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Dilute-dense scattering within CGC and Eikonal approximation

High energy scattering within the CGC relies on two pillars:
Semi-classical approximation dense target is represented by strong semiclassical gluon field 
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a(x) = O (1/g) at

weak coupling g with finite support.

Eikonal approximation:

keeping only the leading power terms in the high energy limit.
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at weak coupling 
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Eikonal approximation keeping only the leading power terms in the high energy limit

High energy limit can be achieved by boosting the target along :x−
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The Eikonal approximation can be understood as the limit of infinite boost of
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(iii) Only the largest component of the background field is accounted for during the interaction

no  transfer from the targetp+(i) Background field is independent of  due to Lorentz time dilation (static limit) x−

no transverse motion within the target (ii) Background field is Lorentz contracted (shockwave limit) 

In the Eikonal limit the background field 

Eikonal approximation

The Eikonal approximation can be understood as the limit of infinite boost of

Aµ(x):

Aµ(x) independent on x
�
(static limit) due to Lorentz time dilation

) No p
+
transfer from the target

Lorentz contraction of Aµ(x) (shockwave limit)

) Partons from the projectile interact instantly in x
+
with the target,

without transverse motion within the target

Under a boost of parameter �t along the ”�” direction, A�
is enhanced and

A+
is suppressed:

A� = O(�t) � A? = O(1) � A+ = O(1/�t)
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Next-to-Eikonal corrections to the CGC

Next-to-Eikonal (NEik) corrections are  at the level of the boosted background field.𝒪(1/γt)

NEik corrections arise from relaxing either of the three approximations:

1. Interactions with the suppressed components of background field (transverse component)

2. Finite longitudinal width of the target — transverse motion of the parton in the medium 

3.  dependence of the background field  beyond infinite Lorentz dilationx−

NEik corrections to quark and gluon propagators in a gluon background have been computed with applications to  
forward parton-nucleus scattering at NEik (both dilute and dense limits) 
DIS dijet production at NEik (both dilute and dense limits) 

Altinoluk et al. (2014-2025) 
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An extra source of NEik corrections: interaction with the quark background of the target
interaction between the projectile parton and the target occurs via t-channel quark exchange 
application to quark-gluon dijet production in DIS

Altinoluk et al. (2023)

see also
Kovchegov et al. (2016-2025)quark and gluon helicity evolutions  single and/or double spin asymmetries  &

formulation of inclusive DIS and exclusive Compton scattering that interpolates between small and moderate x Boussarie et al. (2020-2023)

NEik corrections to quark and gluon propagators in high energy OPE formalism  Chirilli (2018-2021) 

NEik corrections in the CGC via an effective Hamiltonian approach Li (2023-2024)

subeikonal corrections via allowing longitudinal momentum exchange between projectile and target Jalilian-Marian (2017-2020)



Power counting for quark background field 

We keep only the leading component the quark background field: 

Then the components of quark background current reads 

Under a boost of the target of parameter  along the “-” direction, a current associated with the target should behave as γt
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The quark background field of the target can be split into good and bad components as 
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From dipole operators to gluon TMDs
[Collins - hep-ph/0204004] / [Belitsky, Ji, Yuan - hep-ph/0208038] / [Ji,Yuan - arXiv: 0206057]

The operator definition of a PDF:

F(x2) /
Z

dz+e ix2p
�
A z+hpA|tr

⇥
F i�(z+)U(z+, 0+)F i�(0)U(0+, z+)

⇤
|pAi

The unpolarized TMDs are defined as the FT of forward matrix elements of bilocal products gluon field
strength tensor:

F(x2, kt) /
Z

dz+ d2z?e ix2p
�
A z+�ikt ·z?hpA|tr

⇥
F i�

0 U [C ]
(0,z) F i�

z U [C 0]
(z,0)

⇤
|pAi

U [C ]
(0,z): gauge staples connecting the points (0+, 0?) and (z+, z?) to ensure gauge invariance.

32

Transverse-momentum-dependent (TMD) factorization

SIDIS Drell-Yan

S. J. Brodsky, D. S. Hwang, and I. Schmidt, 2002;    J.C. Collins, 2002
A. V. Belitsky, X. Ji, and F. Yuan, 2003;   D. Boer, P. J. Mulders, and F. Pijlman, 2003

future pointing past pointing

• di↵erent choices to connect the points! ! di↵erent TMDs enter di↵erent processes!
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Forward jet/hadron production at Eikonal order 

Unpolarized TMDs are defined as the FT of forward matrix 
elements of bilocal products of gluon field strength tensor 

Frequent observable used to test the compatibility of saturation phenomena with the high energy pA data: 

“single inclusive hadron/jet production in the forward rapidity region”  
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At LO the state-of-the-art calculation framework for forward production in pA collisions: Hybrid factorization 

Projectile proton is treated within collinear factorization 

(an assembly of partons with zero intrinsic transverse momenta )

Perturbative corrections to projectile wave function via DGLAP evolution 

Target is defined via strong color fields - transfer of transverse 
momentum from target to projectile (CGC like treatment)

Forward hadron production - I
[Dumitru, Hayashigaki, Jalilian-Marian - hep-ph/0506308]:

State-of-the-art calculation framework for forward production in pA collisions: Hybrid factorization

The wave function of the projectile proton is treated in the spirit of collinear factorization (an
assembly of partons with zero intrinsic transverse momenta)

Perturbative corrections to this wave function are provided by the usual QCD perturbative splitting
processes.

Target is treated as distribution of strong color fields which during the scattering event transfer
transverse momentum to the propagating partonic configuration. (CGC like treatment)

x0

k�
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d�pA!q+X

dk+d2k?
/

Z
dxpfq(xp, µ

2)

Z
e ik?(x0�x1)hd(x0, x1)i

.
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Dumitru, Hayashigaki, Jalilian-Marian (2005)
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: gauge staples connecting the points  

and  to ensure gauge invariance 

U[C]
(0,z) (0+,0⊥)

(z+, z⊥)



Gauge links and correlation limit of CGC

Back-to-back correlation limit: |k | ≪ |P |
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Dominguez, Marquet, Xiao, Yuan (2011)
The Wilson line operator

Gauge links from Wilson lines
[Dominguez, Marquet, Xiao, Yuan - arXiv: 1101.0715]

The Wilson line operator

U(�1, +1; x) = Pexp
⇥
ig

Z +1

�1
dx+A�(x+, x)

⇤

Derivative of the Wilson line

@ iU(x) = ig

Z
dx+U(�1, x+, x)F i�(x+, x)U(x+, +1; x)

@ iU†(x) = �ig

Z
dx+U(+1, x+, x)F i�(x+, x)U(x+, �1, x)

Dipole TMD

Parton distributions Gauge links Shockwaves Shockwaves � TMD The dilute limit Polarized gluons
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”Non-universality” of gluon TMD distributions
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x+

x�

z
2

�z
2

Tr
�
F i�

� z
2

�
U [�]†F i�

�
� z

2

�
U [+]

�

x+

x�

z
2

�z
2

Tr
�
F i�

� z
2

�
U [+]†F i�

�
� z

2

�
U [+]

�

Shockwave � TMD Non-universality ISMD2019 8

F (3)
gg (x2, kt) /

R
dz+d2z e ix2p

�
A z++iktz

⌦
tr
⇥
F i�( z

2)U [+]†F i�(� z
2)U [+]

⇤↵

in the small-x limit:

F (3)
gg (x2, kt) !

R
d2z e iktz

D
tr
�⇥

@ iU( z
2)
⇤
U†(� z

2)
⇥
@ iU(� z

2)
⇤
U†( z

2)
 E

Tolga Altinoluk (NCBJ) Small-x physics and gluon TMDs 12/23

Derivative of the Wilson line operator 

Gauge links from Wilson lines
[Dominguez, Marquet, Xiao, Yuan - arXiv: 1101.0715]
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Weizsacker-Williams TMD

Gauge links from Wilson lines
[Dominguez, Marquet, Xiao, Yuan - arXiv: 1101.0715]
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How do we get derivatives of Wilson lines?

Dijet momentum imbalance  k = k1 + k2

Average over the target  state 
is replaced with CGC averaging 

Introduction

Gauge links from Wilson lines
[Dominguez, Marquet, Xiao, Yuan (2011)]

gluon TMDs at small-x: average over the state |pAi is replaced with CGC averaging:

hpA| · · · |pAi

hpA|pAi
! h· · · ix2

The Wilson line operator

U(�1,+1;x) = Pexp
⇥
ig

Z +1

�1
dx

+
A

�(x+, x)
⇤

Derivative of the Wilson line

@
i
U(x) = ig

Z
dx

+
U(�1, x

+
, x)F i�(x+, x)U(x+,+1;x)
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Relative momentum  P = (z2k1 − z1k2)

in coordinate space:  conjugate to b = (z1x1 + z2x2) k
 conjugate to  r = (x1 − x2) P

Back-to-back correlation limit: |r | ≪ |b |

Taylor expand the Wilson lines in the correlation limit     U(x1) = U(b + z2r) ≃ U(b) + z2ri∂iU(b) + O(r2) get access to TMDs

small-x limit of TMD factorization  correlation limit of the CGC ≡
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Altinoluk, Armesto, Beuf (2023)

First study: quark-gluon dijet production in DIS

S-matrix

Contributions to �⇤ ! qg dijets from quark background

qg dijet production in DIS: a simple process sensitive to the quark background beyond eikonal CGC

Sbef
�!q1g2 = lim

x+,y+!+1

Z

x,y

Z

x�,y�
eip1·x ū(1)�+ eip2·y✏�2

⌫ (p2)
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Z
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e�iq·w✏�µ(q)G
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F (y, z)a2bSF (x,w)(�ieef )�

µSF (w, z)(�ig)�⇢t
b (z),

Sin
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µ (z)
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Back-to-back limit and quark TMD

Back-to-back qg dijet cross sections

In the back-to-back limit, the photon-target dijet cross section reads

(2⇡)6(2p+1 )(2p
+
2 )

d��T,L!q1g2

dp+1 d
2p1dp

+
2 d

2p2

����
corr.lim.

