Nuclear reaction rates: insights from stellar modeling

Diego Vescovi^{1,2}

1. INAF – Osservatorio Astronomico d'Abruzzo, Teramo, Italy 2. INFN – Sezione di Perugia, Perugia, Italy

Key Reactions in Nuclear Astrophysics - ECT Trento – Italy, February 17-21, 2025

Nucleosynthesis of the heavy elements

Prantzos+ 15, EnAs

- Neutron capture processes:
 - → s(low)-process
 - → i(ntermediate)-process

r(apid)-process

Origin of the heavy elements

s(low) process

- Mild neutron density $n_n \sim 10^7$
- Asymptotic giant branch (AGB) and massive stars

i(ntermediate) process

- Intemerdiate neutron density
 n_n~10¹⁵
- AGB, rapidly accreting white dwarfs, massive stars, etc.

r(apid) process

- → High neutron density $n_n \gtrsim 10^{21}$
- Supernovae and compact binary mergers

Diego Vescovi

Nuclear reaction rates: insights from stellar modeling

4

s-Processing in AGB stars

The formation of the ¹³C pocket

 ¹⁴N strong neutron poison via
 ¹⁴N(n,p)¹⁴C reaction

The formation of the ¹³C pocket

Which is the physical mechanism?

TOP-DOWN MECHANISMS

- Opacity-induced overshoot (Straniero+ 06, Cristallo+ 09, 11, 15)
- Overshoot + internal gravity waves (Battino+ 16, 19, 21)

BOTTOM-UP MECHANISMS

- Magnetic fields (Trippella+ 16; Vescovi+ 20; Busso+ 21)
 - → Magnetic buoyancy
- Can change due to rotationally-induced mixing (Herwig+ 03; Siess+ 04; Piersanti+ 13)

...and outside AGBs?

Credit: M. Marengo

AGB stars and presolar SiC grains

Constraints to stellar models from presolar SiC grains

Grains can be used to constrain:

1) Formation of major neutron source ¹³C

 88 Sr/ 86 Sr and 138 Ba/ 136 Ba \rightarrow probe the distribution of 13 C pocket

2) Efficiency of the minor neutron source ²²Ne and β -decay rates of branch points

 $^{134}Ba/^{136}Ba \rightarrow ^{134}Cs \beta^{-}$ rate and $^{22}Ne(\alpha,n)^{25}Mg$

3) Neutron-capture cross sections of pure s-isotopes and mixed s,r-isotopes

 $^{97}Mo/^{96}Mo \rightarrow \sigma(^{96}Mo)_{MACS}/\sigma(^{97}Mo)_{MACS}$

SiC Grains and FRUITY models

- Isotopic data including Ni, Sr, Zr, Mo, and Ba isotope ratios in presolar SiC grains
- Stellar models with same initial mass (2 M_o) and solar metallicity

Diego Vescovi

Magnetic-buoyancy-induced mixing

- → MHD analytical solutions (Nucci & Busso 14):
- Simple geometry: toroidal magnetic field
- → **Magnetic** contribution (Vescovi+ 20) to the dowflow velocity v_d , acting when the density distribution is $\rho \propto r^k$:

Parameters:

• Critical toroidal **B**

$$\Rightarrow B_{\varphi} \gtrsim \left(4\pi\rho r N^2 H_{\rm p} \frac{\eta}{K}\right)^{1/2}$$

- Starting velocity **u**_p of the buoyant material
- → <u>Calibration</u> is needed!

$$\rightarrow v_d(r) = u_p \left(\frac{r_p}{r}\right)^{k+2}$$

 $\mathbf{2}$

FRUITY Magnetic: SiC Grains

- Stellar models with same initial mass (2 M_o) and close-to-solar metallicity
- Magnetic contribution

