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Vlasov 
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Possible THM study
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The 12C + 12C sub-barrier fusion cross section is calculated within the framework of a time-dependent Hartree-
Fock-based classical model using the Feynman path-integral method. The modified astrophysical S∗ factor is
compared to direct and indirect experimental results. A good agreement with the direct data is found. In the
lower-energy region where recent analyses of experimental data obtained with the Trojan horse method (THM)
lead to contrasting results, the model predicts a nonresonant S∗ factor half-way between those results. Low-
energy resonances revealed in the THM data are added to the calculation, and the relative reaction rate in the
Gamow region is calculated. In particular, including 0+ resonances result in some agreement with the THM data.
The role of different resonances is discussed in detail, and their influence on the reaction rate at temperatures
relevant to stellar evolution is investigated.

DOI: 10.1103/PhysRevC.102.061602

Careful measurements of the fusion cross sections for
12C + 12C reactions are crucial to our understanding of mas-
sive stars and superbursts from accreting neutron stars [1–4].
These measurements are especially compelling at energies
close to or below the Gamow peak [4], i.e., below 2 MeV.
Direct and indirect data measurements [5–13] exhibit many
resonances, particularly, notable when the data are expressed
in terms of the modified astrophysical S∗ factor at center-of-
mass (c.m.) energy Ec.m. [9],

S∗(Ec.m.) = Ec.m.σ (Ec.m.) exp
(
87.12E−1/2

c.m. + 0.46Ec.m.

)

= S(Ec.m.) exp (0.46Ec.m.) (1)

Efforts to make direct measurements at energies below
2.1 MeV are severely impacted by the rapidly diminishing
reaction cross section at sub-barrier energies. To bypass the
experimental difficulties of low fusion cross sections at very
low energies, indirect methods have been developed [14,15].
Recently, the 12C(14N, 2H) 24Mg indirect Trojan horse method
(THM) was employed to explore the lower-energy 12C + 12C
cross section [11]. These data revealed a wealth of resonances
in S∗ at center-of-mass energies as low as 0.8 MeV. It was
concluded that the sub-barrier fusion cross section was much
greater than previously estimated [16]. A critical reanalysis of
that data, including Coulomb effects in the three-body final
channel and applying the distorted-wave Born approximation
instead of the plane-wave approximation, resulted in much
lower S∗ values by up to three orders of magnitude. These
contrasting results have yet to be resolved.

Several macroscopic and microscopic models [16–23] of-
fer a reasonable reproduction of the direct reaction data, and
they are sometime considered as determining an upper limit of
the fusion cross section [20,21]. Predictions of these models

at energies below 2.1 MeV cannot reproduce the low-energy
THM results of Ref. [11] and are way above the values ob-
tained in the Coulomb renormalization analysis of Ref. [12].

In Ref. [24], a microscopic model based on the Vlasov
equation and the Feynman path integration method (FPIM)
was proposed. It succeeded in reproducing the then avail-
able direct data for the 12C + 12C system rather well. The
approach is also quite successful when applied to heavier
nuclei [25] and spontaneous fission [26]. Before getting in-
volved into complex numerical calculations, which may or
may not be feasible at such low energies, it is instructive
to simplify the heavy-ion dynamics using a robust macro-
scopic model. In Refs. [27–29], a Neck model (NM), based
upon the time-dependent Hartree-Fock (TDHF) approach was
proposed and successfully reproduced fusion cross sections
above the barrier [27] as well as deep inelastic [28] and fission
[29] dynamics.