= 2⇡�(p+1 +p+2 �q+) (4⇡)2↵em↵sCF e
2
f HT,L(P, z,Q)T (k)

with the hard factors for the longitudinal and the transverse photon polarizations

HL =
4Q2z3(1� z)2

[P2 + Q̄2]2
Q̄2 ⌘ m2 + z(1�z)Q2

HT = z

⇢
(1 + z2)P2 + (1� z)4m2

[P2 + (1� z)2m2]2
+

[z2 + (1� z)2]P2 +m2

[P2 + Q̄2]2
� 2z2P2

[P2 + Q̄2][P2 + (1� z)2m2]

�

and the target averaged color operator

T (k) =

Z

b,b0
e�ik·(b�b0)

Z

z+,z0+

D
 ̄(z0+,b0)��U †

F (+1, z0+;b0)UF (+1, z+;b) (z+,b)
E

with a generalized CGC target average h. . . i over both the quark and gluon background fields.

Not yet known how to explicitly perform this target average!
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Back-to-back limit and quark TMD

Recovering the unpolarized quark TMD
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e�ik·(b�b0)
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z+,z0+

D
 ̄(z0+,b0)��U †
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Can be related to the unpolarized quark TMD:

f q
1 (x,k) =
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U †
F (+1, z+;b)UF (+1, 0;0) (0,0)|Ptari

 ̄(z+,b)

 (0)

Indeed, the CGC-like target average h· · · i is an e↵ective model for the quantum expectation value in the target
state hPtar| · · · |Ptari, but with a normalization h1i = 1.

) Both expectation values can be related as

hOi = lim
P 0
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hP 0
tar|Ô|Ptari
hP 0
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3 �(P 0�
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tar) �
(2)(P0

tar�Ptar)

With this relation, and after performing translations of the whole operator in T (k) in the + and transverse
directions, one finds

T (k) =
(2⇡)3

P�
tar

f q
1 (x = 0,k)

G. Beuf (NCBJ, Warsaw) Quark TMD from qg dijets in DIS DIS2023, MSU, March 27-31 11 / 16

target averaged color operator

Back-to-back limit and quark TMD

Recovering the unpolarized quark TMD

T (k) =

Z

b,b0
e�ik·(b�b0)

Z

z+,z0+

D
 ̄(z0+,b0)��U †

F (+1, z0+;b0)UF (+1, z+;b) (z+,b)
E

Can be related to the unpolarized quark TMD:

f q
1 (x,k) =

1

(2⇡)3

Z

b
eik·b

Z

z+
e�iz+xP�

tarhPtar| ̄(z+,b)
��

2
U †
F (+1, z+;b)UF (+1, 0;0) (0,0)|Ptari

 ̄(z+,b)

 (0)

Indeed, the CGC-like target average h· · · i is an e↵ective model for the quantum expectation value in the target
state hPtar| · · · |Ptari, but with a normalization h1i = 1.

) Both expectation values can be related as

hOi = lim
P 0
tar!Ptar

hP 0
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CGC average  quantum 
expectation value in target state

↔

Beyond eikonal accuracy quark background field is included in the CGC  possibility to probe quark TMDs from non-eikonal CGC!
Gluon TMDs are dominant in the eikonal CGC. 
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Altinoluk, Beuf, Blanco, Mulani (2024)Various channels contribute to dijet production via t-channel quark exchange with the target

 channelg → gq

the case where the incoming gluon interacts with the target via a t-channel quark exchange
converting into a quark and the quark splits into a quark-gluon pair in the final state after
interacting with the target (see Fig. 1b). The last mechanism corresponds to the case where
the incoming gluon splits into a quark-antiquark pair before the interaction with the target,
then antiquark interacts with the target via a t-channel quark exchange converting into a
gluon and finally one gets a quark-gluon dijet in the final state (see Fig. 1c). In the following
subsections, we study each of these mechanisms in detail.

g : p1, ⌫, �1, a1 ; x1

q : p2 ; x2g : q, µ, �, a ; y

 �

w

⇢, b2 ; z

(a) Diagram 1

g : q, µ, �, a ; y

µ0, b ; z

 �

g : p1, ⌫, �1, a1 ; x1

q : p2 ; x2
⌫ 0, b1 ; w

(b) Diagram 2

g : p1, ⌫, �1, a1 ; x1

q : p2 ; x2

g : q, µ, �, a ; y

 �

µ0, b ; w
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2.1 g ! gq amplitude in general kinematics

In this channel, we consider the incoming gluon with four momenta q, polarization � and color
a, the produced gluon with four momenta p1, polarization �1 and color a1, and the produced
quark with four momenta p2 and helicity h. As explained previously, three mechanisms
contribute to the scattering amplitude. In that case, one can write the total scattering
amplitude for this channel as a sum of the three contributions as

Mg!gq, tot. = Mg!gq, 1 +Mg!gq, 2 +Mg!gq, 3, (12)

where each term on the right hand side of Eq. (12) corresponds to the scattering amplitudes
computed for each of the three mechanisms described above.

Let us start our analysis with the first mechanism (see Fig. 1a). In that case, the S-matrix
element can be obtained thanks to the following LSZ-type reduction formula1 2

1We use the metric signature (+,�,�,�). We use xµ for a Minkowski 4-vector. In a light-cone basis we
have xµ = (x+,x, x�) where x± = (x0 ± x3)/

p
2 and x denotes a transverse vector with components xi. We

will also use the notations x = (x+,x) and k = (k+,k).
2For a given momentum 4-vector kµ, we use the notation ǩµ for its on-shell analog. More precisely, it
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4 q ! gg channel

The next channel we would like to discuss is gluon dijet production in quark initiated channel,
i.e. q ! gg channel. At NEik accuracy there are three mechanisms that contribute to this
process. In the first mechanism, incoming quark splits into a quark-gluon pair before the
medium which then scatters on the target. While the gluon scatters eikonally on the target,
the quark scatters via a t-channel quark exchange and converts into a gluon. Therefore, in
the final state one obtains a gluon dijet (see Fig. 5a). The second mechanism corresponds
to a similar mechanism except the gluons in the final state are interchanged (see Fig. 5b).
Finally, the third mechanism corresponds to the case where the incoming quark scatters on
the target via a t-channel quark exchange and converts into a gluon. This gluon splits into
two gluons in the final sate after the medium (see Fig. 5c).
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Figure 5: Diagrams contributing to channel q ! gg.

In the rest of this section, we present the results for the scattering amplitude in general
kinematics, scattering amplitude in back-to-back limit and the production cross section in
the back-to-back limit for each channel. Since the computation of the amplitudes both in
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the back-to-back limit for each channel. Since the computation of the amplitudes both in

28

 channelq → qq̄
in the final state a quark-antiquark dijet is produced (see Fig. 3a). In the second mechanism,
incoming quark interacts with the target via a t-channel quark exchange and converts into a
gluon. The gluon then splits into a quark-antiquark pair in the final state (see Fig. 3b).
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(b) Diagram 2

Figure 3: Diagrams contributing to channel q ! qq̄.

In the rest of this section, we derive the scattering amplitudes for each mechanism both in
general kinematics and in the back-to-back limit. We also compute the quark-antiquark dijet
production cross section for quark initiated channel at NEik accuracy in the back-to-back
and massless quark limits. Finally, we will consider the two other cases where all quarks do
not share the same flavor. If the final quarks-antiquark pair has the same flavor, but di↵erent
than the initial quark one (more explicitly, qf ! qf 0 q̄f 0 , with f 6= f 0), only the second diagram
contributes (Fig. 3b). When the final antiquark has di↵erent flavor than the quarks, initial
and final (more explicitly, qf ! qfqf 0), only the first diagram contributes (Fig. 3a).

3.1 q ! qq̄ amplitude in general kinematics

As discussed above, the scattering amplitude in the q ! qq̄ channel receives two contribu-
tions from the aforementioned two mechanisms and it is written as the sum of these two
contributions

Mq!qq̄, tot. = Mq!qq̄, 1 +Mq!qq̄, 2. (63)

Let us start with the first mechanism which is described in Fig. 3a. In that case, the S-matrix
element can be obtained from LSZ-type reduction formula which reads

Sq!qq̄, 1 = lim
x+
1 ,x+

2 !1
lim

y+!�1
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ˆ
x�
1 ,x�

2

ˆ
y

ˆ
y�

eix1·p̌1 eix2·p̌2 e�iy·q̌
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ˆ
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⇥ �
�2
(z)

h
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i

�2↵2
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h
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��BI
Eik.

i
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⇥ u(p̌1, h1)�
+


SF (x1, w)

��BA,q
Eik.

(�igtb�⌫) S0,F (w, y)

�

�↵

�+u(q̌, h), (64)

where the inside-to-after antiquark propagator is given in Eq. (213), the before-to-inside gluon
propagator is given in Eq. (206), the before-to-after quark propagator is given in Eq. (208)
and the vacuum quark propagator is given in Eq. (24). By using these explicit expressions,
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5 q ! qq channel

The next process we would like to consider is quark-quark jet production in quark initiated
channel, i.e. q ! qq channel. We will first consider the case where all quarks have the same
flavor. In this case, two mechanisms contribute to this channel at NEik accuracy. One where
the incoming quark splits into a quark-gluon pair before the medium, and the pair scatters
on the target. While the quark scatters eikonally, the gluon scatters via a t-channel quark
exchange and converts into a quark, producing quark dijet in the final state (see Fig. 7a).
The second one is similar except the quarks in the final state are interchanged (see Fig. 7b).
At the end of this section, we will also consider the case where the final quarks have di↵erent
flavors (more explicitly, qf ! qfqf 0 with f 6= f 0), denoted q ! qq0. In this instance, only the
first discussed diagram contributes (see Fig. 7a).
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Figure 7: Diagrams contributing to channel q ! qq.

5.1 q ! qq amplitude in general kinematics

The total scattering amplitude in q ! qq channel receives two contributions from the afore-
mentioned two mechanism and can be written as

Mq!qq, tot. = Mq!qq, 1 +Mq!qq, 2. (128)

The S-matrix element for the first mechanism, illustrated in Fig. 7a can be written as
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↵2
(z), (129)

where the before-to-after quark propagator is given in Eq. (208), the before-to-inside gluon
propagator is given in Eq. (206), the inside-to-after quark propagator is given in Eq. (210)
and the vacuum quark propagator is given in Eq. (24). Using the explicit expressions for the
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the case where the incoming gluon interacts with the target via a t-channel quark exchange
converting into a quark and the quark splits into a quark-gluon pair in the final state after
interacting with the target (see Fig. 1b). The last mechanism corresponds to the case where
the incoming gluon splits into a quark-antiquark pair before the interaction with the target,
then antiquark interacts with the target via a t-channel quark exchange converting into a
gluon and finally one gets a quark-gluon dijet in the final state (see Fig. 1c). In the following
subsections, we study each of these mechanisms in detail.
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Figure 1: Diagrams contributing to channel g ! gq.