Diego Vescovi

FRUITY Magnetic: SiC Grains

- Correlated Sr and Ba isotope analyses of more MS grains using the new generation of instruments are needed to better quantify the MS grain distribution to determine the data variability, which will help to assess the primary mechanism responsible for the ¹³C formation
- Nuclear Experiments: AGB model predictions for δ^{88} Sr and δ^{138} Ba rely directly on the MACS values of 86 Sr, 88 Sr, 136 Ba, and 138 Ba
- Current AGB model uncertainties in δ⁸⁸Sr and δ¹³⁸Ba are controlled by uncertainties in the ⁸⁶Sr (±10%) and ¹³⁶Ba (±3%) MACS values, respectively, which correspond to ~200‰ and ~50‰ uncertainties, respectively
- As the full range of δ⁸⁸Sr values observed among MS grains is only ~400‰, new measurements of ⁸⁶Sr MACS values are needed to reduce model uncertainties

- The chain of branching points at the Cs isotopes is of particular interest not only for understating the ¹³⁵Cs/¹³³Cs ratio in the Early Solar System
- It affects the isotopic composition of Ba and in particular the relative abundances of the two s-only nuclei ¹³⁴Ba and ¹³⁶Ba → important for explaining their <u>measured ratio</u> in meteorites (e.g., Busso+ 21, Palmerini+21, Taioli+ 22)

- The half lives of both ¹³⁴Cs and ¹³⁵Cs decrease by orders of magnitude in stellar conditions → act as branching point
- The branching point at 134 Cs (T_{1/2} = 2 Myr) allows the production of the long-living isotope 135 Cs

 $^{134}Cs(n,\gamma)$ 2500 KADoNiS v0.3 Bao et al. (2000)2000 The neutron-capture cross section of MACS (mb) 1200 ¹³⁵Cs has been experimentally determined, while the $^{134}Cs(n,\gamma)$ cross section has **only** been **semi-empirically** estimated (Patronis+ 04) 1000 500 20 30 10 40 kT (keV)

 → Re-evaluated cross sections, → systematically higher due to the new (higher by ~5%) adopted gold cross section as a reference

- ²²Ne(α,n)²⁵Mg reaction rate uncertain by a factor ~3: direct and indirect measurements (e.g., Adsley+21, Shahina+ 24)
- DHF-FD 4.5 $^{22}\mathsf{Ne}(\alpha,n)^{25}\mathsf{Mg}$ 0.8 2.5₩ 0.6 0.4 4 3.5 0.2 Longland et al. (2012) Half-life (years) 1 2 2 2 2 2 2 $\mathbf{2}$ 0 10 20 30 40 50 Temperature (keV) Adsley et al. (2021) Rate Ratio this work 1.51 0.5 0.50 0.1 10 100 Temperature (keV) Taioli+ 22, ApJ 10Wiescher+ 23, EPJA Temperature (GK)

• Theoretical ¹³⁴Cs β ⁻ rate is <u>reduced</u> up to

Takahashi & Yokoi 87 (Li+ 21, Taioli+ 22)

a factor of 8 for $T > 10^8$ K w.r.t

- ²²Ne(α,n)²⁵Mg reaction rate from Adsley+ 21 with indirect data and with direct data only
- $^{134}\text{Ba}(n,\gamma)$ and $^{136}\text{Ba}(n,\gamma)$ from ASTRAL v0.2
- $^{\rm 134}Cs~\beta^{\rm -}$ rate from Takahashi & Yokoi 87 and Taioli+ 22
- → ¹³⁴Ba/¹³⁶Ba ratio <u>decreases</u> with enhanced ²²Ne(α,n)²⁵Mg rate computed from directed data only
- → ¹³⁴Ba/¹³⁶Ba ratio <u>decreases</u> with new ¹³⁴Cs β⁻ rate
- → ¹³⁴Ba/¹³⁶Ba ratio <u>almost unchanged</u> with revised n-capture rates
- Better agreement: Adsley direct + Taioli model