In the present Rapid Communication we extend the NM
to sub-barrier energies within the FPIM framework. Newton
force equations are solved assuming the collective variables
given by the center-of-mass distance R of the two colliding
nuclei and their relative momenta P. The forces acting on the
nuclei before the two nuclei touch are given by the Coulomb
and the nuclear Bass potentials [30]. After touching, the two
nuclei are described as sections of spheres joined by a cylinder
of radius rN, the neck radius. In the rebounding phase, the nu-
clear geometry is given by two half spheres joined by sections
of cones of radius rN. Volume conservation is enforced which
gives suitable relations between the neck radius and the rela-
tive distance of the two nuclei in good agreement with TDHF
calculations [27]. In such a configuration the force is given
by the surface tension times the perimeter of the neck as for a
liquid drop. During this stage nucleons are transferred through

2469-9985/2020/102(6)/061602(4) 061602-1 ©2020 American Physical Society
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to simplify the heavy-ion dynamics using a robust macro-
scopic model. In Refs. [27–29], a Neck model (NM), based
upon the time-dependent Hartree-Fock (TDHF) approach was
proposed and successfully reproduced fusion cross sections
above the barrier [27] as well as deep inelastic [28] and fission
[29] dynamics.

In the present Rapid Communication we extend the NM
to sub-barrier energies within the FPIM framework. Newton
force equations are solved assuming the collective variables
given by the center-of-mass distance R of the two colliding
nuclei and their relative momenta P. The forces acting on the
nuclei before the two nuclei touch are given by the Coulomb
and the nuclear Bass potentials [30]. After touching, the two
nuclei are described as sections of spheres joined by a cylinder
of radius rN, the neck radius. In the rebounding phase, the nu-
clear geometry is given by two half spheres joined by sections
of cones of radius rN. Volume conservation is enforced which
gives suitable relations between the neck radius and the rela-
tive distance of the two nuclei in good agreement with TDHF
calculations [27]. In such a configuration the force is given
by the surface tension times the perimeter of the neck as for a
liquid drop. During this stage nucleons are transferred through
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close to or below the Gamow peak [4], i.e., below 2 MeV.
Direct and indirect data measurements [5–13] exhibit many
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mass (c.m.) energy Ec.m. [9],
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Efforts to make direct measurements at energies below
2.1 MeV are severely impacted by the rapidly diminishing
reaction cross section at sub-barrier energies. To bypass the
experimental difficulties of low fusion cross sections at very
low energies, indirect methods have been developed [14,15].
Recently, the 12C(14N, 2H) 24Mg indirect Trojan horse method
(THM) was employed to explore the lower-energy 12C + 12C
cross section [11]. These data revealed a wealth of resonances
in S∗ at center-of-mass energies as low as 0.8 MeV. It was
concluded that the sub-barrier fusion cross section was much
greater than previously estimated [16]. A critical reanalysis of
that data, including Coulomb effects in the three-body final
channel and applying the distorted-wave Born approximation
instead of the plane-wave approximation, resulted in much
lower S∗ values by up to three orders of magnitude. These
contrasting results have yet to be resolved.

Several macroscopic and microscopic models [16–23] of-
fer a reasonable reproduction of the direct reaction data, and
they are sometime considered as determining an upper limit of
the fusion cross section [20,21]. Predictions of these models

at energies below 2.1 MeV cannot reproduce the low-energy
THM results of Ref. [11] and are way above the values ob-
tained in the Coulomb renormalization analysis of Ref. [12].

In Ref. [24], a microscopic model based on the Vlasov
equation and the Feynman path integration method (FPIM)
was proposed. It succeeded in reproducing the then avail-
able direct data for the 12C + 12C system rather well. The
approach is also quite successful when applied to heavier
nuclei [25] and spontaneous fission [26]. Before getting in-
volved into complex numerical calculations, which may or
may not be feasible at such low energies, it is instructive
to simplify the heavy-ion dynamics using a robust macro-
scopic model. In Refs. [27–29], a Neck model (NM), based
upon the time-dependent Hartree-Fock (TDHF) approach was
proposed and successfully reproduced fusion cross sections
above the barrier [27] as well as deep inelastic [28] and fission
[29] dynamics.