2.1 g ! gq amplitude in general kinematics

In this channel, we consider the incoming gluon with four momenta q, polarization � and color
a, the produced gluon with four momenta p1, polarization �1 and color a1, and the produced
quark with four momenta p2 and helicity h. As explained previously, three mechanisms
contribute to the scattering amplitude. In that case, one can write the total scattering
amplitude for this channel as a sum of the three contributions as

Mg!gq, tot. = Mg!gq, 1 +Mg!gq, 2 +Mg!gq, 3, (12)

where each term on the right hand side of Eq. (12) corresponds to the scattering amplitudes
computed for each of the three mechanisms described above.

Let us start our analysis with the first mechanism (see Fig. 1a). In that case, the S-matrix
element can be obtained thanks to the following LSZ-type reduction formula1 2

1We use the metric signature (+,�,�,�). We use xµ for a Minkowski 4-vector. In a light-cone basis we
have xµ = (x+,x, x�) where x± = (x0 ± x3)/

p
2 and x denotes a transverse vector with components xi. We

will also use the notations x = (x+,x) and k = (k+,k).
2For a given momentum 4-vector kµ, we use the notation ǩµ for its on-shell analog. More precisely, it
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The first mechanism, S-matrix element reads  

Sg→gq, 1 = lim
y+→↑↓

lim
x+
1 ,x+

2 →↓

ˆ
y,x1,x2

ˆ
y→,x→

1 ,x→
2

ˆ
w,z

ˆ
w→,z→

ˆ L+

2

↑L+

2

dz+
ˆ ↑L+

2

↑↓
dw+

→ eix1·p̌1 eix2·p̌2 e↑iy·q̌(↑2q+) ωµω(q) (↑2p+1 ) ω
ε
ω1
(p1)

→
[
Gµ↑µ

0,F(w, y)
]

a↑a

[
Gεε↑

F (x1, w)
∣∣BA
Eik.

]

a1b1

[
Gϑϑ↑

F (z, w)
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Eik.

]

b2b
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µ↑ε↑ϑ↑

→ u(p̌2, h)ε
+
[
SF(x2, z)

∣∣IA,q
Eik.

(↑ig)tb2
]

ϖ2ϱ
εϑ!

↑
ϱ (z), (13)

where Gµ↑µ
0,F(w, y) is the vacuum gluon propagator which in momentum space reads

G̃µε
0,F(p) =

i

p2 + iω

[
↑ gµε +

pµϑε + ϑµpε

p · ϑ

]
, (14)

with ϑµ defined as ϑµ = gµ+, so that ϑ ·p = p+ and ϑ2 = 0. Since we are in the ϑ ·A ↓ A+ = 0
light cone gauge, one has

G̃µ+
0,F(p) = G̃+ε

0,F(p) = 0 . (15)

V a↑b1b
µ↑ε↑ϑ↑ is the triple gluon vertex which is defined as

V abc
ω1ω2ω3

(p1, p2, p3) = gfabc
[
gω1ω2(p1 ↑ p2)ω3 + gω2ω3(p2 ↑ p3)ω1 + gω3ω1(p3 ↑ p1)ω2

]
, (16)

with all incoming convention for momenta p1, p2 and p3. Finally, Gεε↑
F (x1, w)

∣∣BA
Eik.

and

Gϑϑ↑

F (z, w)
∣∣BI
Eik.

are the before-to-after and before-to-inside gluon propagators whose ex-
plicit expressions are given in Eqs. (205) and (206) respectively at eikonal order. Finally,

SF(x2, z)
∣∣IA,q
Eik.

is the inside-to-after quark propagator at eikonal order which is given in
Eq. (210). After using these explicit expressions and contracting the Dirac indices, the
S-matrix element for the first mechanism (Fig. 1a) can be written as

Sg→gq, 1 =
↑ig2

2p+2
fab1b

ˆ
z,z1

ˆ L+

2

↑L+

2

dz+
ˆ ↑L+

2

↑↓
dw+

ˆ
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(2ϖ)2

ˆ
d3k2
(2ϖ)2

ϱ(k+1 ↑ p+1 ) ϱ(k
+
2 ↑ p+2 )

→ e↑iw+(q̌→↑ǩ→1 ↑ǩ→2 ) e↑iz·(p2↑k2) e↑iz1·(p1↑k1) (2ϖ)3ϱ(3)(q ↑ k1 ↑ k2)

→ u(p̌2, h) UF(↔, z+; z) tb2 UA(z
+, w+; z1)b2b UA(↔, w+; z)a1b1

→
{[

↑ ωµ
↑

ω (q) +
ωµω(q)qµ

q+
ϑµ

↑
][

↑ ωε
↑

ω1
(p1) +

ωεω1
(p1)k1ε

p+1
ϑε

↑
][
glϑ

↑ ↑ ϑϑ
↑

p+2
k2

l
]

→
[
↑ gµ↑ε↑(q + k1)ϑ↑ + gε↑ϑ↑(k1 ↑ k2)µ↑ + gϑ↑µ↑(k2 + q)ε↑

]}
εl
ε+ε↑

2
!(z). (17)

Note that the second term in the first square brackets vanish by transversality of the gluon
polarization vector. Also, we would like mention that the covariant derivative terms in the

is defined in such a way that their + and transverse components coincide, ǩ+ = k+ and ǩ = k, whereas
the → component of ǩµ is adjusted to make it on-shell, i.e. ǩ→ = (k2 + m2)/(2k+) for a massive quark or
ǩ→ = k2/(2k+) for a gluon.
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Total scattering amplitude for this channel 

Before-to-after gluon propagator 

Before-to-inside gluon propagator 

Inside-to-after quark propagator 

gluon propagator:
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Eik.
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ˆ
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(2ω)3
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eiy·ǩ2 (205)
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ǩ1 · ǩ2
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ω k

j
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+ i

(
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kj
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)(
↑
D

A
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The inside-to-after gluon propagator (starting from inside the medium and ending after the
medium)
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+, x+, z). (208)

The before-to-inside quark propagator:

SF(x, y)
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And finally the antiquarks propagators read, starting with before-to-after antiquark propa-
gator
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∣∣BA,q̄
Eik.

= (↑1)

ˆ
d3k1
(2ω)3

ε(↑k+1 )

2k+1
e→ix·ǩ1
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] ˆ

z
e→iz·(k1→k2)

ˆ
z→

eiz
→(k+1 →k+2 ) UA(x

+, y+, z).

The before-to-inside gluon propagator (starting from before the medium and ending inside
the medium)

Gµω
F (x, y)

∣∣BI
Eik.

=

ˆ
d3k

(2ω)3
ε(k+)

2k+
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ˆ
d3k2
(2ω)3

ε(k+2 )

k+1 + k+2
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ǩ1 · ǩ2
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[
1↑ i

ϖ+ϖj

2k+
↑
D

F
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]
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[
1↑ i

ϖ+ϖj
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↓
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F
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And finally the antiquarks propagators read, starting with before-to-after antiquark propa-
gator
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∣∣BA,q̄
Eik.

= (↑1)

ˆ
d3k1
(2ω)3

ε(↑k+1 )

2k+1
e→ix·ǩ1

ˆ
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Scattering amplitude can be obtained from the S-matrix element

before-to-inside gluon propagator given in Eq. (206) and the inside-to-after quark propagator
given in Eq. (210), come in between two ω+ matrices in Eq. (17) and therefore vanish. The
momentum structure appearing in Eq. (17) can be further simplified by using Eq. (19) and
it can be written as

{
→ εµ

→

ω (q)
[
→ εε

→
ω1
(p1) +

εεω1
(p1)k1ε

p+1
ϑε

→
][
glϑ

→ → ϑϑ
→

p+2
k2

l
]

↑
[
→ gµ→ε→(q + k1)ϑ→ + gε→ϑ→(k1 → k2)µ→ + gϑ→µ→(k2 + q)ε→

]}

= →ϖiω ϖj→ω1

{
gij

[
ql + k1

l → q+ + p+1
p+2

k2
l
]
→ gjl

[p+2 → p+1
q+

qi + k1
i → k2

i
]

→ gil
[
qj → p+2 + q+

p+1
k1

j + k2
j
]}

, (18)

where we have used the fact that in the light-cone gauge A+ = 0, the gluon polarization
vectors satisfy

ε+ω (p) = εω↑(p) = 0,

εiω(p) = →εωi (p) = ϖiω,

ε↑ω (p) = εω+(p) =
ϖω · p
p+

. (19)

Plugging the simplified momentum structure given in Eq. (18) back into Eq. (17) and per-
forming the integration over k2, one can write the S-matrix element for the first mechanism
as

Sg↓gq, 1 =
→ig2

2p+2
fab1b (2ϱ)ς(q+ → p+1 → p+2 )

ˆ
z,z1

ˆ L+

2

↑L+

2

dz+
ˆ ↑L+

2

↑↔
dw+

ˆ
d2k1

(2ϱ)2

↑ e
↑iw+

(
q2

2q+
↑ k1

2

2p+1

↑ (k1↑q)2+m2

2p+2

)

e↑iz·(p2+k1↑q) e↑iz1·(p1↑k1)

↑ u(p̌2, h) UF(↓, z+; z) tb2 UA(z
+, w+; z1)b2b UA(↓, w+; z)a1b1 ωlω+ω↑ !(z)

↑ ϖiωϖ
j→
ω1

[
gij

(p+1
p+2

ql → q+

p+2
k1

l
)
+ gil

(
qj → q+

p+1
k1

j
)
→ gjl

(p+1
q+

qi → k1
i
)]

. (20)

The scattering amplitude can be obtained from the S-matrix element by using the relation

Sg↓gq = (2q+)(2ϱ) ς
(
p+1 + p+2 → q+

)
iMg↓gq. (21)

Thus, the scattering amplitude for the first mechanism, where an incoming gluon splits into
two gluons before the medium, one of the gluons interact with the via a t-channel quark
exchange converting into a quark and one gets a quark-gluon dijet in the final state (Fig. 1a),