- Larger stellar masses
- Higher temperatures during the thermal pulse
- → More efficient ${}^{22}Ne(\alpha,n){}^{25}Mg$ reaction
- Branching factor $\lambda_{\beta}/(\lambda_{\beta}+\lambda_{n})$ decreases
- The production of the ¹³⁴Ba isotope is suppressed
- Best agreement: Adsley direct + Taioli models with different stellar masses

- Galactic production of ²⁰⁵Pb is exclusive to the s-process
- <u>It was present in the early Solar System</u>, <u>as testified by meteoritic data</u>
- The <u>205Pb/204Pb abundance ratio</u> provides us information on the nucleosynthetic events prior to the formation of the Solar System
- Despite its long terrestrial half-life (T_{1/2} = 17 Myr) of ²⁰⁵Pb acts as a branching point because of the strong dependence on temperature and electron density
- The stable daughter isotope ²⁰⁵Tl becomes unstable during TPs and its β⁻ decay is competing with the *e*-capture of ²⁰⁵Pb

- The weak decay rates of both ²⁰⁵Pb and ²⁰⁵Tl under stellar conditions are determined by the same transition between the spin-1/2 states
- Measuring the half-life in either direction provides us with the nuclear matrix element of the transition → <u>calculate</u> <u>precise astrophysical decay rates</u>
- In the laboratory, <u>measuring the bound-</u> <u>state β -decay of ²⁰⁵Tl</u> is the only way to directly measure the weak nuclear matrix element between the two states
- → Measured for the first time the boundstate $β^-$ decay of ²⁰⁵Tl⁸¹⁺ at GSl

- The new measured half-life is **4.7 times larger** than the previous theoretical estimate (291 days vs. 58 days)
- Reduced decay rates for both the excited-state decay of 205 Pb and the bound-state β -decay of 205 Tl
- Calculation of revised temperature and density-dependent astrophysical decay rates based on a shell-model calculation of all the relevant matrix elements calibrated to the measured rates
- <u>Diverging behavior at low</u> <u>temperatures</u> due to the different extrapolation to the terrestrial value (log versus linear)

Leckenby+ 24, Nature

- Plugging in <u>new AGB yields in</u> <u>basic GCE models</u> and comparing to the ²⁰⁵<u>Pb/²⁰⁴Pb</u> <u>ratio from meteorites</u>, the isolation time of Solar material inside its parent molecular cloud can be determined
- **Positive isolation times** that are consistent with the other sprocess short-lived radioactive nuclei found in the early Solar System
- However, the lack of direct <u>experimental data for the</u> ²⁰⁵Pb(n,γ)²⁰⁶Pb reaction remains <u>a critical limitation for stellar</u> <u>models</u>

Databases for s-process nucleosynthesis simulations

- Many databases are **old and/or incomplete**
- Databases for neutron capture reaction rates and decay rates need to be updated and constantly maintained
- Difficult task, but someone should do it!

Shell-model calculations of stellar weak interaction rates: II. Weak rates for nuclei in the mass range A = 45-65 in supernovae environments

> K. Langanke and G. Martínez-Pinedo Institut for Fysik og Astronomi, Århus Universitet, DK-8000 Århus C, Denmark Received 20 December 1999; revised 27 January 2000; accepted 28 January 2000

BETA-DECAY RATES OF HIGHLY IONIZED HEAVY ATOMS IN STELLAR INTERIORS*

K. TAKAHASHI

University of California, Institute of Geophysics and Planetary Physics Lawrence Livermore National Laboratory, Livermore, California 94550

and

K. YOKOI†

Kernforschungszentrum Karlsruhe GmbH, Institut für Kernphysik III D-7500 Karlsruhe, Federal Republic of Germany

NEUTRON CROSS SECTIONS FOR NUCLEOSYNTHESIS STUDIES

Z. Y. BAO,¹ H. BEER, F. KÄPPELER, F. VOSS, and K. WISSHAK

Forschungszentrum Karlsruhe, Institut für Kernphysik PO Box 3640, D-76021 Karlsruhe, Germany

and

T. RAUSCHER

Institut für Physik, Universität Basel, Klingelbergstrasse 82 CH-4056 Basel, Switzerland

The new version KADoNiS v0.3 is finally online!

