# In Memoriam, a Colleague and Beloved Friend Sydney Benjamin Galès

November 1, 1943 – November 29, 2024



Corrine and Sydney Galès, Jaffa, Tel Aviv, April 27, 2019

# Current Data on the <sup>12</sup>C(α,γ) Reaction; a Critical Review and the Road Map Ahead\*

Moshe Gai, University of Connecticut

moshe.gai@uconn.edu

http://Astro.uconn.edu













- 1. Oxygen Formation in Stellar Helium Burning/ the  $^{12}C(\alpha,\gamma)$  Reaction
- 2. Status of World Best Data (Stuttgart's Heroic Effort + Plag et al.)
- 3. UConn Measurement, Optical Readout TPC (O-TPC @ HIyS)
- 4. The Warsaw electronic readout (eTPC @ HIγS)
- \* Supported in part by the USDOE grant No. DE-FG02-94ER40870.

ECT\*, Key Reactions in Nuclear Astrophysics, February 17, 2025

Laboratory for Nuclear Science At Avery Point aka Laboratory for Astrophysics http://astro.uconn.edu



## Nuclear Astrophysics in the Era of Windows on the Universe Multi-Messenger Astrophysics (WoU-MMA)

**SN1987A:** First MMA, Type II Supernova

**Observed Neutrinos & 4 HR Later Light Curve (EM)/** MMA object

Progenitor: Sanduleak −69 202 (Sk -69 202) Blue Supergiant ~20M<sub>☉</sub>

SN1987A (JWST 2024): Neutron Star, Not Black Hole

**Type II SN:** Neutron Star or Black Hole, Determined by C/O



Helium Burning:  $3\alpha \rightarrow {}^{12}\text{C} \ (\sim 11\%)$  "Hoyle State"  ${}^{12}\text{C}(\alpha,\gamma){}^{16}\text{O} \ \ \text{@300 keV} \ \text{???}$   ${}^{12}\text{C}(\alpha,\gamma) \rightarrow \text{C/O} = \text{?}$ 

<sup>12</sup>C(α,γ) hence the C/O ratio, quite possibly the single Most important nuclear input to Stellar Evolution Theory



W.A. Fowler: Rev. Mod. Phys. 56, 149 (1984)

"The  $^{12}$ C( $\alpha,\gamma$ ) reaction is of paramount importance"

#### Type II (Core Collapse) Supernova



Bethe & Brown, Scientific American 1985 M. Gai, Nucl. Phys. A928, 313 (2014) (x10 Gai)

CENTRAL DENSITY (gm/cc)

#### HELIUM BURNING IN (MASSIVE) STARS

II. 
$$\alpha + {}^{12}C \longrightarrow {}^{16}O + \gamma$$
  $(\Gamma = 0.4)$ 

#### $^{12}$ C( $\alpha$ , $\gamma$ ) Reaction:

Two partial waves:

 $S_{E1}(300)$ p-wave

 $S_{E2}(300)$ d-wave

φ<sub>12</sub> E1-E2 Mixing Phase Angle

$$C/O = ???$$

$$\frac{7.12}{6.92}$$
  $\frac{1}{2}$   $\frac{7.16}{\alpha + ^{12}}$  C

## $\varphi_{12} = \delta_2 - \delta_1 + \arctan(\eta/2)$

F.C. Barker and T. Kajino, Aust. J. Phys. 44, 369 (1991), R-Matrix Theory.



#### E1-E2 Mixing Phase Angle $(\phi_{12})$

M. Gai, Phys. Rev. C 88, 062801(R) (2013).

C. R. Brune, Phys. Rev. C 64, 055803 (2001).

L.D. Knutson, Phys. Rev. C 59, 2152 (1999).

K.M. Watson, Phys. Rev. 95, 228 (1954).

Required by Unitarity

#### **EUROGAM**

#### Assuncao et al.

E1 AND E2 S-FACTORS OF  $^{12}$ C( $\alpha$ ,  $\gamma_0$ ) $^{16}$ O FROM  $\gamma$ -RAY ANGULAR . . .

PHYSICAL REVIEW C **73**, 055801 (2006)

TABLE I. Final results of the present  $^{12}\text{C}(\alpha, \gamma)^{16}\text{O}$  experiment for the E1 and E2 capture  $\gamma$ -ray cross sections and their relative phase  $\phi_{12}$ .  $E_{\alpha,\text{lab}}$  is the uncorrected  $\alpha$ -particle energy;  $E_{\text{c.m. eff.}}$  is the effective c.m. energy calculated as explained in the text for the two considered cases: (I) using constant S factors for E1 and E2 contributions to calculate the tabulated value and constant cross sections to calculate a limiting value contribution to the uncertainty; (II) a limiting value of  $E_{\text{c.m. eff.}}$  calculated using a pure Breit-Wigner E2 resonance for the E2 contribution and a constant S factor for the E1. For the two-parameter fit, the phase  $\phi_{12}$  was fixed according to Eq. (4.7) with the phases taken from elastic scattering [31,32]. The corresponding  $\chi^2$  values are reduced values for seven degrees of freedom (nine angles and two free parameters for the fit). For the three-parameter fit, the phase was determined according to Eq. (4.1) solely from the data of this experiment. The  $\chi^2$  is the reduced value for six degrees of freedom (nine angles and three free parameters for the fit).