9

??), can be written by using Eq. (??) as

iMg→gq, 1 =→ ig2
1

(2p+2 )(2q
+)

fab1b
ˆ
z,z1

ˆ L+

2

↑L+

2

dz+
ˆ ↑L+

2

↑↓
dw+

ˆ
d2k1

(2ω)2

↑ e
↑iw+

(
q2

2q+
↑ k1

2

2p+1

↑ (k1→q)2+m2

2p+2

)

e↑iz·(p2+k1↑q) e↑iz1·(p1↑k1)

↑ u(p̌2, h) UF(+↓, z+; z) tb2 UA(z
+, w+; z1)b2b UA(+↓, w+; z)a1b1 εlε+ε↑ !(z)

↑ ϑiωϑ
j↔
ω1

[
gij

(p+1
p+2

ql → q+

p+2
k1

l
)
+ gil

(
qj → q+

p+1
k1

j
)
→ gjl

(p+1
q+

qi → k1
i
)]

We can now consider the second mechanism for the quark-gluon pair production in gluon
initiated channel described in Fig. ??. The S-matrix element can be again obtained via
LSZ-type reduction formula which for the second mechanism reads

Sg→gq, 2 = lim
y+→↑↓

lim
x+
1 ,x+

2 →+↓

ˆ
y,x1,x2

ˆ
y→,x→

1 ,x→
2

ˆ
w,z

ˆ
w→,z→

ˆ L+

2

↑L+

2

dz+
ˆ +↓

L+

2

dw+

↑ eix1·p̌1 eix2·p̌2 e↑iy·q̌ (→2q+)ϖωµ(q) (→2p+1 ) ϖ
ω1
ε (p1)

↔
[
Gµ↑µ

F (z, y)
∣∣BI
Eik.

]

ba

[
Gεε↑

0,F(x1, w)
]

a1b1

↑ u(p̌2, h) ε
+
[
S0,F(x2, w)(→ig)tb1εε↑SF(w, z)

∣∣IA
Eik.

(→ig)tb
]

ϑ2ϖ
εµ↑!↑

ϖ (z). (22)

where the explicit expressions for before-to-inside gluon propagator and inside-to-after quark
propagator are given in Eqs. (??) and (??) respectively at eikonal accuracy. The vacuum
gluon propagator is given in Eq. (??) and S0,F(x2, w) is vacuum quark propagator which is
defined as

S0,F(x, y)ϖϑ = (1)ϖϑ

ˆ
d4k

(2ω)4
e↑ik·(x↑y) i(/k +m)[

k2 →m2 + iϖ
] (23)

where m is the quark mass. Using explicit expressions of the propagators and Eq. (??) for
the polarization vectors, the S-matrix element for the second mechanism can be written as

Sg→gq, 2 =
g2

2(2q+)(2p+2 )

ˆ
z

ˆ L+

2

↑L+

2

dz+
ˆ +↓

L+

2

dw+
ˆ

d3k0
(2ω)2

ϱ(k+0 → q+) e↑iw+(ǩ→0 ↑p̌→1 ↑p̌→2 )

↑ e↑iz·(k0↑q) (2ω)3ϱ(3)(k0 → p
1
→ p

2
)ϑiω ϑj↔ω1

u(p̌2, h)ε
+ (/̌p2 +m)

[
εj → p1

j

p+1
ε+

]

↑ (/̌k0 +m)εi ε+ε↑ tb1 UF(w
+, z+; z) tb UA(z

+,→↓; z)ba !(z). (24)

The Dirac structure appears in Eq. (??) can be seen in other channels in this manuscript. It
can be simplified and can be written in a generic manner in the following way

ε+(/k1 +m)
[
εj + aε+

]
(/k2 +m)ε+

= →2ε+
[
k+1 k2

lεjεl + k+2 k1
lεlεj +m(k+1 → k+2 )ε

j → 2ak+1 k
+
2

]
(25)
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The scattering amplitude for the first mechanism in 
general kinematics 

Back-to-back limit: perform the change of variables   and  (z, z1) → (b, r) (p1, p2) → (P, k) with back-to-back limit  or equivalently k ≪ P r ≪ b
• Taylor expand the Wilson line structure around  and keep only the first non-trivial term r = 0
•  and  dependence remains in the phase and integrated trivially r k1

as

iMg→gq, 1 =
→i g2

(1→ z)(2q+)2
fab1b

ˆ
z,z1

ˆ L+

2

↑L+

2

dz+
ˆ ↑L+

2

↑↓
dw+

ˆ
d2k1

(2ω)2

↑ e
↑ iw+

2z(1→z)q+

[
z(1↑z)q2↑(1↑z)k1

2↑z(k1↑q)2+zm2
]
e↑ib·(k↑q) e↑ir·(zq+P↑k1)

↑ UA
(
z+, w+;b+ (1→ z)r

)
b2b

UA(+↓, w+;b→ zr)a1b1

↑ u(p̌2, h) UF(+↓, z+;b→ zr) tb2 εlε+ε↑!(z)

↑ ϑiω ϑj↔ω1

[
gij

( z

1→ z
ql → 1

1→ z
k1

l
)
+ gil

(
qj → 1

z
k1

j
)
→ gjl

(
zqi → k1

i
)]
. (34)

where z and (1→z) corresponds to longitudinal momentum fraction carried by the gluon and
quark respectively and they are defined in Eq. (2).

We can now take the back-to-back limit of iMg→gq, 1. As discussed in Sec. 1 this limit
corresponds to the kinematic region where the relative dijet momenta P is much larger than
the dijet momentum imbalance k, defined in Eq. (1). In coordinate space, this limit is given
by |r| ↔ |b| with r and b being the conjugate coordinates and defined in Eq. (3). Therefore,
in the back-to-back limit one can perform a Taylor expansion around r = 0. Performing
the expansion in the Wilson line structure and keeping only the zeroth order term in the
expansion (since it is the first non-trivial contribution to the back-to-back limit) one observes
that r dependence in the Wilson lines disappears and the only r dependence appears in the
phase. This allows one to perform the r and k1 integrals trivially. All in all, the back-to-back
limit of the first mechanism in the quark-gluon dijet production in gluon initiated channel
can be written as

iMb2b
g→gq, 1 =

ig2

(1→ z)(2q+)2
fab1b

ˆ L+

2

↑L+

2

dz+
ˆ ↑L+

2

↑↓
dw+e

i w+

2z(1→z)q+
[P2↑zm2]

↑
ˆ
b
e↑ib·(k↑q) UA(+↓, w+;b)a1b1 UA(z

+, w+;b)b2b UF(+↓, z+;b) tb2

↑ u(p̌2, h) ϑ
i
ω ϑj↔ω1

[ 1

1→ z
gijPl +

1

z
gilPj → gjlPi

]
εlε+ε↑!(z+;b)

Note that w+ is before the medium and it is integrated upto the edge of the medium →L+/2.
Since the background fields vanish outside the medium one can take w+ ↗ →↓ in the Wilson
lines. Then, the only dependence of w+ remains in the phase and integration over it can be
performed trivially. Upon integration over w+ one gets a phase with a factor of L+ which can
be approximated by one since we are performing the computation at NEik accuracy. After
all said and done, one gets the back-to-back limit of the scattering amplitude for the first
mechanism as

iMb2b,m=0
g→gq, 1 = g2

z

(2q+)

1

P2
fab1b

ˆ L+

2

↑L+

2

dz+̂
b
e↑ip·(k↑q)

↑ UA(+↓,→↓;b)a1b1 UA(z
+,→↓;b)b2b UF(+↓, z+;b) tb2

↑ u(p̌2, h) ϑ
i
ω ϑj↔ω1

[
gij

Pl

(1→ z)
+ gil

Pj

z
→ gjlPi

]
εlε+ε↑!(z+;b), (35)
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•  is before the medium and is integrated 
up to the edge of the medium  
ω+

• since background fields vanish outside the 
medium, take  in Wilson lines ω+ → ∞

•  integral   phaseω+ ⇒ L+

•  phase can be approximated by 1 at  NEik accuracy L+
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In the back-to-back and massless limits one gets 

as

iMg→gq, 1 =
→i g2

(1→ z)(2q+)2
fab1b

ˆ
z,z1

ˆ L+

2

↑L+

2

dz+
ˆ ↑L+

2

↑↓
dw+

ˆ
d2k1

(2ω)2

↑ e
↑ iw+

2z(1→z)q+

[
z(1↑z)q2↑(1↑z)k1

2↑z(k1↑q)2+zm2
]
e↑ib·(k↑q) e↑ir·(zq+P↑k1)

↑ UA
(
z+, w+;b+ (1→ z)r

)
b2b

UA(+↓, w+;b→ zr)a1b1

↑ u(p̌2, h) UF(+↓, z+;b→ zr) tb2 εlε+ε↑!(z)

↑ ϑiω ϑj↔ω1

[
gij

( z

1→ z
ql → 1

1→ z
k1

l
)
+ gil

(
qj → 1

z
k1

j
)
→ gjl

(
zqi → k1

i
)]
. (34)

where z and (1→z) corresponds to longitudinal momentum fraction carried by the gluon and
quark respectively and they are defined in Eq. (2).

