Hadronic light-by-light scattering in AdS/QCD and the muon g-2

Anton Rebhan

Institute for Theoretical Physics TU Wien, Vienna, Austria

GGI, Florence, 26 March 2025

HLBL in AdS/QCD

イロト イヨト イヨト

Banff 1993: 3rd Workshop on Thermal Field Theories There is a new kid in town:

E + + E +

Banff 1993: 3rd Workshop on Thermal Field Theories There is a new kid in town:

A HAPPY BIRTHDAY, EDMONDI

Writing papers with Edmond

- 1998: started collaboration with Jean-Paul & Edmond
- 1999: two letters, PRL, PLB
- 2000: longer version for PRD

Submission history

From: Anton Rebhan [view email] [v1] Sat, 29 Apr 2000 21:50:37 UTC (244 KB) [v2] Thu, 6 Jul 2000 17:49:21 UTC (247 KB) [v3] Fri, 25 Aug 2000 15:00:53 UTC (222 KB)

v1: Referee has many questions, complains about length...

GGI, Florence, 26 March 2025 3 / 34

Writing papers with Edmond

- 1998: started collaboration with Jean-Paul & Edmond
- 1999: two letters, PRL, PLB
- 2000: longer version for PRD

Submission history

From: Anton Rebhan [view email] [v1] Sat, 29 Apr 2000 21:50:37 UTC (244 KB) [v2] Thu, 6 Jul 2000 17:49:21 UTC (247 KB) [v3] Fri, 25 Aug 2000 15:00:53 UTC (222 KB)

v2: Referee has still questions, protests about length...

E 6 4 E 6

A D b 4 B b

Writing papers with Edmond

- 1998: started collaboration with Jean-Paul & Edmond
- 1999: two letters, PRL, PLB
- 2000: longer version for PRD

	Approx	Approximately selfconsistent resummations for the thermodynamics of the quark #1					
	gluon p	gluon plasma. 1. Entropy and density					
	J.P. Blaizot (Saclay), Edmond Iancu (CERN), A. Rebhan (Vienna, Tech. U.) (Apr, 2000)						
	Publishe	ed in: Phys.Rev.D 63 (2001) 065003 • e-Print: hep-ph/0005003 [hep-ph]					
	占 pdf	∂ links ∂ DOI I' cite □ claim □ reference search ⊕ 372 citations					
Comments:		e2 hages REVTEX, 14 figures; v2: numerous clarifications, sect. 2C shortened, new material in sect. 3C; v3: more appendix removed, alternative implementation of the NLO effects, corrected eq. (5.16)					
Subjects		High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Lattice (hep-lat)					
Report n	umber:	CERN-TH/2000-121, SACLAY-T00/059, TUW-00/13					
Cite as:		arXiv:hep-ph/0005003					
		(or arXiv:hep-ph/0005003v3 for this version)					
		https://doi.org/10.48550/arXiv.hep-ph/0005003 🚯					
Journal ı	reference:	nce: Phys.Rev. D63 (2001) 065003					
Related DOI:		https://doi.org/10.1103/PhysRevD.63.065003					

Submission history

From: Anton Rebhan [view email] [v1] Sat, 29 Apr 2000 21:50:37 UTC (244 KB) [v2] Thu, 6 Jul 2000 17:49:21 UTC (247 KB) [v3] Fri, 25 Aug 2000 15:00:53 UTC (222 KB)

3 / 34

than THERMAL FIELD THEORY or pQCD

イロン イロン イヨン イヨン

э

Muon q-2 SM prediction [TI "White Paper", Aoyama et al., 2006.04822]

Muon 200× heavier than electron \Rightarrow more sensitive to non-QED physics Prediction limited by control over hadronic interactions at $\lesssim 10^{-9}$

$$\begin{array}{lll} a_{\mu}^{\rm SM} &=& a_{\mu}^{\rm QED} + a_{\mu}^{\rm EW} + a_{\mu}^{\rm HVP} + a_{\mu}^{\rm HLbL} = (116\ 591\ 810\ \pm\ 43) \times 10^{-11} \\ \\ a_{\mu}^{\rm QED} &=& (116\ 584\ 718.931\ \pm\ 0.104) \times 10^{-11} \\ \\ a_{\mu}^{\rm EW} &=& (153.6\ \pm\ 1.0) \times 10^{-11} \\ \\ a_{\mu}^{\rm HVP} &=& (6845\ \pm\ 40) \times 10^{-11} \quad (0.6\%\ {\rm accuracy-contested}\ {\rm by}\ {\rm BMW}) \\ \\ a_{\mu}^{\rm HLbL} &=& (92\ \pm\ 19) \times 10^{-11} \quad (20\%\ {\rm uncertainty!}) \end{array}$$

