

→ l = 0, 2, 4, ..

parity is multiplicative:

PMg = − 1l PC · PC

Direct measurements of fusion reactions of astrophysics impact IPHC/CNRS
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Designing a fusion excitation function experiment

Typical fusion excitation function into low-count acquisition runs

sub barrier 12C+12C:
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well defined peaks, ±3σ gates
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▶ physics: 0.6 MeV, 1.7 MeV

well defined peaks, ±3σ gates

▶ background: 1.46 MeV

background model: linear, exponential

▶ statistical uncertainty
▶ tails of background contributions

sub nano barn cross sections:
▶ few counts statistic
▶ background fluctuations
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Gamma-particle coincidences for background reduction

astrophysics region of interest:
▶ 8..10 M⊙ : 1.5 ± 0.3 MeV
▶ 25 M⊙ : 2.25 ± 0.5 MeV

▶ strong fluctuations of the excitation function
→ increase of reaction rate
▶ extrapolations uncertain
▶ experimental resolution needed

▶ possible fusion hindrance with broad maximum
→ ceasing of reaction rate
? phenomenological model suited

▶ low cross sections of stiff nuclei
→ decrease of reaction rate
▶ beam intensities of a few pµA
▶ data taking of weeks
▶ background suppression
▶ low count statistics

S∗ = σ(E)E · exp(2πη+ gE)
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Gamma-particle coincidences for background reduction

Cluster States from 24Mg(α, α′)24Mg

P. Adsley et al., PRL 129 (2022), 102701

▶ 0+ states at reaction thresholds

▶ 0+5 and 0+8 cluster configurations

▶ extreme α/p decay branching

Y. Chiba and M. Kimura, PRC 91 (2015), 061302(R)

P. Adsley et al., PRL 129 (2022), 102701

“[..] we must still realise that the subsequent escape of α-rays or protons necessitates a separate concentration process
for the excess energy and that in particular we cannot draw any decisive conclusion from these phenomena about the
presence of such particles in nuclei under normal conditions.”

N. Bohr, Nature 137 (1936), 344

Direct measurements of fusion reactions of astrophysics impact IPHC/CNRS
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Gamma-particle coincidences for background reduction

12C +12 C→23 Na∗ + p

→20 Ne∗ + α

beam

target alphas, protons

courtesy G. Heitz

▶ 12C beam intensities of a few pµA

30. . . 50 µg/cm2 self supporting 12C foil

courtesy M. Krauth

▶ in/off-beam intensity monitoring
▶ offline target thickness scans
▶ carbon morphology: Raman spectroscopy

Direct measurements of fusion reactions of astrophysics impact IPHC/CNRS
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→20 Ne∗ + α
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target alphas, protons
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beam

courtesy G. Heitz

▶ 12C beam intensities of a few pµA

30. . . 50 µg/cm2 self supporting 12C foil

courtesy M. Krauth

▶ in/off-beam intensity monitoring
▶ offline target thickness scans
▶ carbon morphology: Raman spectroscopy

Direct measurements of fusion reactions of astrophysics impact IPHC/CNRS



9/19

Introduction and previous findings Sub-Coulomb barrier cross-sections Application in stellar simulations

Gamma-particle coincidences for background reduction

12C +12 C→23 Na∗ + p

→20 Ne∗ + α

beam

target alphas, protons

scattered
beam

courtesy G. Heitz

▶ 12C beam intensities of a few pµA

30. . . 50 µg/cm2 self supporting 12C foil

▶ fast-timing measurements

synchronization of DAQ’s:

1 GHz gamma (UK-FATIMA)

125 MHz particle (STELLA)

▶ monitor and correct time drift:
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E
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M. Heine et al., NIM A 903 (2018), 1
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Intermezzo: target stability and background estimation

Target stability with long data acquisition runs

1. thickness from weighting upon production

2. monitoring of ratio: beam scattering detector and beam integrator

3. Raman scattering analysis of material (on and off beam spot)
G. Fruet et al., PRL 124 (2020), 192701

thickness from alpha particle energy loss (on and off beam spot)

beam

target alphas, protons

scattered
beam

courtesy G. Heitz

Direct measurements of fusion reactions of astrophysics impact IPHC/CNRS
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1. thickness from weighting upon production

2. monitoring of ratio: beam scattering detector and beam integrator

3. Raman scattering analysis of material (on and off beam spot)
G. Fruet et al., PRL 124 (2020), 192701

thickness from alpha particle energy loss (on and off beam spot)

courtesy J. Nippert

J. Nippert et al., Acta Phys Pol B Proc Suppl 17 (2024), 3-A33

Direct measurements of fusion reactions of astrophysics impact IPHC/CNRS

https://doi.org/10.1103/PhysRevLett.124.192701
https://doi.org/10.5506/APhysPolBSupp.17.3-A33


10/19

Introduction and previous findings Sub-Coulomb barrier cross-sections Application in stellar simulations

Intermezzo: target stability and background estimation

Target stability with long data acquisition runs

1. thickness from weighting upon production

2. monitoring of ratio: beam scattering detector and beam integrator

3. Raman scattering analysis of material (on and off beam spot)
G. Fruet et al., PRL 124 (2020), 192701

thickness from alpha particle energy loss (on and off beam spot)

courtesy J. Nippert

1 2 3 4 5 6 7 8 9
angle [a.u.]