We can now take the back-to-back limit of iMg→gq, 1. As discussed in Sec. 1 this limit
corresponds to the kinematic region where the relative dijet momenta P is much larger than
the dijet momentum imbalance k, defined in Eq. (1). In coordinate space, this limit is given
by |r| ↔ |b| with r and b being the conjugate coordinates and defined in Eq. (3). Therefore,
in the back-to-back limit one can perform a Taylor expansion around r = 0. Performing
the expansion in the Wilson line structure and keeping only the zeroth order term in the
expansion (since it is the first non-trivial contribution to the back-to-back limit) one observes
that r dependence in the Wilson lines disappears and the only r dependence appears in the
phase. This allows one to perform the r and k1 integrals trivially. All in all, the back-to-back
limit of the first mechanism in the quark-gluon dijet production in gluon initiated channel
can be written as

iMb2b
g→gq, 1 =

ig2

(1→ z)(2q+)2
fab1b

ˆ L+

2

↑L+

2

dz+
ˆ ↑L+

2

↑↓
dw+e

i w+

2z(1→z)q+
[P2↑zm2]

↑
ˆ
b
e↑ib·(k↑q) UA(+↓, w+;b)a1b1 UA(z

+, w+;b)b2b UF(+↓, z+;b) tb2

↑ u(p̌2, h) ϑ
i
ω ϑj↔ω1

[ 1

1→ z
gijPl +

1

z
gilPj → gjlPi

]
εlε+ε↑!(z+;b)

Note that w+ is before the medium and it is integrated upto the edge of the medium →L+/2.
Since the background fields vanish outside the medium one can take w+ ↗ →↓ in the Wilson
lines. Then, the only dependence of w+ remains in the phase and integration over it can be
performed trivially. Upon integration over w+ one gets a phase with a factor of L+ which can
be approximated by one since we are performing the computation at NEik accuracy. After
all said and done, one gets the back-to-back limit of the scattering amplitude for the first
mechanism as

iMb2b,m=0
g→gq, 1 = g2

z

(2q+)

1

P2
fab1b

ˆ L+

2

↑L+

2

dz+̂
b
e↑ip·(k↑q)

↑ UA(+↓,→↓;b)a1b1 UA(z
+,→↓;b)b2b UF(+↓, z+;b) tb2

↑ u(p̌2, h) ϑ
i
ω ϑj↔ω1

[
gij

Pl

(1→ z)
+ gil

Pj

z
→ gjlPi

]
εlε+ε↑!(z+;b) (35)
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where we have also considered the massless quark limit for simplicity. One should realize that
the color structure that appears in Eq. (35) can be further simplified. By using the relations
presented in Eqs. (153) and (154) from App. A.2, one can write the color structure as

UA(+→,↑→;b)a1b1UA(z
+,↑→;b)b2b

[
UF(+→, z+;b)tb2fab1b!(z+;b)

]

= ↑i UA(+→,↑→;b)ca
[
[tc, ta1 ]UF(+→, z+;b)!(z+;b)

]

Using this simplification in Eq. (35), one obtains the final expression of the scattering am-
plitude for the first mechanism in the back-to-back and massless quark limits as

iMb2b,m=0
g→gq, 1 = ↑i g2

1

(2q+)

1

P2

ˆ L
2

↑L
2

dz+
ˆ
b
e↑ib·(k↑q) UA(+→,↑→;b)ca [t

c, ta1 ]UF(+→, z+;b)

↓ u(p̌2, h) ω
i
ω ωj↓ω1

[
z

1↑ z
gijPl + gilPj ↑ zgjlPi

]
εlε+ε↑!(z+;b). (36)

We can continue our discussion of the back-to-back limit for the quark-gluon dijet pro-
duction in the gluon initiated channel with the second mechanism (Fig. 1b). As discussed
previously, this second mechanism corresponds to the case where the incoming gluon converts
into a quark via a t-channel qaurk exchange with the target and it splits into a quark-gluon
dijet outside the medium. Since the quark-gluon dijet is produced after the medium, the
back-to-back limit of the production amplitude is irrelevant in this mechanism. However, we
still write the amplitude in terms of the of the relative dijet momentum P and dijet momen-
tum imbalance k defined in Eq. (1) and their conjugate variables r and b defined in Eq. (3).
Moreover, for the consistency of our final results, we refer to the amplitude as back-to-back
amplitude after performing the change of variables. Then, starting from Eq. (28), we can
write the scattering amplitude as

iMb2b
g→gq, 2 = ↑ g2

2(1↑ z)(2q+)2

ˆ L+

2

↑L+

2

dz+
ˆ +↔

L+

2

dw+e
↑ iw+

2z(1→z)q+
[P2↑z2m2]

ˆ
b
e↑ib·(k↑q)

↓ u(p̌2, h) ω
i
ω ωj↓ω1

[
εlεjPl ↑ zmεj ↑ 2

1↑ z

z
Pj

]
εiε+ε↑

↓ tb1 UF(w
+, z+;b) tb UA(z

+,↑→;b)ba !(z). (37)

Note that for this mechanism w+ is after the medium and its integration region is from L+/2
to +→. Since the background fields vanish outside the medium , one can take w+ ↔ +→ in
the Wilson line in Eq. (37). Then the remaining w+ dependence appears only in the phase
and integration over w+ can be performed trivially. Upon integration, one again gets a phase
factor with L+ which can be set to one in the accuracy we are performing the computations.
Finally, performing the integration over w+ and taking the massless quark limit one obtains

iMb2b,m=0
g→gq, 2 = ↑ i

2
g2

1

(2q+)

1

P2

ˆ L
2

↑L
2

dz+
ˆ
p
e↑ip·(k↑q) u(p̌2, h) ω

i
ω ωj↓ω1

[
zεlεjPl ↑ 2(1↑ z)Pj

]

↓ εiε+ε↑ tb1 UF(w
+, z+;b) tb UA(z

+,↑→;b)ba !(z+,b). (38)
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The color structure can be further simplified as

UA(z
+,→↑;b)ab

[
tb1UF(+↑, z+;b)tb!(z+,b)

]

= UA(+↑,→↑;b)cat
b1UA(+↑, z+;b)cb

[
UF(+↑, z+;b)tb!(z+,b)

]

= UA(+↑,→↑;b)ca
[
tb1tcUF(+↑, z+;b)!(z+,b)

]
, (38)

which leads to the following final expression for the scattering amplitude in the back-to-back
and massless quark limits of second mechanism

iMb2b,m=0
g→gq, 2 = → i

2
g2

1

(2q+)

1

P2

ˆ L
2

↑L
2

dz+
ˆ
b
e↑ib·(k↑q) u(p̌2, h) ω

i
ω ωj↓ω1

[
zεlεjPl → 2(1→ z)Pj

]

↓ εiε+ε↑UA(+↑,→↑;b)ca tb1 tc UF(+↑, z+;b) !(z+,b)

We can perform a similar analysis for the third mechanism in the quark-gluon dijet pro-
duction in gluon initiated channel (Fig. 1c). This mechanism corresponds to the case where
the incling gluon splits into quark-antiquark pair before the medium, then the pair scatters
on the target. The antiquark jet interacts with the target via t-channel quark exchange con-
verting into a gluon. Thus, in the final state one gets a quark-gluon dijet. The amplitude for
this mechanism is given in Eq. (32) in general kinematics. In order to consider back-to-back
limit, we perform the change of variables given in Eqs. (1) and (3), and then perform the
small r expansion keeping only the zeroth order term in the expansion. The amplitude then
reads

iMb2b
g→gq, 3 = → g2

2z(1→ z)(2q+)2

ˆ L+

2

↑L+

2

dz+
ˆ ↑L+

2

↑↔
dw+

ˆ
b
e↑ib·(k↑q) e

iw+

2z(1→z)q+
[P2+m2]

↓ UA(+↑, z+;b)a1b1 UF(+↑, w+;b) ta U†
F(z

+, w+;b) tb1

↓ u(p̌2, h) ω
i
ωω

j↓
ω1

[
→zPlεlεi + (1→ z)Plεiεl →mεi

]
εjε+ε↑ !(z+;b). (39)

Here, one can again take the limit w+ ↔ →↑ in the Wilson lines since the gauge fields vanish
outside the medium. Then again the only w+ depends appears in the phase which can be
integrated trivially. The integration gives an L+ dependent phase which can be approximated
by one within the accuarcy of our computations. Finally, after taking the massless quark limit,
one obtains the scattering amplitude as

iMb2b,m=0
g→gq =

i

2
g2

1

(2q+)

1

P2

ˆ
b
e↑ib·(k↑q) UA(+↑, z+;b)a1b1 UF(+↑,→↑;b) ta

↓ U†
F(z

+,→↑;b) tb1u(q̌2, h) ω
i
ω ωj↓ω1

[
→zPlεlεi + (1→ z)Plεiεl

]
εjε+ε↑!(z+;b).

(40)

The color structure can be further simplified as

UA(+↑, z+;b)a1b1

[
UF(+↑,→↑;b)taU†

F(z
+,→↑;b)tb1!(z+,b)

]

= UA(+↑, z+;b)a1b1UA(+↑,→↑;b)ca
[
tcUF(+↑,→↑;b)UF(→↑, z+;b)tb1!(z+,b)

]

= UA(+↑,→↑;b)ca
[
tcUA(+↑, z+;b)a1b1UF(+↑, z+;b)tb1!(z+,b)

]

= UA(+↑,→↑;b)ca
[
tcta1UF(+↑, z+;b)!(z+,b)

]
, (41)
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Substituting Eq. (41) into the scattering amplitude given in Eq. (40), we obtain the back-
to-back limit of the scattering amplitude of quark-gluon dijet in gluon initiated channel via
the third mechanism as

iMb2b,m=0
g→gq, 3 =

i

2
g2

1

(2q+)

1

P2

ˆ
b
e↑ib·(k↑q) UA(+→,↑→;b)ca tc ta1 UF(+→, z+;b)

↓ u(q̌2, h) ω
i
ω ωj↓ω1

[
↑zPlεlεi + (1↑ z)Plεiεl

]
εjε+ε↑!(z+;b)

As stated previously, the total scattering amplitude given in Eq. (33) receives three
contributions that are given in Eqs. (??), (??) and (42), and summing them all we can
obtain

iMb2b,m=0
g→gq, tot. =

i

2
g2

1

2q+
1

P2

ˆ L+

2

↑L+

2

dz+
ˆ
b
e↑ib·(k↑q) UA(+→,↑→;b)ba

↓ u(q̌2, h)
[
ta1tbh(1)g→gq + tbta1h(2)g→gq

]
ε+ε↑ UF(+→, z+;b)!(z+;b) (42)

with

h(1)g→gq = ωiω ωj↓ω1

(
↑zPl εlεjεi + 2(2↑ z)Pj εi ↑ 2zPiεj + 2

z

1↑ z
Pl gijεl

)
(43)

h(2)g→gq = ωiω ωj↓ω1

(
↑2zPl εlεiεj + (1↑ 2z)Pl εiεlεj ↑ 2Pjεi ↑ 2

z

1↑ z
Plgijεl

)
. (44)

2.3 g ↔ gq production cross section in the back-to-back limit

The partonic cross section for the production of quark-gluon dijet in the gluon initiated
channel in the back-to-back and massless quark limits can be written as

dϑb2b,m=0
g→gq

dP.S.
= (2q+) 2ϖϱ

(
p+1 + p+2 ↑ q+

) 1

2(N2
c ↑ 1)

∑

ω,ω1

∑

h

∑

a,a1

〈∣∣∣iMb2b,m=0
g→gq, tot.