In the present Rapid Communication we extend the NM
to sub-barrier energies within the FPIM framework. Newton
force equations are solved assuming the collective variables
given by the center-of-mass distance R of the two colliding
nuclei and their relative momenta P. The forces acting on the
nuclei before the two nuclei touch are given by the Coulomb
and the nuclear Bass potentials [30]. After touching, the two
nuclei are described as sections of spheres joined by a cylinder
of radius rN, the neck radius. In the rebounding phase, the nu-
clear geometry is given by two half spheres joined by sections
of cones of radius rN. Volume conservation is enforced which
gives suitable relations between the neck radius and the rela-
tive distance of the two nuclei in good agreement with TDHF
calculations [27]. In such a configuration the force is given
by the surface tension times the perimeter of the neck as for a
liquid drop. During this stage nucleons are transferred through
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2.1 MeV are severely impacted by the rapidly diminishing
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low energies, indirect methods have been developed [14,15].
Recently, the 12C(14N, 2H) 24Mg indirect Trojan horse method
(THM) was employed to explore the lower-energy 12C + 12C
cross section [11]. These data revealed a wealth of resonances
in S∗ at center-of-mass energies as low as 0.8 MeV. It was
concluded that the sub-barrier fusion cross section was much
greater than previously estimated [16]. A critical reanalysis of
that data, including Coulomb effects in the three-body final
channel and applying the distorted-wave Born approximation
instead of the plane-wave approximation, resulted in much
lower S∗ values by up to three orders of magnitude. These
contrasting results have yet to be resolved.

Several macroscopic and microscopic models [16–23] of-
fer a reasonable reproduction of the direct reaction data, and
they are sometime considered as determining an upper limit of
the fusion cross section [20,21]. Predictions of these models

at energies below 2.1 MeV cannot reproduce the low-energy
THM results of Ref. [11] and are way above the values ob-
tained in the Coulomb renormalization analysis of Ref. [12].

In Ref. [24], a microscopic model based on the Vlasov
equation and the Feynman path integration method (FPIM)
was proposed. It succeeded in reproducing the then avail-
able direct data for the 12C + 12C system rather well. The
approach is also quite successful when applied to heavier
nuclei [25] and spontaneous fission [26]. Before getting in-
volved into complex numerical calculations, which may or
may not be feasible at such low energies, it is instructive
to simplify the heavy-ion dynamics using a robust macro-
scopic model. In Refs. [27–29], a Neck model (NM), based
upon the time-dependent Hartree-Fock (TDHF) approach was
proposed and successfully reproduced fusion cross sections
above the barrier [27] as well as deep inelastic [28] and fission
[29] dynamics.

In the present Rapid Communication we extend the NM
to sub-barrier energies within the FPIM framework. Newton
force equations are solved assuming the collective variables
given by the center-of-mass distance R of the two colliding
nuclei and their relative momenta P. The forces acting on the
nuclei before the two nuclei touch are given by the Coulomb
and the nuclear Bass potentials [30]. After touching, the two
nuclei are described as sections of spheres joined by a cylinder
of radius rN, the neck radius. In the rebounding phase, the nu-
clear geometry is given by two half spheres joined by sections
of cones of radius rN. Volume conservation is enforced which
gives suitable relations between the neck radius and the rela-
tive distance of the two nuclei in good agreement with TDHF
calculations [27]. In such a configuration the force is given
by the surface tension times the perimeter of the neck as for a
liquid drop. During this stage nucleons are transferred through
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Efforts to make direct measurements at energies below
2.1 MeV are severely impacted by the rapidly diminishing
reaction cross section at sub-barrier energies. To bypass the
experimental difficulties of low fusion cross sections at very
low energies, indirect methods have been developed [14,15].
Recently, the 12C(14N, 2H) 24Mg indirect Trojan horse method
(THM) was employed to explore the lower-energy 12C + 12C
cross section [11]. These data revealed a wealth of resonances
in S∗ at center-of-mass energies as low as 0.8 MeV. It was
concluded that the sub-barrier fusion cross section was much
greater than previously estimated [16]. A critical reanalysis of
that data, including Coulomb effects in the three-body final
channel and applying the distorted-wave Born approximation
instead of the plane-wave approximation, resulted in much
lower S∗ values by up to three orders of magnitude. These
contrasting results have yet to be resolved.