| $E_{\alpha, \text{lab}}$ (MeV) | $E_{\rm c.m.eff.}$ (MeV) |             | 2-parameter fit, phase fixed by Unitarity |                    |                   |          | 3-parameter fit, phase free |                    |                   |          |
|--------------------------------|--------------------------|-------------|-------------------------------------------|--------------------|-------------------|----------|-----------------------------|--------------------|-------------------|----------|
|                                | (I)                      | (II)        | $\sigma_{E1}$ (nb)                        | $\sigma_{E2}$ (nb) | $\phi_{12}$ (deg) | $\chi^2$ | $\sigma_{E1}$ (nb)          | $\sigma_{E2}$ (nb) | $\phi_{12}$ (deg) | $\chi^2$ |
| 1.850 (2)                      | 1.310(40)                | E1/E2 = 4.9 | 0.19(5)                                   | 0.039(34)          | 54.4(20)          | 2.4      | 0.12(4)                     | 0.14(4) =          | <b>0.9</b> 81(6)  | 1.1      |
| 1.900(2)                       | 1.340(40)                | 1.1         | 0.16(6)                                   | 0.15(6)            | 54.0(20)          | 2.0      | 0.16(4)                     | 0.17(4)            | <b>0.9</b> 68(5)  | 1.3      |
| 2.300(2)                       | 1.666(14)                | 3.9         | 1.39(22)                                  | 0.36(9)            | 49.9(20)          | 6.4      | 1.13(19)                    | 0.73(14)           | 1.5 69(3)         | 3.2      |
| 2.700(2)                       | 1.965(9)                 | 6.6         | 5.4(8)                                    | 0.80(14)           | 40.4(20)          | 2.8      | 5.0(7)                      | 1.24(24)           | <b>4.0</b> 53(3)  | 1.5      |
| 2.800(2)                       | 2.040(8)                 | 7.2         | 7.8(11)                                   | 1.09(21)           | 35.9(20)          | 1.4      | 7.3(11)                     | 1.6(4)             | <b>4.6</b> 47(5)  | 1.1      |
| 2.900(2)                       | 2.116(7)                 | 14.9        | 13.4(19)                                  | 0.90(18)           | 29.9(20)          | 2.3      | 12.3(18)                    | 2.1(5)             | <b>5.9</b> 54(4)  | 1.3      |
| 3.000 (2)                      | 2.192(7)                 | 1.00        | 22.7(33)                                  | 0.90(17)           | 20.5(20)          | 3.1      | 20.5(30)                    | 3.1(8)             | 59(4)             | 1.4      |

4) EUROGAM 5) 0.01%  $^{13}$ C [x100 Reduced  $^{13}$ C( $\alpha$ ,n)]





#### M. Gai, PRC, 88, 062801(R) (2013)



#### M. Assuncao *et al.*. PRC 73, 055801 (2006)





Abbildung C.35: Im Rahmen des Drehtisch-Experiments gemessene  $\gamma$ -Roh-Spektren bei  $E_{\text{c.m.}} = 2.209 \,\text{MeV}$ .  $E_{\text{L}}$ =2.945 MeV



Abbildung C.34: Im Rahmen des Drehtisch-Experiments gemessene  $\gamma$ -Roh-Spektren bei  $E_{\text{c.m.}} = 1.696 \,\text{MeV}$ .  $E_{\text{L}}$ =2.261 MeV



Abbildung C.33: Im Rahmen des Drehtisch-Experiments gemessene  $\gamma$ -Roh-Spektren bei  $E_{\text{c.m.}} = 1.452 \,\text{MeV}$ .  $E_{\text{L}}$ =1.936 MeV

197







 $E_{\gamma} \; ({
m MeV})$ 

<del>▐▆</del>▄**▞▊▙▐**▙▄▗▄▗▞▄▃▟▞▙▘▀▞▃▙▄▄▞▀▄▄▛▀▄▗▀▜▀ᡶ▗▜▃▗▀▄▙▀▊▗▊▞▘▊▃▞⋻▗▃▞▊▄▄▀▜▞▄▄▞<u>▊</u>▙▄▞░▙▄▟▃▙<sub>▃</sub>