(

Precision measurements

Anomalous spin precession

 $(g-2)_{\mu}$ can be measured by polarized beam of muons circulating in the magnetic field of a storage ring:

Measured in the early 2000's at BNL, final result 2006

with highly polarized beam of μ^+ from decaying π^+ 's produced by shooting protons from accelerator on some target

< □ > < 同 > < 回 > < 回 >

The muon g-2 discrepancy

Since then, 3-4 σ discrepancy between theorical and experimental result from BNL-E821:

and urge to repeat this singular experiment

э

イロト イヨト イヨト

The muon g-2 discrepancy

Since then, 3-4 σ discrepancy between theorical and experimental result from BNL-E821:

DHMZ 2019 -∞01±40 (1.3x) KNT 2018 -270 ± 26 (0.3x) J 2018 -315 ± 44 (4 %) -600 -500 -400 -300 -200 -100 0 100 200 a_µ = a_µ^{ee} [× 10⁻¹¹]

and urge to repeat this singular experiment \rightarrow Fermilab E989 experiment

2013: Ring magnet of the BNL experiment (Long Island, NY) shipped to Fermilab (near Chicago), via Atlantic and Mississippi

and then 5 years work of building new muon g-2 experiment $a \rightarrow a = a \rightarrow a = a$

Fermilab E989 experiment

Since 2018: new rounds of data taking at Fermilab E989 experiment Final result to be released \sim May 2025

Magnetic moment of the muon

Data released from first runs on April 7, 2021:

Updated values BNL 2004 U FNAL 2021 vs. Aoyama et al. 2020

$$\begin{array}{ll} a_{\mu}^{\rm exp} &= (116\,592\,061\pm41)\times10^{-11} \\ a_{\mu}^{\rm SM} &= (116\,591\,810\pm43)\times10^{-11} \end{array}$$

but Theory Initiative prediction questioned by new lattice results from Budapest-Marseille-Wuppertal (BMW) collaboration, published by Nature also on April 7, 2021 (arXiv:2002.12347 [hep=lat])

A. Rebhan

HLBL in AdS/QCD

GGI, Florence, 26 March 2025 9 / 34

э

Muon g-2 SM prediction

 $\begin{array}{ll} a_{\mu}^{\rm HVP, \rm data-driven} & = & (6845 \pm 40) \times 10^{-11} & (0.6\% \mbox{ accuracy - contested by BMW}) \\ a_{\mu}^{\rm HVP, \rm lattice} & = & (7075 \pm 55) \times 10^{-11} & \mbox{ according to BMW coll., Nature 593, 51 (2021)} \end{array}$

Strong tension between hadronic vacuum polarization deduced from low-energy experiments (R ratio) and lattice QCD!

A. Rebhan

HLBL in AdS/QCD

GGI, Florence, 26 March 2025 10 / 34

C Jester (http://resonaances.blogspot.com)

New Fermilab result

August 2023:

New Fermilab result from Run 2+3 with system errors already below design goal

 $a_{\mu}(\text{FNAL}) = 116\,592\,055(24) \times 10^{-11}$ (0.20 ppm), $a_{\mu}(\text{Exp}) = 116\,592\,059(22) \times 10^{-11}$ (0.19 ppm).

- 3

イロト イボト イヨト イヨト

Muon g-2 SM prediction

Since Feb 2023: new data for $e^+e^- \rightarrow \pi^+\pi^-$ from Novosibirsk (CMD3) in disagreement with all previous results (including CMD2)

Muon g-2 SM prediction

э

イロト イヨト イヨト

Muon g-2 SM prediction [TI "White Paper", Aoyama et al., 2006.04822] Prediction limited by control over hadronic interactions at $\lesssim 10^{-9}$

$$a_{\mu}^{\rm SM} \quad = \quad a_{\mu}^{\rm QED} + a_{\mu}^{\rm EW} + a_{\mu}^{\rm HVP} + a_{\mu}^{\rm HLbL} = (116\,591\,810\pm43)\times10^{-11}$$

Current experimental error in $a_{\mu}^{\text{exp}} = (116592059 \pm 22) \times 10^{-11}$ will be reduced by further runs at FNAL to $\sim 10 \times 10^{-11}$

- Discrepancy between data-driven approaches and lattice calculations need to be resolved, and moreover accuracy improved!
- Also hadronic light-by-light (HLbL) contribution needs work