∣∣∣
2
〉
, (45)

with the total amplitude in the back-to-back and massless limits is given in Eq. (43) together
with Eqs. (44) and (45). ↗· · · ↘ stands for the target averaging within the spirit of CGC for-
malism. The normalization factors 2 and (N2

c ↑1) arise from the averaging of the helicity and
colors respectively. When written in terms of the relative momentum and dijet momentum
imbalance, the phase space is defined as

dP.S. =
d2k

(2ϖ)2
dq+

(2ϖ)2q+
d2P

(2ϖ)2
dz

(2ϖ)2z(1↑ z)
(46)

with q+ = p+1 + p+2 . Using the explicit expression of the production amplitude given in Eq.
(43), partonic cross section for the g ↔ gq channel in the back-to-back limit can be written
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the case where the incoming gluon interacts with the target via a t-channel quark exchange
converting into a quark and the quark splits into a quark-gluon pair in the final state after
interacting with the target (see Fig. 1 B). The last mechanism corresponds to the case where
the incoming gluon splits into a quark-antiquark pair before the interaction with the target,
then anti-quark interacts with the target via a t-channel quark exchange converting into a
gluon and finally one gets a quark-gluon dijet in the final state (see Fig. 1 C). In the following
subsections, we study each of these mechanisms in detail.

g : p1, ⌫, �1, a1 ; x1

q : p2 ; x2g : q, µ, �, a ; y
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w

⇢, b2 ; z

1○

g : q, µ, �, a ; y

µ′, b ; z
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2○
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q : p2 ; x2

g : q, µ, �, a ; y
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µ′, b ; w

⌫ ′, b1 ; z

3○

Figure 1: Diagrams contributing to g → gq

2.1 g → gq amplitude in general kinematics

In this channel, we consider the incoming gluon with four momenta q, polarization ω and color
a, the produced gluon with four momenta p1, polarization ω1 and color a1, and the produced
quark with four momenta p2 and helicity h. As explained previously, three mechanisms
contribute to the scattering amplitude. In that case, one can write the total scattering
amplitude for this channel as a sum of the three contributions as

Mg→gq, tot. = Mg→gq, 1 +Mg→gq, 2 +Mg→gq, 3 (12)

where each term on the right hand side of Eq. (12) corresponds to the scattering amplitudes
computed each of the three mechanisms described above.

Let us start our analysis with the first mechanism (see Fig. 1a). In that case, the S-matrix
element can be obtained thanks to the following LSZ-type reduction formula1 2

1We use the metric signature (+,→,→,→). We use xµ for a Minkowski 4-vector. In a light-cone basis we
have xµ = (x+,x, x→) where x± = (x0 ± x3)/

↑
2 and x denotes a transverse vector with components xi. We

will also use the notations x = (x+,x) and k = (k+,k).
2For a given momentum 4-vector kµ, we use the notation ǩµ for its on-shell analog. More precisely, it
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sum of three mechanisms

Substituting Eq. (41) into the scattering amplitude given in Eq. (40), we obtain the back-
to-back limit of the scattering amplitude of quark-gluon dijet in gluon initiated channel via
the third mechanism as

iMb2b,m=0
g→gq, 3 =

i

2
g2

1

(2q+)

1

P2

ˆ
b
e↑ib·(k↑q) UA(+→,↑→;b)ca tc ta1 UF(+→, z+;b)

↓ u(q̌2, h) ω
i
ω ωj↓ω1

[
↑zPlεlεi + (1↑ z)Plεiεl

]
εjε+ε↑!(z+;b)

As stated previously, the total scattering amplitude given in Eq. (33) receives three
contributions that are given in Eqs. (??), (??) and (??), and summing them all we can
obtain

iMb2b,m=0
g→gq, tot. =

i

2
g2

1

2q+
1

P2

ˆ L+

2

↑L+

2

dz+
ˆ
b
e↑ib·(k↑q) UA(+→,↑→;b)ba

↓ u(q̌2, h)
[
ta1tbh(1)g→gq + tbta1h(2)g→gq

]
ε+ε↑ UF(+→, z+;b)!(z+;b)

with

h(1)g→gq = ωiω ωj↓ω1

(
↑zPl εlεjεi + 2(2↑ z)Pj εi ↑ 2zPiεj + 2

z

1↑ z
Pl gijεl

)

h(2)g→gq = ωiω ωj↓ω1

(
↑2zPl εlεiεj + (1↑ 2z)Pl εiεlεj ↑ 2Pjεi ↑ 2

z

1↑ z
Plgijεl

)

2.3 g ↔ gq production cross section in the back-to-back limit

The partonic cross section for the production of quark-gluon dijet in the gluon initiated
channel in the back-to-back and massless quark limits can be written as

dϑb2b,m=0
g→gq

dP.S.
= (2q+) 2ϖϱ

(
p+1 + p+2 ↑ q+

) 1

2(N2
c ↑ 1)

∑

ω,ω1

∑

h

∑

a,a1

〈∣∣∣iMb2b,m=0
g→gq, tot.

∣∣∣
2
〉
, (42)

with the total amplitude in the back-to-back and massless limits is given in Eq. (??) to-
gether with Eqs. (42) and (43). ↗· · · ↘ stands for the target averaging within the spirit of
CGC formalism. The normalization factors 2 and (N2

c ↑ 1) arise from the averaging of the
helicity and colors respectively. When written in terms of the relative momentum and dijet
momentum imbalance, the phase space is defined as

dP.S. =
d2k

(2ϖ)2
dq+
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with q+ = p+1 + p+2 . Using the explicit expression of the production amplitude given in Eq.
(??), partonic cross section for the g ↔ gq channel in the back-to-back limit can be written
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i
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↑2zPl εlεiεj + (1↑ 2z)Pl εiεlεj ↑ 2Pjεi ↑ 2

z

1↑ z
Plgijεl

)

2.3 g ↔ gq production cross section in the back-to-back limit

The partonic cross section for the production of quark-gluon dijet in the gluon initiated
channel in the back-to-back and massless quark limits can be written as

dϑb2b,m=0
g→gq

dP.S.
= (2q+) 2ϖϱ

(
p+1 + p+2 ↑ q+

) 1

2(N2
c ↑ 1)

∑

ω,ω1

∑

h

∑

a,a1
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〉
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(after some simplifications) cross section takes a factorized form:
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Figure 2: Color structures appearing in the cross-section of g → gq

Thus, defining the following two color structures, that are represented in Fig. 2, as

C+g ↑
〈
!(z→+;b→) ω↑ tc

→ U†
F(+↓, z→+;b→) UF(+↓, z+;b) tc !(z+,b)

↔ UA(z
→+,↗↓;b→)c→a UA(z

+,↗↓;b)ca
〉

(50)

C+↭g ↑
〈
!(z→+;b→) ω↑ U†

F(+↓, z→+;b→) UF(+↓, z+;b) !(z+,b)

↔ UA(+↓,↗↓;b→)ba UA(+↓,↗↓;b)ba
〉

(51)

the production cross section given in Eq. (44) can be written in the following factorized form

dεb2b,m=0
g↓gq

dP.S.
= g4 (2ϑ)ϖ

(
p+1 + p+2 ↗ q+

) ˆ L+

2

↑L+

2

dz+
ˆ L+

2

↑L+

2

dz→+
ˆ
b,b→

e↑i(b↑b→)·(k↑q)
[
H+g

g↓gq C+g +H+↭g
g↓gq C+↭g

]

where the hard factors are defined as

H+↭g
g↓gq ↑

1

N2
c ↗ 1

1↗ z

4P4

∑

ω,ω1

∣∣∣h(2)q↓gq

∣∣∣
2

=
1

N2
c ↗ 1

1↗ z

4P2

(
8z2 ↗ 6z + 5 + 2

z3

(1↗ z)2

)
(52)

H+g
g↓gq ↑

1

N2
c ↗ 1

1↗ z

4P4

∑

ω,ω1

(
CF

∣∣∣h(1)q↓gq

∣∣∣
2
↗ 1

2Nc

∣∣∣h(2)q↓gq

∣∣∣
2
↗ 1

Nc

(
h(1)q↓gq

)†
h(2)q↓gq

)

=
1

N2
c ↗ 1

1

P2

[
Nc(1↗ z)

(
5z2 ↗ 6z + 8 + 2

z

(1↗ z)2

)
↗ (1↗ z)

Nc

(
1↗ 4z + z2

) ]
(53)

As a final remark in the g → gq channel, we would like to mention that the color structures
C+g and C+↭g given in Eqs. (50) and (51) respectively, can be rewritten with only fundamental
Wilson lines as discussed in App. A.4.
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Thus, defining the following two color structures, that are represented in Fig. 2, as
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〉

(51)

the production cross section given in Eq. (44) can be written in the following factorized form
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(
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e↑i(b↑b→)·(k↑q)
[
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]
(52)

where the hard factors are defined as

H+↭g
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ω,ω1
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H+g
g↓gq ↑
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c ↗ 1
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4P4
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(
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As a final remark in the g → gq channel, we would like to mention that the color structures
C+g and C+↭g given in Eqs. (50) and (51) respectively, can be rewritten with only fundamental
Wilson lines as discussed in App. A.4.