Version 0.3 provides data for 357 isotopes including 5 newly added isotopes, 42 updated MACS30, new stellar enhancement factors, and the MACS30 obtained from three different evaluated data libraries. More information below or in the logbook.

ASTRAL

ASTrophysical Rate and rAw data Library

Diego Vescovi

Nuclear reaction rates: insights from stellar modeling

25

Backup slides

Branchings in the s-process

During the s-process, radioactive nuclei act as branching points on the path of neutron captures, generating a huge diversity of possibilities in the production of the isotopes up to Bi

• Branching points: if $\tau_n \sim \tau_\beta$ several paths are possible

The Early Solar System

- Some of these radionuclides were present in the first few million years of Solar System history
- Their presence is inferred through excesses in daughter isotopes (compared to normal terrestrial isotopic composition) in various materials found in primitive meteorites
- Their abundances have profound impact on the timing of stellar nucleosynthesis events prior to Solar System formation, chronology of events in the early Solar System, early solar activity, heating of early-formed planetesimals, and chronology of planet formation

The Early Solar System

• The survival of ¹³⁵Cs and ²⁰⁵Pb in stellar environments is very uncertain because of the strong temperature and density dependence of their half lives, decreasing by orders of magnitudes in stellar conditions and determined only theoretically

 ¹⁰⁷Pd and ²⁰⁵Pb are produced by neutron captures on the stable isotopes

 ¹³⁵Cs and ¹⁸²Hf can be reached via the activation of branching points at ¹³⁴Cs and ¹⁸¹Hf, respectively

 Table 1 SLRs once existing in Solar System objects; shaded rows indicate SLRs with unconfirmed or uncertain abundances