Alternative methodology: Gauge/gravity duality a.k.a. Holography

as approximation to strongly coupled non-Abelian gauge theories at large color number

Not sufficiently precise to help with HVP, but of interest to check HLbL contributions

Holography a.k.a. Gauge/Gravity Duality

Conjectural generalization of AdS/CFT correspondence of Maldacena where conformal symmetry in D-dim. QFT \leftrightarrow isometry of D + 1-dim. anti-de Sitter space

Strongly coupled gauge theories in D dimensions at large N_c are dual to suitable theories with gravity in D+1 dimensions with analogous "dictionary"

gauge theory	gravity dual
degree N of the gauge group	number of branes, curvature radius
flat space time on which the gauge theory lives	boundary of higher-dimensional geometry
global symmetry	gauge symmetry
gauge invariant operators	fields acting as sources to these operators
particle mass	eigenvalue in wave equation
energy scale	radial coordinate in the AdS -space
renormalisation group flow	movement along the radial coordinate

open string

closed string duality

A D A D A D A

HLBL in AdS/QCD

Holographic QCD Zoo

Unclear whether holographic dual to non-susy and non-conformal large- N_c QCD exists, but:

1998 Witten succeeded in constructing a string-theoretical dual ("top-down") to the low-energy limit of large- N_c QCD from type-IIA superstring theory compactified on one further extra dimension, and

2004 Sakai & Sugimoto found D-brane construction to add chiral quarks in fundamental representation \rightarrow best top-down model of low-energy QCD so far However: not even asymptotically AdS, not conformal in UV

2005ff: Erlich, Katz, Son, Stephanov, ... (HW1)

Hirn, Sanz (HW2) (simpler; very similar to WSS)

succeeded in constructing phenomenologically interesting models of hadron physics with similar ingredients on simple AdS_5 background (\leftrightarrow conformal symmetry) broken in IR by "hard walls" (HW) or "soft walls" (SW)

- \rightarrow "bottom-up" holographic QCD
 - surprisingly efficient as models of chiral symmetry breaking
 - anomalies naturally represented in 5-dimensional setup!

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ = ● ● ●

HLbL contribution to muon g-2 & holographic QCD

hQCD results available for

• single and double virtual (pion) transition form factor $F_{\pi^0\gamma^*\gamma^*}(Q_1^2,Q_2^2)$

[Grigoryan, Radyushkin, PRD76,77,78 (2007-8)]
 [Cappiello, Catà, D'Ambrosio, PRD83 (2011)]
 [J. Leutgeb, J. Mager, AR, PRD100 (2019)]

- good agreement with recent low-energy data (BESIII) and lattice results
- hQCD prediction for $a_{\mu}^{\pi^{0},\eta,\eta'}$ in good agreement with dispersive approach

HLbL contribution to muon g-2 & holographic QCD

hQCD results available for

• single and double virtual (pion) transition form factor $F_{\pi^0\gamma^*\gamma^*}(Q_1^2,Q_2^2)$

[Grigoryan, Radyushkin, PRD76,77,78 (2007-8)]
 [Cappiello, Catà, D'Ambrosio, PRD83 (2011)]
 [J. Leutgeb, J. Mager, AR, PRD100 (2019)]

- good agreement with recent low-energy data (BESIII) and lattice results
- hQCD prediction for $a_{\mu}^{\pi^{0},\eta,\eta'}$ in good agreement with dispersive approach
- Axial vector meson contributions [J. Leutgeb, AR, PRD101, 1912.01596] [Cappiello, Catà, D'Ambrosio, Greynat, Iyer, PRD102, 1912.02779]
 - crucial role in saturation of Melnikov-Vainshtein constraint!
 - first hadronic model to achieve this in chiral limit!
 - hQCD prediction for $a_{\mu}^{a_1,f_1,f_1',\ldots}$
 - extension to massive quarks: Leutgeb, AR, PRD104, 2108.12345 including U(1)_A anomaly and $m_s \gg m_{u,d}$: Leutgeb, Mager, AR, PRD107, 2211.16562
- Brand new: Tensor meson contributions
 [Cappiello, Leutgeb, Mager, AR, 2501.09699+2501.19293]