19

z+

z′+

(+∞,b)

(+∞,b′)

(−∞,b)

(−∞,b′)
c′

c

C+g

z+

z′+

(+∞,b)

(+∞,b′)

(−∞,b)

(−∞,b′)

C+↭g

Figure 2: Color structures appearing in the cross-section of g → gq

Thus, defining the following two color structures, that are represented in Fig. 2, as

C+g ↑
〈
!(z→+;b→) ω↑ tc

→ U†
F(+↓, z→+;b→) UF(+↓, z+;b) tc !(z+,b)

↔ UA(z
→+,↗↓;b→)c→a UA(z

+,↗↓;b)ca
〉

(50)

C+↭g ↑
〈
!(z→+;b→) ω↑ U†

F(+↓, z→+;b→) UF(+↓, z+;b) !(z+,b)

↔ UA(+↓,↗↓;b→)ba UA(+↓,↗↓;b)ba
〉

(51)

the production cross section given in Eq. (44) can be written in the following factorized form

dεb2b,m=0
g↓gq

dP.S.
= g4 (2ϑ)ϖ

(
p+1 + p+2 ↗ q+

) ˆ L+

2

↑L+

2

dz+
ˆ L+

2

↑L+

2

dz→+

↔
ˆ
b,b→

e↑i(b↑b→)·(k↑q)
[
H+g

g↓gq C+g +H+↭g
g↓gq C+↭g

]
(52)

where the hard factors are defined as

H+↭g
g↓gq ↑

1

N2
c ↗ 1

1↗ z

4P4

∑

ω,ω1

∣∣∣h(2)q↓gq

∣∣∣
2

=
1

N2
c ↗ 1

1↗ z

4P2

(
8z2 ↗ 6z + 5 + 2

z3

(1↗ z)2

)
(53)

H+g
g↓gq ↑

1

N2
c ↗ 1

1↗ z

4P4

∑

ω,ω1

(
CF

∣∣∣h(1)q↓gq

∣∣∣
2
↗ 1

2Nc

∣∣∣h(2)q↓gq

∣∣∣
2
↗ 1

Nc

(
h(1)q↓gq

)†
h(2)q↓gq

)

=
1

N2
c ↗ 1

1

P2

[
Nc(1↗ z)

(
5z2 ↗ 6z + 8 + 2

z

(1↗ z)2

)
↗ (1↗ z)

Nc

(
1↗ 4z + z2

) ]
(54)

As a final remark in the g → gq channel, we would like to mention that the color structures
C+g and C+↭g given in Eqs. (50) and (51) respectively, can be rewritten with only fundamental
Wilson lines as discussed in App. A.4.
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As a final remark in the g → gq channel, we would like to mention that the color structures
C+g and C+↭g given in Eqs. (50) and (51) respectively, can be rewritten with only fundamental
Wilson lines as discussed in App. A.4.
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5z2 ↗ 6z + 8 + 2

z

(1↗ z)2

)
↗ (1↗ z)

Nc

(
1↗ 4z + z2

) ]
(54)

As a final remark in the g → gq channel, we would like to mention that the color structures
C+g and C+↭g given in Eqs. (50) and (51) respectively, can be rewritten with only fundamental
Wilson lines as discussed in App. A.4.
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with the hard factor is given as

Hq→qq =
1

P2

1

Nc

z(1 + z)2

(1→ z)
, (119)

and the reduced color structures read

C+↭ =
〈[

!(z↑+,b) ω↓ U†
F(↑, z↑+,b↑) UF(↑, z+,b) !(z+,b)

]

↓ Tr
[
U†
F(↑,→↑,b↑)UF(↑,→↑,b)

]〉
(120)

C+↓+ =
〈
!(z↑+,b) ω↓ U†

F(↑, z↑+,b↑) U†
F(↑,→↑,b↑)

↓ UF(↑,→↑,b) UF(↑, z+,b) !(z+,b)
〉

(121)

and they are illustrated in Fig. 8.

z+

z′+

(+∞,b)

(+∞,b′)

(−∞,b)

(−∞,b′)

C+↭

z+

z′+

(+∞,b)

(+∞,b′)

(−∞,b)

(−∞,b′)

C+→+

Figure 8: Color structures appearing in the cross-section of q ↔ qq

6 Relation with the quark TMDs

The color structures that appear in the back-to-back cross section in all the channels have
the form of

T (··· )(k) ↗
ˆ
b,b→

e↓ik·(b↓b→)
ˆ

z+,z→+

〈
C(··· )

〉
(122)

where C(··· ) are the various color structures computed for various channels and ↘· · · ≃ stands
for the target averaging in the spirit of the CGC formalism. The target averaging in CGC is
performed with a probability distribution which can be obtained from the JIMWLK evolution
with initial conditions given by the MV model. However, in the eikonal CGC only A↓ fields
are considered as the background field of the target. In this paper, the quark background field
of the target is accounted for in the scattering processes. Therefore, it should be included in
the target averaging procedure. This can be achieved by using quantum expectation value
for target averaging.
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The color structure appear in the  form of 

various color structures 

target averaging in the spirit of CGC 

As discussed in [71], the CGC target averaging of an operator →O↑ can be written in
terms of its quantum expectation of value →P →

tar|Ô|Ptar↑ in the state |Ptar↑ of the target with
momentum Pµ

tar as [39, 40, 51, 111] as

→O↑ = lim
P →
tar↑Ptar

→P →
tar|Ô|Ptar↑
→P →

tar|Ptar↑
, (123)

with the target states normalized as

→P →
tar|Ptar↑ = 2P↓

tar (2ω)
3 ε(P →↓

tar ↓ P↓
tar) ε

(2)(P→
tar ↓Ptar). (124)

In general, in quantum field theory a local operator Ô(x) obeys

Ô(x) = eia
µP̂µÔ(x↓ a)e↓iaµP̂µ (125)

with P̂µ being the momentum operator. For matrix elements of non-local operators, it can
be written as

→P →
tar|Ô1(x1) . . . Ôn(xn)|Ptar↑ = →P →

tar|eia
µP̂µÔ1(x1 ↓ a) . . . Ôn(xn ↓ a)e↓iaµP̂µ |Ptar↑

= eia
µ[(P →

tar)µ↓(Ptar)µ]→P →
tar|Ô1(x1 ↓ a . . . Ôn(xn ↓ a)|Ptar↑. (126)

For the sake of simplicity of the discussion, let us focus on a specific case and consider the
color structure C+ which reads

C+ ↔
〈
!(z→+,b→)ϑ↓U†

F(+↗, z→+;b→)UF(+↗, z+;b)!(z+,b)
〉

(127)

Using Eq. (122) together with relations given in Eqs. (123), (124) and (126) one obtains

T +(k) = lim
P →
tar↑Ptar

ˆ
b

e↓ik·(b↓b→)

→P →
tar|Ptar↑

↘
ˆ
z+,z→+

〈
P →
tar|!(z→+;b→)ϑ↓U†

F(+↗, z→+;b→)UF(+↗, z+;b)!(z+,b)|Ptar

〉

= lim
P →
tar↑Ptar

ˆ
b

e↓ik·(b↓b→)

→P →
tar|Ptar↑

ˆ
z+,z→+

eiz+(P →↑
tar↓P↑

tar)eib·(P
→
tar↓Ptar)

↘
〈
P →
tar|!(z→+ ↓ z+;b→ ↓ b)ϑ↓U†

F(+↗, z→+ ↓ z+;b→ ↓ b)UF(+↗, 0;0)!(0,0)|Ptar

〉

= lim
P →
tar↑Ptar

ˆ
!b

e↓ik·!b

2P↓
tar

ˆ
!z+

↘
〈
P →
tar|!(”z+;”b)ϑ↓U†

F(+↗,”z+;”b)UF(+↗, 0;0)!(0,0)|Ptar

〉
, (128)

where the limit P →
tar ≃ Ptar can be taken safely. We can compare this result to the unpolarized

quark distribution, which reads (up to UV and rapidity regularization issues)

f+
q (x,k) =

1

ω3

ˆ
b
eik·b

ˆ

z+

e↓ixz+P↑
tar

〈
Ptar|!(z+;b)

ϑ↓

2
U†
F(+↗, z+;b)UF(+↗, 0;0)!(0,0)|Ptar

〉
,

(129)
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µP̂µÔ(x↓ a)e↓iaµP̂µ (125)

with P̂µ being the momentum operator. For matrix elements of non-local operators, it can
be written as

→P →
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where the limit P →
tar ≃ Ptar can be taken safely. We can compare this result to the unpolarized

quark distribution, which reads (up to UV and rapidity regularization issues)
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b
eik·b
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tar
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2
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from  to quantum expectation value  ⟨𝒪⟩ with the normalization  

Dominguez ,Marquet, Xiao, Yuan (2011)
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where the limit P →
tar ≃ Ptar can be taken safely. We can compare this result to the unpolarized

quark distribution, which reads (up to UV and rapidity regularization issues)
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any local operator obeys with  being the momentum operator̂Pμ
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tar|Ô|Ptar↑ in the state |Ptar↑ of the target with
momentum Pµ

tar as [39, 40, 51, 111] as

→O↑ = lim
P →
tar↑Ptar

→P →
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where the limit P →
tar ≃ Ptar can be taken safely. We can compare this result to the unpolarized

quark distribution, which reads (up to UV and rapidity regularization issues)
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b
eik·b
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U†
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〉
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Matrix element of non-local operator: 

As discussed in [71], the CGC target averaging of an operator →O↑ can be written in
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→P →
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, (123)

with the target states normalized as

→P →
tar|Ptar↑ = 2P↓

tar (2ω)
3 ε(P →↓

tar ↓ P↓
tar) ε

(2)(P→
tar ↓Ptar). (124)

In general, in quantum field theory a local operator Ô(x) obeys

Ô(x) = eia
µP̂µÔ(x↓ a)e↓iaµP̂µ (125)

with P̂µ being the momentum operator. For matrix elements of non-local operators, it can
be written as
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µP̂µÔ1(x1 ↓ a) . . . Ôn(xn ↓ a)e↓iaµP̂µ |Ptar↑

= eia
µ[(P →

tar)µ↓(Ptar)µ]→P →
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e↓ik·!b

2P↓
tar

ˆ
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〈
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tar|!(”z+;”b)ϑ↓U†

F(+↗,”z+;”b)UF(+↗, 0;0)!(0,0)|Ptar

〉
,

(128)

where the limit P →
tar ↘ Ptar can be taken safely. We can compare this result to the unpolarized

quark distribution, which reads (up to UV and rapidity regularization issues)

f+
q (x,k) =

1

ω3

ˆ
b
eik·b

ˆ

z+

e↓ixz+P↑
tar

〈
Ptar|!(z+;b)

ϑ↓

2
U†
F(+↗, z+;b)UF(+↗, 0;0)!(0,0)|Ptar

〉
,

(129)

where the transverse gauge link at infinity is neglected. Comparing it to Eq. 128, we observe
the relation

T +(k) =
(2ω)3

P↓
tar

f+
q (x = 0,k). (130)

Following the same procedure for the other color structures, one can obtain a generic relation
which reads

ˆ
b,b→

e↓ik·(b↓b→)
ˆ
z+,z→+

C(··· )(k) =
(2ω)3

P↓
tar

f (··· )
q (x = 0,k) (131)
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tar|Ô1(x1) . . . Ôn(xn)|Ptar↑ = →P →

tar|eia
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tar ↘ Ptar can be taken safely. We can compare this result to the unpolarized

quark distribution, which reads (up to UV and rapidity regularization issues)
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(129)

where the transverse gauge link at infinity is neglected. Comparing it to Eq. 128, we observe
the relation
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(2ω)3