Abbildung C.31: Im Rahmen des Drehtisch-Experiments gemessene  $\gamma$ -Roh-Spektren bei  $E_{\text{c.m.}} = 1.305 \,\text{MeV}$ .  $E_{\text{L}}=1.740 \,\text{MeV}$ 



Abbildung C.30: Im Rahmen des Drehtisch-Experiments gemessene  $\gamma$ -Roh-Spektren bei  $E_{\text{c.m.}} = 1.103 \,\text{MeV}$ .  $E_{\text{I}} = 1.470 \,\text{MeV}$ 



195

194

Abbildung C.29: Im Rahmen des Drehtisch-Experiments gemessene  $\gamma$ -Roh-Spektren bei  $E_{\text{c.m.}} = 1.102 \,\text{MeV}$ .  $E_{\text{L}} = 1.469 \,\text{MeV}$ 



**Abbildung C.28:** Im Rahmen des Drehtisch-Experiments gemessene  $\gamma$ -Roh-Spektren bei  $E_{c.m.} = 1.099 \,\mathrm{MeV}$ .  $E_L = 1.465 \,\mathrm{MeV}$ 



C.2. DREHTISCH-EXPERIMENT

Abbildung C.27: Im Rahmen des Drehtisch-Experiments gemessene  $\gamma$ -Roh-Spektren bei  $E_{\text{c.m.}} = 0.903 \,\text{MeV}$ .  $E_{\text{L}}=1.204 \,\text{MeV}$ 



Abbildung C.1: Im Rahmen des Eurogam-Array-Experiments gemessene  $\gamma$ -Roh-Spektren bei  $E_{\rm c.m.}=1.305~{\rm MeV}.~~1.740$ 



**Abbildung C.2:** Im Rahmen des Eurogam-Array-Experiments gemessene  $\gamma$ -Roh-Spektren bei  $E_{\rm c.m.}=1.342~{\rm MeV.}~1.790$ 



Abbildung C.3: Im Rahmen des Eurogam-Array-Experiments gemessene  $\gamma$ -Roh-Spektren bei  $E_{\rm c.m.}=1.666$  MeV.  $\,$  2.221

#### R. Plag and R. Reifarth, M. Heil, F. Kaeppeler, G. Rupp, F. Voss, and K. Wisshak, Phys. Rev. C 86, 015805 (2012)



Time [ns]

#### Richard deBoer et al., RMP 89, 03500742 (2017)



- 1) deBoer did not use Plag's data
- 2) They rely on the ANC
- 3) The S-factor is derived from Alpha-transfer, e.g. (<sup>7</sup>Li,t) Not from capture gamma-ray Indirect Method ala 1980's

51 years after Dyer & Barnes

This is the status of our field



R. Smith, M. Gai, D.K. Schweitzer, S.R. Stern and M.W. Ahmed, Nature Communications, 12, 5920 (2021).

https://www.nature.com/articles/s41467-021-26179-x

### **Detailed Balance:**

(Inverse, Time Reversed Reaction)

$$\sigma[^{12}C(\alpha,\gamma)^{16}O] = \frac{^{2}k_{\gamma}^{2}}{k_{\alpha}^{2}} \sigma[^{16}O(\gamma,\alpha)^{12}C] *$$

$$\sigma[^{16}O(\gamma,\alpha)^{12}C] \approx \sim \frac{50}{50} \times \sigma[^{12}C(\alpha,\gamma)^{16}O]$$

\* For Real Photons 2S+1 = 2 (not 3)

Not a "Surrogate Reaction"

Not an Indirect Measurement

# Line Shape Analysis (CO<sub>2</sub> Gas)







#### **Machine Learning**

$$Q(^{16}O^*) - Q(^{12}C^*) = 112 \text{ keV}$$

#### UConn-TUNL Optical Readout TPC (O-TPC)

$$^{12}C(\gamma,3\alpha)$$



W.R. Zimmerman *et al.*; Phys. Rev. Lett. 110(2013)152502  $\phi_{12} = \delta_2 - \delta_1 + \arctan(\eta/2)$ 



R-Matrix Fit: 
$$\Gamma\gamma(1^-) = 29 \pm 2.1 \text{ meV B(E1)} = 6.5 \text{x} 10^{-5} \text{ W.u.}$$
  
  $\Gamma\gamma(2^+) = 182^{+43}_{-53} \text{ meV B(E2)} = 1.2 \text{ W.u.}$ 



#### $^{16}O(\gamma,\alpha)^{12}C$

O-TPC Data N<sub>2</sub>O gas Angular distributions measured at 17 angles

Kristian C.Z. Haverson

a SHU, UConn-SHU (2024)

#### O-TPC (Nature + $N_2$ O) Data Benchmarked against World Data First Agreement of data on $\phi_{12}$ with Quantum Mechanics