Bottom-up and top-down holographic QCD

(Axial) vector mesons and pions are described by 5-d YM fields $\mathcal{F}_{MN}^{L,R}$ for global $U(N_f)_L \times U(N_f)_R$ chiral symmetry of boundary theory

$$S_{
m YM} \propto rac{1}{g_5^2} \ {
m tr} \int d^4x \int_0^{z_0} dz \, e^{-\Phi(z)} \sqrt{-g} \, g^{PR} g^{QS} \left({\cal F}^{(L)}_{PQ} {\cal F}^{(L)}_{RS} + {\cal F}^{(R)}_{PQ} {\cal F}^{(R)}_{RS}
ight),$$

where P, Q, R, S = 0, ..., 3, z and $\mathcal{F}_{MN} = \partial_M \mathcal{B}_N - \partial_N \mathcal{B}_M - i[\mathcal{B}_M, \mathcal{B}_N]$

with conformal boundary at z = 0, and

either sharp cut-off of AdS₅ at z_0 (HW) or with nontrivial dilaton $z_0 = \infty$ (SW) (SS: not asymptotically AdS₅, finite z_0 corresponding to point where D8 branes join)

Chiral symmetry breaking either from

- extra bifundamental scalar field [Erlich-Katz-Son-Stephanov 2005] (HW1), or
- through different boundary conditions for vector/axial-vector fields at z_0 [Hirn-Sanz 2005] (HW2), [Sakai-Sugimoto 2004] (SS)

Vector meson dominance (VMD) naturally built in: photons couple through *bulk-to-boundary propagators of vector gauge fields* whose normalizable modes give (infinite tower of!) vector mesons (ρ , ω , ϕ , ...)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ = ● ● ●

Anomalous TFFs from holographic QCD

Flavor anomalies follow uniquely from 5-dimensional Chern-Simons term:

$$S_{\rm CS}^L - S_{\rm CS}^R, \quad S_{\rm CS} = \frac{N_c}{24\pi^2} \int \operatorname{tr} \left(\mathcal{BF}^2 - \frac{i}{2} \mathcal{B}^3 \mathcal{F} - \frac{1}{10} \mathcal{B}^5 \right).$$

with infinite tower of vector and axial-vector mesons contained in 5-dimensional $SU(N_f)_L \times SU(N_f)_R$ gauge field $\mathcal{B}_M^{L,R}$; Goldstone bosons of χSB in \mathcal{B}_5^{L-R}

• Pion transition form factor for $\pi^0 \to \gamma^* \gamma^*$

$$F_{\pi^0\gamma^*\gamma^*}(Q_1^2, Q_2^2) = -\frac{N_c}{12\pi^2 f_\pi} \int_0^{z_0} dz \,\mathcal{J}(Q_1, z)\mathcal{J}(Q_2, z)\Psi(z),$$

with bulk-to-boundary propagator ${\mathcal J}$ and holographic pion profile Ψ

• The amplitude for axial vector mesons $a_{\mu}^{(n)}$ decaying into two virtual photons following from the Chern-Simons action has the form

$$\mathcal{M}^{a} = i \frac{N_{c}}{4\pi^{2}} \operatorname{tr}(\mathcal{Q}^{2} t^{a}) \epsilon^{\mu}_{(1)} \epsilon^{\nu}_{(2)} \epsilon^{*\rho}_{A} \epsilon_{\mu\nu\rho\sigma} \left[q^{\sigma}_{(2)} Q^{2}_{1} A_{n}(Q^{2}_{1}, Q^{2}_{2}) - q^{\sigma}_{(1)} Q^{2}_{2} A_{n}(Q^{2}_{2}, Q^{2}_{1}) \right],$$

where

$$A_n(Q_1^2, Q_2^2) = \frac{2g_5}{Q_1^2} \int_0^{z_0} dz \left[\frac{d}{dz} \mathcal{J}(Q_1, z) \right] \mathcal{J}(Q_2, z) \psi_n^A(z), \quad n = 1, \dots, \infty$$

• Landau-Yang theorem (AV $\rightarrow \gamma \gamma$ is forbidden) realized by $\mathcal{J}'(Q,z) = 0$ for $Q^2 = 0$

A. Rebhan

19 / 34

Short distance constraints on TFFs

Crucially, hQCD models with asymptotic AdS₅ geometry reproduce asymptotic momentum dependence of LCE [Brodsky-Lepage 1979-81] (HW1 model exactly with $g_5 = 2\pi$; HW2 model only at 62%)