Several macroscopic and microscopic models [16–23] of-
fer a reasonable reproduction of the direct reaction data, and
they are sometime considered as determining an upper limit of
the fusion cross section [20,21]. Predictions of these models

at energies below 2.1 MeV cannot reproduce the low-energy
THM results of Ref. [11] and are way above the values ob-
tained in the Coulomb renormalization analysis of Ref. [12].

In Ref. [24], a microscopic model based on the Vlasov
equation and the Feynman path integration method (FPIM)
was proposed. It succeeded in reproducing the then avail-
able direct data for the 12C + 12C system rather well. The
approach is also quite successful when applied to heavier
nuclei [25] and spontaneous fission [26]. Before getting in-
volved into complex numerical calculations, which may or
may not be feasible at such low energies, it is instructive
to simplify the heavy-ion dynamics using a robust macro-
scopic model. In Refs. [27–29], a Neck model (NM), based
upon the time-dependent Hartree-Fock (TDHF) approach was
proposed and successfully reproduced fusion cross sections
above the barrier [27] as well as deep inelastic [28] and fission
[29] dynamics.

In the present Rapid Communication we extend the NM
to sub-barrier energies within the FPIM framework. Newton
force equations are solved assuming the collective variables
given by the center-of-mass distance R of the two colliding
nuclei and their relative momenta P. The forces acting on the
nuclei before the two nuclei touch are given by the Coulomb
and the nuclear Bass potentials [30]. After touching, the two
nuclei are described as sections of spheres joined by a cylinder
of radius rN, the neck radius. In the rebounding phase, the nu-
clear geometry is given by two half spheres joined by sections
of cones of radius rN. Volume conservation is enforced which
gives suitable relations between the neck radius and the rela-
tive distance of the two nuclei in good agreement with TDHF
calculations [27]. In such a configuration the force is given
by the surface tension times the perimeter of the neck as for a
liquid drop. During this stage nucleons are transferred through
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Efforts to make direct measurements at energies below
2.1 MeV are severely impacted by the rapidly diminishing
reaction cross section at sub-barrier energies. To bypass the
experimental difficulties of low fusion cross sections at very
low energies, indirect methods have been developed [14,15].
Recently, the 12C(14N, 2H) 24Mg indirect Trojan horse method
(THM) was employed to explore the lower-energy 12C + 12C
cross section [11]. These data revealed a wealth of resonances
in S∗ at center-of-mass energies as low as 0.8 MeV. It was
concluded that the sub-barrier fusion cross section was much
greater than previously estimated [16]. A critical reanalysis of
that data, including Coulomb effects in the three-body final
channel and applying the distorted-wave Born approximation
instead of the plane-wave approximation, resulted in much
lower S∗ values by up to three orders of magnitude. These
contrasting results have yet to be resolved.

Several macroscopic and microscopic models [16–23] of-
fer a reasonable reproduction of the direct reaction data, and
they are sometime considered as determining an upper limit of
the fusion cross section [20,21]. Predictions of these models

at energies below 2.1 MeV cannot reproduce the low-energy
THM results of Ref. [11] and are way above the values ob-
tained in the Coulomb renormalization analysis of Ref. [12].

In Ref. [24], a microscopic model based on the Vlasov
equation and the Feynman path integration method (FPIM)
was proposed. It succeeded in reproducing the then avail-
able direct data for the 12C + 12C system rather well. The
approach is also quite successful when applied to heavier
nuclei [25] and spontaneous fission [26]. Before getting in-
volved into complex numerical calculations, which may or
may not be feasible at such low energies, it is instructive
to simplify the heavy-ion dynamics using a robust macro-
scopic model. In Refs. [27–29], a Neck model (NM), based
upon the time-dependent Hartree-Fock (TDHF) approach was
proposed and successfully reproduced fusion cross sections
above the barrier [27] as well as deep inelastic [28] and fission
[29] dynamics.