30

32

34

36

38

40

42

44

46

48

]2
g/

cm
µ

th
ic

kn
es

s 
[

J. Nippert et al., Acta Phys Pol B Proc Suppl 17 (2024), 3-A33

Direct measurements of fusion reactions of astrophysics impact IPHC/CNRS

https://doi.org/10.1103/PhysRevLett.124.192701
https://doi.org/10.5506/APhysPolBSupp.17.3-A33


10/19

Introduction and previous findings Sub-Coulomb barrier cross-sections Application in stellar simulations

Intermezzo: target stability and background estimation

Target stability with long data acquisition runs

1. thickness from weighting upon production

2. monitoring of ratio: beam scattering detector and beam integrator

3. Raman scattering analysis of material (on and off beam spot)
G. Fruet et al., PRL 124 (2020), 192701

thickness from alpha particle energy loss (on and off beam spot)

courtesy J. Nippert

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2
position [cm]

30

32

34

36

38

40

42

44

46

48

]2
g/

cm
µ

th
ic

kn
es

s 
[

J. Nippert et al., Acta Phys Pol B Proc Suppl 17 (2024), 3-A33

Direct measurements of fusion reactions of astrophysics impact IPHC/CNRS

https://doi.org/10.1103/PhysRevLett.124.192701
https://doi.org/10.5506/APhysPolBSupp.17.3-A33


11/19

Introduction and previous findings Sub-Coulomb barrier cross-sections Application in stellar simulations

Intermezzo: target stability and background estimation

Background dominated data acquisition rates
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▶ n : measurement
▶ µ: physics
▶ b: background

▶ Rγ,Rp: acquisition rates

b = Rγ · Rp · tcoinc · tacqu

µ = n − b

▶ determination of rates in gamma and particle detectors independently
C.L. Jiang et al., PRC 97 (2018), 012801(R)
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Intermezzo: target stability and background estimation

“Conventional” background estimation
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▶ estimate background (linear, exponential) just outside energy selection gates
▶ generalise for 2D spectra
▶ W.P. Tan et al., PRL 124 (2020), 192702

Direct measurements of fusion reactions of astrophysics impact IPHC/CNRS

https://doi.org/10.1103/PhysRevLett.124.192702


12/19

Introduction and previous findings Sub-Coulomb barrier cross-sections Application in stellar simulations

Intermezzo: target stability and background estimation

“Conventional” background estimation

0.6 0.8 1 1.2 1.4 1.6 1.8
E [MeV]

0

20

40

60

80

100

120

140

Y
ie

ld
 [C

ou
nt

s]

measurement
physics
background

▶ estimate background (linear, exponential) just outside energy selection gates
▶ generalise for 2D spectra
▶ W.P. Tan et al., PRL 124 (2020), 192702

Direct measurements of fusion reactions of astrophysics impact IPHC/CNRS

https://doi.org/10.1103/PhysRevLett.124.192702


13/19

Introduction and previous findings Sub-Coulomb barrier cross-sections Application in stellar simulations

Intermezzo: target stability and background estimation

Fast timing background estimation with STELLA

J. Nippert et al., submitted to PRC
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M. Heine et al., EPJ Web Conf 260 (2022), 01004

▶ identical energy gates for gammas and particles
▶ select background in non coincident timing domain
▶ ∼ 10 ns gamma-particle timing gates
▶ G. Fruet et al., PRL 124 (2020), 192701
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Intermezzo: target stability and background estimation

Statistical significance in low count-rate measurements
▶ estimate confidence interval of a signal µ in a measurement n with background b
µ = n − b

▶ avoid negative signals (nonphysical)
▶ limits and asymmetric error bars

G.J. Feldman and R.D. Cousins et al., PRD 57 (1998), 3873
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Background reduction with STELLA and exclusive exit channels
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▶ identical energy gates for gammas and
particles

▶ select background in non coincident
timing domain

▶ ∼ 10 ns gamma-particle timing gates
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Background reduction with STELLA and exclusive exit channels

S∗ = σ(E)E · exp(2πη+ gE)
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Background reduction with STELLA and exclusive exit channels

Target thickness and effective beam energy

▶ beam undergoes energy loss in thin target foil: O (100 keV)
▶ nominal energy of evaporated alphas and protons
▶ correction for foil protecting detector
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Modelling of the cross section and reaction rates
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▶ fit alphas and protons simultaneously
▶ Hin: hindrance model (free) parameters:

C.L. Jiang et al. PRC 75, (2007) 015803
▶ HinRes: hindrance plus resonance from:

T. Spillane et al. PRL 98, (2007) 122501

▶ 2.5. . . 4.0 MeV: observation of hindrance
▶ ≤ 2.5 MeV: change of mechanism?

a + A→ b + B

λ = NaNA ⟨v · σ(v)⟩

velocity/energy distribution:

Φ =

√
8m

π(kBT)2 Eexp(−E/kBT)

E. Monpribat et al., A&A 660, (2022) A47
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Summary and outlook

▶ carbon fusion in quiescent burning
▶ ultra low cross sections in astrophysics region of interest

▶ background suppression with coincidence method
▶ UniStra IdEX project STELLA (STELlar LAboratory) developed at IPHC
▶ collaboration with UK-FATIMA (LaBr3Ce detectors)
▶ fast timing for background reduction
▶ exclusive 12C+12C cross sections in the astrophysics region of interest

▶ modelling of response function (Hin and HinRes)
▶ translation of measured cms energies into temperature regime
▶ comparison to effective carbon core temperatures in stellar burning

▶ underground experiment for superior background reduction
▶ 12C+16O and 16O+16O at Andromède, Orsay

Thank you for your attention!
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