• Pseudoscalars [Grigoryan & Radyushkin, PRD76,77,78 (2007-8)]:

$$\begin{split} F_{\pi^0\gamma^*\gamma^*}(Q_1^2,Q_2^2) &\to \quad \frac{2f_{\pi}}{Q^2}\sqrt{1-w^2}\int_0^{\infty} d\xi\,\xi^3 K_1(\xi\sqrt{1+w})K_1(\xi\sqrt{1-w}) \\ &= \frac{2f_{\pi}}{Q^2}\left[\frac{1}{w^2} - \frac{1-w^2}{2w^3}\ln\frac{1+w}{1-w}\right], \end{split}$$

with $Q^2 = \frac{1}{2}(Q_1^2 + Q_2^2) \rightarrow \infty$, $w = (Q_1^2 - Q_2^2)/(Q_1^2 + Q_2^2)$, corresponding to asymptotic behavior

$$F^{\infty}(Q^2, 0) = \frac{2f_{\pi}}{Q^2}, \qquad F^{\infty}(Q^2, Q^2) = \frac{2f_{\pi}}{3Q^2}.$$

 Axial vector mesons [J. Leutgeb & AR, 1912.01596] (confirmed by pQCD result of Hoferichter & Stoffer 2004.06127):

$$A_n(Q_1^2, Q_2^2) \to \frac{12\pi^2 F_n^A}{N_c Q^4} \frac{1}{w^4} \left[w(3-2w) + \frac{1}{2}(w+3)(1-w)\ln\frac{1-w}{1+w} \right]$$

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー のの()

Holographic pion TFF and experimental data

Comparison with single-virtual TFF from CELLO, CLEO, and BESIII (preliminary): (chiral hQCD models fitted to match f_{π} and m_{ρ} — only 2 free low-energy parameters)

data compilation from Danilkin, Redmer & Vanderhaeghen, 1901.10346

Sakai-Sugimoto model (SS) only good at low Q^2

Holographic pion TFF and experimental data

Comparison with single-virtual TFF from CELLO, CLEO, and BESIII (preliminary): <u>HW1m</u>: HW1 with quark masses $m_u = m_d$ for two different g_5 : [LMR, 2211.16562] $Q^2 F_{\pi^0 \gamma^* \gamma}(Q^2, 0)$ [GeV]

NB: NLO QCD results for TFFs at ~ 90% of asymptotic value when pQCD becomes applicable **HVP in HW1**: far too small with OPE fit, increases to within 5% of dispersive result with F_{ρ} -fit! [J. Leutgeb, AR, M. Stadlbauer, PRD105_2203_16508]

Comparison of doubly virtual pion TFF

 a_{μ}^{HLBL,π^0} needs TFF for all virtualities

Comparison of HW1m with data-driven and lattice approach:

– – : OPE limit

Green: dispersive approach [Hoferichter et al., 1808.04823] Yellow: lattice result of Gérardin et al., 1903.09471 Blue: HW1m model [LMR, 2211.16562] OPE-fit of vector correlator (100% SDC) Red: HW1m model [LMR, 2211.16562] F_{ρ} -fit (\approx 90% SDC)

A. Rebhan

HLBL in AdS/QCD

Holographic pion TFF and $a^{\pi^0}_{\mu}$ predictions

method/model	$a_{\mu}^{\pi^{0}} \times 10^{11}$
LMD+V [Nyffeler 2016]	72 ± 12
lattice (Mainz, 2016)	65 ± 8
lattice (Mainz, 2019)	60 ± 4
lattice (Mainz, 2019)+exp.data	62 ± 2
Danilkin et al. (DRV,2019)	56 ± 2
dispersive [WP 2020]	$63.0^{+2.7}_{-2.1}$
hQCD (HW) [LR 2021]	63.6 ± 3.0

(hQCD error estimate: spread of different models)

hQCD agrees well with data-driven (dispersive) evaluations and lattice QCD results

 \Rightarrow interesting to evaluate also axial-vector contributions where only simple hadronic models w/o correct asymptotics have been used so far

recall: 100% error in 2020 White Paper for assumed contribution of $6(6) \times 10^{-11}$!

A (1) N (2) N (2) N (2) N

Holographic TFFs for axial vector mesons vs. experiments

Shape of single-virtual axial TFF: [J. Leutgeb & AR, 1912.01596]

dipole fit of L3 data for $f_1(1285)$ (gray band) vs. SS, HW1, and HW2 models:

roughly right ballpark compared to experimental data:

 $A(0,0)_{f_1(1285)}^{\text{L3 exp.}} = 16.6(1.5) \,\text{GeV}^{-2}; \qquad A(0,0)_{a_1(1230)} = 19.3(5.0) \,\text{GeV}^{-2}$

Roig & Sanchez-Puertas, 1910.02881:

GGI, Florence, 26 March 2025 25 / 34

(人間) とうきょうきょう

Double-virtual axial vector meson TFF

Holographic results of SS, HW1, and HW2 models quite different than symmetric dipole model $\frac{A^{PV}(Q_1^2,Q_2^2)}{A(0,0)} = \frac{1}{(1+Q_1^2/\Lambda_D^2)^2(1+Q_2^2/\Lambda_D^2)^2}$ (dashed lines) used by Pauk & Vanderhaeghen [1401.0832] in their calculation of $a_{\mu}^{f_1,f_1'}$ which is main basis for AV estimate by Muon g-2 Theory Initiative

 $\Rightarrow a_{\mu}$ contribution significantly larger even with same A(0,0)

Moreover: excited axial vector mesons and their doubly virtual asymptotics relevant for MV short-distance constraint

Α	Reh	han

HLBL in AdS/QCD

GGI, Florence, 26 March 2025 26 / 34

Melnikov-Vainshtein short-distance constraint

Melnikov and Vainshtein [hep-ph/0312226, PRD70(2004)]:

nonrenormalization theorem for axial anomaly implies short-distance constraint for 4-photon-amplitude (in BTT basis w/ 54 structure functions):

$$\lim_{Q_3 \to \infty} \lim_{Q \to \infty} Q^2 Q_3^2 \bar{\Pi}_1(Q, Q, Q_3) = -\frac{2}{3\pi^2}$$

伺 ト イヨト イヨト

Melnikov-Vainshtein short-distance constraint

Melnikov and Vainshtein [hep-ph/0312226, PRD70(2004)]:

nonrenormalization theorem for axial anomaly implies short-distance constraint for 4-photon-amplitude (in BTT basis w/ 54 structure functions):

$$\lim_{Q_3 \to \infty} \lim_{Q \to \infty} Q^2 Q_3^2 \bar{\Pi}_1(Q, Q, Q_3) = -\frac{2}{3\pi^2}$$

each single meson exchange contribution gives 0 because propagator $\sim 1/Q_3^2$ and the two form factors $\sim 1/Q^2$ and $1/Q_3^2$ $Q_4 = 0$

<u>MV model</u>: MV-SDC satisfied by replacing external TFF by constant on-shell value, leading to significant (almost +40%) increase of $a_{\mu}^{\pi^{0},\eta,\eta'}$ by $\underline{38 \times 10^{-11}}$

Melnikov-Vainshtein short-distance constraint

Melnikov and Vainshtein [hep-ph/0312226, PRD70(2004)]:

nonrenormalization theorem for axial anomaly implies short-distance constraint for 4-photon-amplitude (in BTT basis w/ 54 structure functions):

$$\lim_{Q_3 \to \infty} \lim_{Q \to \infty} Q^2 Q_3^2 \bar{\Pi}_1(Q, Q, Q_3) = -\frac{2}{3\pi^2}$$

each single meson exchange contribution gives 0 because propagator $\sim 1/Q_3^2$ and the two form factors $\sim 1/Q^2$ and $1/Q_3^2$ $Q_4 = 0$ <u>MV model</u>: MV-SDC satisfied by replacing external TFF by constant on-shell value, leading to

significant (almost +40%) increase of $a_{\mu}^{\pi^{0},\eta,\eta'}$ by 38×10^{-11}

<u>WP estimate</u> for MV-SDC based on Regge model of infinite tower of excited PS states constructed to saturate MV-SDC with $\Delta a_{\mu}^{\rm PS} = 13(6) \times 10^{-11}$ [Colangelo et al., 1910.11881]

But: Excited PS states decouple in chiral large-N limit

< ロ > < 同 > < 回 > < 回 >

Axial vector contributions to MV-SDC

hQCD comes with infinite tower of axial vector mesons,

MV-SDC satisfied upon complete summation [Leutgeb & AR, 1912.01596] independently also by [Cappiello, Catà, D'Ambrosio et al., 1912.02779]

large
$$Q = 50$$
GeV and increasing $Q_3 \ll Q$:

black line: infinite sum colored lines: first 5 axial vector modes

< □ > < 同 > < 回 > < 回 >

Axial vector contributions to MV-SDC

hQCD comes with infinite tower of axial vector mesons,

MV-SDC satisfied upon complete summation [Leutgeb & AR, 1912.01596] independently also by [Cappiello, Catà, D'Ambrosio et al., 1912.02779]

 $-(3\pi^2/2) O^2 O_2 \Pi_1(O O O_1)$

2

3

イロト イヨト イヨト イヨト

Δ

large
$$Q = 50$$
GeV and increasing $Q_3 \ll Q$:1.0black line: infinite sum
colored lines: first 5 axial vector modes0.80.4

HW1 model with massive quarks [Leutgeb & AR, PRD104, 2108.12345]: MV-SDC still completely satisfied through tower of axial-vector mesons; tower of excited massive pions gives subleading contribution $\propto \ln(Q_3^2)/Q_3^4Q^2$