P↓
tar

f+
q (x = 0,k). (130)

Following the same procedure for the other color structures, one can obtain a generic relation
which reads

ˆ
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e↓ik·(b↓b→)
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z+,z→+

C(··· )(k) =
(2ω)3

P↓
tar

f (··· )
q (x = 0,k) (131)
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tar|Ô1(x1 ↓ a . . . Ôn(xn ↓ a)|Ptar↑. (126)

For the sake of simplicity of the discussion, let us focus on a specific case and consider the
color structure C+ which reads

C+ ↔
〈
!(z→+,b→)ϑ↓U†

F(+↗, z→+;b→)UF(+↗, z+;b)!(z+,b)
〉

(127)

Using Eq. (122) together with relations given in Eqs. (123), (124) and (126) one obtains

T +(k) = lim
P →
tar↑Ptar

ˆ
!b

e↓ik·!b

2P↓
tar

ˆ
!z+

〈
P →
tar|!(”z+;”b)ϑ↓U†

F(+↗,”z+;”b)UF(+↗, 0;0)!(0,0)|Ptar

〉
,

(128)

where the limit P →
tar ↘ Ptar can be taken safely. We can compare this result to the unpolarized

quark distribution, which reads (up to UV and rapidity regularization issues)

f+
q (x,k) =

1

(2ω)3

ˆ
b
eik·b

ˆ

z+

e↓ixz+P↑
tar

〈
Ptar|!(z+;b)

ϑ↓

2
U†
F(+↗, z+;b)UF(+↗, 0;0)!(0,0)|Ptar

〉

(129)

where the transverse gauge link at infinity is neglected. Comparing it to Eq. 128, we observe
the relation

T +(k) =
(2ω)3

P↓
tar

f+
q (x = 0,k). (130)

Following the same procedure for the other color structures, one can obtain a generic relation
which reads

ˆ
b,b→

e↓ik·(b↓b→)
ˆ
z+,z→+

C(··· )(k) =
(2ω)3

P↓
tar

f (··· )
q (x = 0,k) (131)

39



Factorized cross section 

                                                                                  
15/17Tolga Altinoluk (NCBJ)                                                                                                                                                                                       Quark TMDs from NEik back-to-back dijets

using these relations  channel: g → gq

where C(··· ) are various color structures computed for various channels and f (··· )
q (x = 0,k)

are the associated quark TMDs which for each channel and they read
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b
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〉
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q (x,k) =
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b
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tar

〈
!(z+;b)
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2
tc

↑UF(z
+,→↑;b)U†

F(0,→↑;0)tc!(0,0)

〉

↓ UA(+↑, z↑+;b)bc↑UA(+↑, 0;0)bc,
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〈
!(z+;b)
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2
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↑U†
F(+↑, z+;b)UF(+↑, 0;0)tc!(0,0)

〉

↓ UA(z
+,→↑;b)c↑aUA(0,→↑;0)ca,

f→↭
q (x,k) =

1

ω3

ˆ
b
eik·b

ˆ

z+

e→ixz+P→
tar

〈
!(z+;b)

ε→

2
UF(z

+,→↑;b)U†
F(0,→↑;0)!(0,0)

〉

↓ Tr
〈
U†
F(+↑,→↑;b)UF(+↑,→↑;0)

〉
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f+↭
q (x,k) =

1

ω3

ˆ
b
eik·b
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tar

〈
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U†
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〉

↓ Tr
〈
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〉
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q (x,k) =

1

ω3

ˆ
b
eik·b
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z+

e→ixz+P→
tar

〈
!(z+;b)

ε→

2
U†
F(+↑, z+;b)UF(+↑, 0;0)!(0,0)

〉

↓ UA(+↑,→↑;b)baUA(+↑,→↑;0)ba,
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q (x,k) =
1

ω3

ˆ
b
eik·b

ˆ
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tar

〈
!(z+;b)

ε→

2
U†
F(+↑, z+;b)UF(+↑, 0;0)!(0,0)

〉
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〈
UF(+↑,→↑;b)U†

F(+↑,→↑;0)
〉
Tr

〈
U†
F(+↑,→↑;b)UF(+↑,→↑;0)

〉
.

(132)

Therefore, using the definitions of various quark TMDs given in Eq. (132), the back-to-back
cross sections of each channel can be written as

dϑb2b,m=0
g↓gq

d2k d2P dz
=
ϖ2
s

2ω

1

W 2

[
H+g

g↓gq f+g(x = 0,k→ q) +H+↭g

g↓gq f+↭g(x = 0,k→ q)
]

dϑb2b,m=0
q↓qq̄

d2k d2P dz
=
ϖ2
s

2ω

1

W 2

[
H→

q↓qq̄ f
→(x = 0,k→ q) +H+↭

q↓qq̄ f+↭(x = 0,k→ q)
]

dϑb2b,m=0
q↓gg

d2k d2P dz
=
ϖ2
s

2ω

1

W 2

[
H→

q↓gg f→(x = 0,k→ q) +H→g
q↓gg f→g(x = 0,k→ q)

]
,

dϑb2b,m=0
q↓qq

d2k d2P dz
=
ϖ2
s

2ω

1

W 2
Hq↓qq

[
N2

c + 1

N3
c

f+↭(x = 0,k→ q)→ 2

N2
c
f+→+(x = 0,k→ q)

]
. (133)

where we have used W 2 = (q + Ptar)2 ↔ 2q+P→
tar with W being the center of mass energy of

the parton-target scattering. Moreover in Eq. (133) the hard factors are modified and they
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40

associated quark TMDs

 suppression is the characteristic of NEik corrections 1/W2

f→g
q (x,k) =

1

ω3

ˆ
b
eik·b

ˆ

z+

e→ixP→
tarz

+

〈
UA(→, z↑+;b)bc↑UA(→, 0;0)bc

〉

↑
〈
Ptar

∣∣∣∣!(z+;b)
ε→

2
tc

↑UF(z
+,↓→;b)U†

F(0,↓→;0)tc!(0,0)

∣∣∣∣Ptar

〉
,

f+g
q (x,k) =

1

(2ω)3

ˆ
b
eik·b

ˆ

z+

e→ixP→
tarz

+
[
UA(z

+,↓→;b)c↑aUA(0,↓→;0)ca
]

↑
〈
Ptar

∣∣∣∣!(z+;b)
ε→

2
tc

↑U†
F(→, z+;b)UF(→, 0;0)tc!(0,0)

∣∣∣∣Ptar

〉
,

f→↭
q (x,k) =

1

(2ω)3

ˆ
b
eik·b

ˆ

z+

e→ixP→
tarz

+
Tr

〈
U†
F(→,↓→;b)UF(→,↓→;0)

〉

↑
〈
Ptar

∣∣∣∣!(z+;b)
ε→

2
UF(z

+,↓→;b)U†
F(0,↓→;0)!(0,0)

∣∣∣∣Ptar

〉
,

f+↭
q (x,k) =

1

ω3

ˆ
b
eik·b

ˆ

z+

e→ixP→
tarz

+
Tr

〈
UF(→,↓→;b)U†

F(→,↓→;0)
〉

↑
〈
Ptar

∣∣∣∣!(z+;b)
ε→

2
U†
F(→, z+;b)UF(→, 0;0)!(0,0)

∣∣∣∣Ptar

〉
,

f
+↭g
q (x,k) =

1

(2ω)3

ˆ
b
eik·b

ˆ

z+

e→ixP→
tarz

+
[
UA(→,↓→;b)baUA(→,↓→;0)ba

]

↑
〈
Ptar

∣∣∣∣!(z+;b)
ε→

2
U†
F(→, z+;b)UF(→, 0;0)!(0,0)

∣∣∣∣Ptar

〉
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q (x,k) =
1

ω3

ˆ
b
eik·b
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z+

e→ixP→
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+

↑
〈
Ptar

∣∣∣∣!(z+;b)
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2
U†
F(→, z+;b)UF(→, 0;0)!(0,0)

∣∣∣∣Ptar

〉
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〈
UF(→,↓→;b)U†

F(→,↓→;0)
〉
Tr

〈
U†
F(→,↓→;b)UF(→,↓→;0)

〉
.

(162)

Therefore, using the definitions of various quark TMDs given in Eq. (162), the back-to-back
cross sections of each channel can be written as

dϑb2b,m=0
g↓gq

d2k d2P dz
=
ϖ2
s

2ω

1

W 2

[
H+g

g↓gq f+g(x = 0,k↓ q) +H+↭g

g↓gq f+↭g(x = 0,k↓ q)
]
,
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d2k d2P dz
=
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qf↓qf1 q̄f2
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=
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(163)
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where we have used W 2 = (q + Ptar)2 ↔ 2q+P→
tar with W being the center of mass energy of

the parton-target scattering. Note that, for the q ↗ qq̄ channel, the possibilities in term of
quark flavor are limited to f = f1 = f2, f ↘= f1 = f2 and f = f1 ↘= f2 while for the q ↗ qq
channel, they are limited to f = f1 = f2 and f = f1 ↘= f2. Moreover in Eq. (163) the hard
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full list of  the quark TMDs and  associated hard factors can be found in arXiv: 2412.08485 [hep-ph] 
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Scattering amplitudes and production cross sections are computed for channels: g → gq, q → qq̄, q → gg and q → qq + ( q ↔ q̄ )

For all channels, the back-to-back cross sections are obtained in a factorized form: a quark TMD times  associated hard factor 

on going work — Altinoluk, Beuf, Blanco, Mulani

on going work — Altinoluk, Armesto, Beuf, Favrel

We studied the dijet production in forward pA at NEik accuracy contributions from incoming parton scattering on the target via a 

t-channel quark exchange 

back-to-back dijet production in forward pA at NEik accuracy in a pure gluon 
background field 

possibility of recovering non-zero value of momentum 
fraction  in twist 2 gluon TMDs from NEik corrections x

photon + jet production in forward pA collisions at NEik accuracy 
contributions both from gluon and quark background fields   

at Eik order no need to for expansion to probe dipole gluon 
TMD, is it true at NEik order?

probe both gluon and quark TMDs of the target 