In the present Rapid Communication we extend the NM
to sub-barrier energies within the FPIM framework. Newton
force equations are solved assuming the collective variables
given by the center-of-mass distance R of the two colliding
nuclei and their relative momenta P. The forces acting on the
nuclei before the two nuclei touch are given by the Coulomb
and the nuclear Bass potentials [30]. After touching, the two
nuclei are described as sections of spheres joined by a cylinder
of radius rN, the neck radius. In the rebounding phase, the nu-
clear geometry is given by two half spheres joined by sections
of cones of radius rN. Volume conservation is enforced which
gives suitable relations between the neck radius and the rela-
tive distance of the two nuclei in good agreement with TDHF
calculations [27]. In such a configuration the force is given
by the surface tension times the perimeter of the neck as for a
liquid drop. During this stage nucleons are transferred through
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reaction cross section at sub-barrier energies. To bypass the
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instead of the plane-wave approximation, resulted in much
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approach is also quite successful when applied to heavier
nuclei [25] and spontaneous fission [26]. Before getting in-
volved into complex numerical calculations, which may or
may not be feasible at such low energies, it is instructive
to simplify the heavy-ion dynamics using a robust macro-
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[29] dynamics.
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nuclei before the two nuclei touch are given by the Coulomb
and the nuclear Bass potentials [30]. After touching, the two
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2.1 MeV are severely impacted by the rapidly diminishing
reaction cross section at sub-barrier energies. To bypass the
experimental difficulties of low fusion cross sections at very
low energies, indirect methods have been developed [14,15].
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(THM) was employed to explore the lower-energy 12C + 12C
cross section [11]. These data revealed a wealth of resonances
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that data, including Coulomb effects in the three-body final
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instead of the plane-wave approximation, resulted in much
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they are sometime considered as determining an upper limit of
the fusion cross section [20,21]. Predictions of these models

at energies below 2.1 MeV cannot reproduce the low-energy
THM results of Ref. [11] and are way above the values ob-
tained in the Coulomb renormalization analysis of Ref. [12].

In Ref. [24], a microscopic model based on the Vlasov
equation and the Feynman path integration method (FPIM)
was proposed. It succeeded in reproducing the then avail-
able direct data for the 12C + 12C system rather well. The
approach is also quite successful when applied to heavier
nuclei [25] and spontaneous fission [26]. Before getting in-
volved into complex numerical calculations, which may or
may not be feasible at such low energies, it is instructive
to simplify the heavy-ion dynamics using a robust macro-
scopic model. In Refs. [27–29], a Neck model (NM), based
upon the time-dependent Hartree-Fock (TDHF) approach was
proposed and successfully reproduced fusion cross sections
above the barrier [27] as well as deep inelastic [28] and fission
[29] dynamics.

In the present Rapid Communication we extend the NM
to sub-barrier energies within the FPIM framework. Newton
force equations are solved assuming the collective variables
given by the center-of-mass distance R of the two colliding
nuclei and their relative momenta P. The forces acting on the
nuclei before the two nuclei touch are given by the Coulomb
and the nuclear Bass potentials [30]. After touching, the two
nuclei are described as sections of spheres joined by a cylinder
of radius rN, the neck radius. In the rebounding phase, the nu-
clear geometry is given by two half spheres joined by sections
of cones of radius rN. Volume conservation is enforced which
gives suitable relations between the neck radius and the rela-
tive distance of the two nuclei in good agreement with TDHF
calculations [27]. In such a configuration the force is given
by the surface tension times the perimeter of the neck as for a
liquid drop. During this stage nucleons are transferred through
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upon the time-dependent Hartree-Fock (TDHF) approach was
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[29] dynamics.
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