Q₃[GeV]

5

Katz-Schwartz: HW1 with $m_s > m_{u,d}$ and U(1)_A anomaly

Upgrade [Leutgeb, Mager, AR, 2211.16562]:

HW1m with 2+1 massive quarks plus $U(1)_A$ anomaly based on Katz-Schwartz model E. Katz & M. Schwartz, An Eta Primer: Solving the U(1) problem with AdS/QCD, JHEP 08 (2007) 077

who proposed hard-wall AdS/QCD Lagrangian including

- besides bifundamental $X \leftrightarrow \bar{q}_i q_j$ with $\langle X_{ij} \rangle = M_{ij} z + \Sigma_{ij} z^3$ and $\Sigma \leftrightarrow \langle \bar{q}_i q_j \rangle$
- also complex scalar $Y \leftrightarrow \alpha(GG + iG\tilde{G})$ with

 $\mathcal{L} \supset \kappa Y^{N_f} \det(X)$

accounting for $U(1)_A$ anomalous Ward identities

- $\bullet\,$ essentially independent of κ as long as $\kappa\gg 1$
- only new free parameter: gluon condensate $\Xi \leftrightarrow \langle G^2 \rangle$ in $\langle Y \rangle = C + \Xi z^4$ with OPE $\Rightarrow C = \frac{\sqrt{2N_f}}{2\pi^2} \alpha_s$, $\alpha_s \to 1/\beta_0 \ln(\Lambda_{QCD}z)$, $\Lambda_{QCD} \to z_0^{-1}$ $\Rightarrow \Xi z^4 \to \Xi z^4 [\ln^2(\Lambda_{QCD}z) + \dots]$
- $\bullet\,$ realizes Witten-Veneziano mechanism for $m_{\eta'}$
- phase of $Y \leftrightarrow$ pseudoscalar glueball mixing with $\eta^{(\prime)}$

イロン 不得 とうき とうとう ヨ

Massive HW1+U(1)_A Model [LMR, 2211.16562]

 $N_f = 2 + 1$ with $m_s \approx 24.3 m_{u,d}$

v1: Tuning of gluon condensate Ξ (neglected by KS) \rightarrow virtually exact fit of m_{η} and $m_{\eta'}$ Two variants of UV fits:

v1(OPE-fit): $g_5 = 2\pi$ such that UV constraints on TFF satisfied to 100%

v1(F_{ρ} -fit): $g_5 = 5.94$ such that f_{ρ} is fitted ($\approx 90\%$ of asymptotic SDCs)

v1(OPE fit

	$m \; [{\rm MeV}]$	m – m^{exp} [%]	f^8	f^0	f_G	F(0,0)	$F - F^{\exp}$
π^0	135	(input)	0	0	0	0.277	
η	557	+1.7%	0.101	0.027	-0.030	0.275	+1(2)%
η'	950	-0.8%	-0.0385	0.113	-0.077	0.340	-0(2)%
$G/\eta^{\prime\prime}$	1992	?	-0.027	0.005	0.053	0.116	
	$m \; [{\rm MeV}]$	m – m^{exp} [%]	F_A^8/m_A	F_A^0/m_A	$A^{8}(0,0)$	$A^{0\vee 3}(0,0)$	
a_1	1363	+11%	0	0	0	20.96	
f_1	1481	+15%	0.176	0.0365	20.77	3.857	
f_1'	1810	+27%	-0.030	0.201	-3.842	20.07	

gluon condensate parameter $|\Xi| = 0.01051 \ \mathrm{GeV}^4$

イロト 不得 トイヨト イヨト 二日

Massive HW1+U(1)_A Model [LMR, 2211.16562]

 $N_f = 2 + 1$ with $m_s \approx 24.3 m_{u,d}$

v1: Tuning of gluon condensate Ξ (neglected by KS) \rightarrow virtually exact fit of m_{η} and $m_{\eta'}$ Two variants of UV fits:

v1(OPE-fit): $g_5 = 2\pi$ such that UV constraints on TFF satisfied to 100% v1(F_{ρ} -fit): $g_5 = 5.94$ such that f_{ρ} is fitted ($\approx 90\%$ of asymptotic SDCs)