 Davis A. M. 22, ARA&A

	Parent		Daughter	Estimated initial Solar System		
Fractionation ^a	nuclide	Half-life (Ma) ^b	nuclide	abundance	Objects found in	Reference(s)
Nebular	⁷ Be	$53.22 \pm 0.06 \text{ d}$	⁷ Li	$(6.1 \pm 1.3) \times 10^{-3} \times {}^{9}\text{Be}$	CAI	27
Nebular	¹⁰ Be	1.387 ± 0.0012	¹⁰ B	$(7.3 \pm 1.7) \times 10^{-4} \times {}^{9}\text{Be}$	CAIs	36; this article
Nebular,	²⁶ Al	0.717 ± 0.024	²⁶ Mg	$(5.20 \pm 0.13) \times 10^{-5} \times {}^{27}\text{Al}$	CAIs, chondrules,	44, 45
planetary					achondrites	
Planetary	³⁶ Cl	0.3013 ± 0.0015	³⁶ S, ³⁶ Ar	$(1.7-3.0) \times 10^{-5} \times {}^{35}\text{Cl}$	CAIs, chondrites	55
Nebular	⁴¹ Ca	0.0994 ± 0.0015	⁴¹ K	$4 \times 10^{-9} \times {}^{40}$ Ca	CAIs	62
Nebular,	⁵³ Mn	3.7 ± 0.4	⁵³ Cr	$(7 \pm 1) \times 10^{-6} \times {}^{55}Mn$	CAIs, chondrules,	69
planetary					carbonates,	
					achondrites	
Nebular,	⁶⁰ Fe	2.62 ± 0.04	⁶⁰ Ni	$(1.01 \pm 0.27) \times 10^{-8} \times {}^{56}$ Fe	Achondrites,	79
planetary					chondrites	
Planetary	⁹² Nb	34.7 ± 2.4	⁹² Zr	$(1.66 \pm 0.10) \times 10^{-5} \times {}^{93}\text{Nb}$	Chondrites,	89
					mesosiderites	
Planetary	⁹⁷ Tc	4.21 ± 0.16	⁹⁷ Mo	${<}1\times10^{-6}^{92}\mathrm{Mo}$	Iron meteorites	90
Planetary	⁹⁸ Tc	4.2 ± 0.3	⁹⁸ Ru	$<2 \times 10^{-5} \times {}^{96}$ Ru	Iron meteorites	91
Planetary	¹⁰⁷ Pd	6.5 ± 0.3	¹⁰⁷ Ag	$(5.9 \pm 2.2) \times 10^{-5} \times {}^{108}$ Pd	Iron meteorites,	94
					pallasites	
Planetary	126Sn	0.230 ± 0.014	¹²⁶ Te	$<3 \times 10^{-6} \times {}^{124}$ Sn	Chondrules,	101
					secondary	
					minerals	
Planetary	¹²⁹ I	16.14 ± 0.12	¹²⁹ Xe	$(1.35 \pm 0.02) \times 10^{-4} \times {}^{127}I$	Chondrules,	This article
					secondary	
					minerals	
Nebular	¹³⁵ Cs	1.33 ± 0.19	¹³⁵ Ba	$<2.8 \times 10^{-6} \times {}^{133}$ Cs	CAIs, chondrites	109
Planetary	¹⁴⁶ Sm	103 ± 5°	142Nd	$(8.40 \pm 0.32) \times 10^{-3} \times {}^{144}$ Sm	Planetary	114
					differentiates	
Planetary	¹⁸² Hf	8.90 ± 0.09	¹⁸² W	$(1.018\pm 0.043)\times 10^{-4}\times {}^{180}\mathrm{Hf}$	CAIs, planetary	117
					differentiates	
Planetary	²⁰⁵ Pb	17.0 ± 0.9	²⁰⁵ Tl	$(1.8 \pm 1.2) \times 10^{-3} \times {}^{204}\text{Pb}$	Chondrites	121
Planetary	²⁴⁴ Pu	81.3 ± 0.3	²³² Th; fission	$(7.7 \pm 0.6) \times 10^{-3} \times {}^{238}\text{U}$	CAIs, chondrites	123
Nebular	²⁴⁷ Cm	15.6 ± 0.5	235U	$(5.6 \pm 0.3) \times 10^{-3} \times {}^{235}\text{U}$	CAIs	4, 55

- The bulk of ²⁰⁵Pb is produced during TPs
- During the phase between the end of each TP and the start of the following dredge-up, ²⁰⁵Pb decays according to the local temperature and electron density, whilst ²⁰⁵Tl decay doesn't
- Once carried to the convective envelope the ²⁰⁵Pb abundance is <u>preserved and ejected</u> in the interstellar medium via stellar winds
- NEW/FRUITY(TY87) → ²⁰⁵Pb/²⁰⁴Pb ratio decreased of a factor ~4
- NEW/NETGEN → ²⁰⁵Pb/²⁰⁴Pb ratio increased of a factor ~7

Neutron poisons: the case of ²²Ne

- Primary ¹²C is produced by partial He burning in the pulse and is mixed with the shell by previous third dredge-up episodes
- The H shell converts all CNO nuclei to ¹⁴N, which is then converted to ²²Ne by double α capture during the early development of the next thermal instability
- A very large abundance of primary ²²Ne is present in the pulse
- For lower metallicities the importance of ²²Ne as a neutron poison increases strongly
- For higher metallicities the impact of primary ²²Ne is strongly diminished

Neutron poisons: the case of ²²Ne

Neutron poisons: the case of ²²Ne

- REF: Bao+ 00
- NEW: Heil+ 14
 - Experimental MACS values of ²²Ne for kT = 25 and 52 keV from the activation measurements of Beer+ 91,02
 - Constraints for the relative contributions from dominant DRC and from the resonances at higher energies
 - The <u>p-wave part of the DRC channel</u> <u>contributes significantly at higher energies</u>
 - The s-wave component is defined by the thermal point and the MACS at kT = 25 keV
 - New values are systematically lower up to a factor of 2 at low energies
- → Need for experimental MACS at 5-10keV