	$m \; [{\rm MeV}]$	m – m^{exp} [%]	f^8	f^0	f_G	F(0,0)	$F - F^{\exp}$
π^0	135	(input)	0	0	0	0.276	
η	561	+2.4%	0.103	0.030	-0.031	0.268	+2(2)%
η'	947	-1.1%	-0.039	0.121	-0.082	0.313	-8(2)%
${\sf G}/\eta^{\prime\prime}$	1943	?	-0.030	0.0076	0.048	0.111	
	$m \; [{\rm MeV}]$	m – m^{exp} [%]	F_A^8/m_A	F_A^0/m_A	$A^{8}(0,0)$	$A^{0\vee 3}(0,0)$	
a_1	1278	+4%	0	0	0	19.46	
f_1	1410	+10%	0.176	0.029	19.58	2.69	
f'_1	1820	+28%	-0.017	0.219	-2.56	19.00	

v1($(F_{\rho}\text{-fit})$:	(our current	"best guess"	regarding	a_{μ})	i
-----	---------------------------	--------------	--------------	-----------	-------------	---

gluon condensate parameter $|\Xi| = 0.01416 \ \mathrm{GeV}^4$

PS: $f^{8,0}$'s within a few % of χ PT values

AV: f_1 - f_1' mixing angle $\phi_f - \phi_f^{
m ideal}$ about twice as large as indicated by L3 data

(ϕ_f strongly dependent on Ξ ; but sum $a_{\mu}^{f_1} + a_{\mu}^{f_1'}$ rather insensitive)

A. Rebhan

a_{μ} in HW1+U(1)_A Model [LMR, 2211.16562]

$a^{\dots}_{\mu} \times 10^{11}$	v1(OPE fit, 100% SDC)	$v1(F_{ ho} ext{-fit})$	WP
π^0	66.1	63.4	$62.6^{+3.0}_{-2.5}$
η	19.3	17.6	16.3(1.4)
η'	16.9	14.9	14.5(1.9)
$PSGB/\eta^{\prime\prime}$	0.2	0.2	
\sum_{PS^*}	1.6	1.4	
PS poles total	104	97.5	93.8(4.0)

- 2

イロト イヨト イヨト イヨト

a_{μ} in HW1+U(1)_A Model [LMR, 2211.16562]

$a^{\dots}_{\mu} \times 10^{11}$	v1(OPE fit, 100% SDC)	$v1(F_{\rho}-fit)$	WP
π^0	66.1	63.4	$62.6^{+3.0}_{-2.5}$
η	19.3	17.6	16.3(1.4)
η'	16.9	14.9	14.5(1.9)
$PSGB/\eta^{\prime\prime}$	0.2	0.2	
\sum_{PS^*}	1.6	1.4	
PS poles total	104	97.5	93.8(4.0)
a_1	7.8	7.1	
$f_1 + f'_1$	20.0	17.9	
$\sum_{a_1^*}$	2.5	2.6	
$\sum_{f_1^{(\prime)}*}$	4.0	3.5	
AV+LSDC total	34.3	31.1	21(16)
total	138	129	115(16.5)

- 2

イロト イヨト イヨト イヨト

a_{μ} in HW1+U(1)_A Model [LMR, 2211.16562]

	1(ODE ("+ 1000/ CDC)	1(72 (21)	
$a_{\mu}^{m} \times 10^{11}$	VI(OPE fit, 100% SDC)	$VI(F_{\rho}-fit)$	VVP
π^0	66.1	63.4	$62.6^{+3.0}_{-2.5}$
η	19.3	17.6	16.3(1.4)
η'	16.9	14.9	14.5(1.9)
$PSGB/\eta^{\prime\prime}$	0.2	0.2	
\sum_{PS^*}	1.6	1.4	
PS poles total	104	97.5	93.8(4.0)
a_1	7.8	7.1	
$f_1 + f'_1$	20.0	17.9	
$\sum_{a_1^*}$	2.5	2.6	
$\sum_{f_1^{(')}*}^{1}$	4.0	3.5	
AV+LSDC total	34.3	31.1	21(16)
total	138	129	115(16.5)

New dispersive result [Hoferichter, Stoffer, Zillinger, 2412.00178+2412.00190]:

- higher by $+9.9 \times 10^{-11}$
- low-energy ($Q_i < 1.5$ GeV) contribution of axials: $14.2(1.6) \times 10^{-11}$

hQCD v1(F_{ρ} -fit): 13.8×10^{-11}

HLBL in AdS/QCD

GGI, Florence, 26 March 2025 31 / 34

Despite prominence of tensor mesons $f_2(1270), a_2(1320)$ in $\gamma\gamma$ collisions, until recently considered almost negligible for a_{μ} : [Danilkin, Vanderhaeghen, 1611.04646]: $a_{\mu}^{f_2,a_2} = +0.64(13) \times 10^{-11}$

But [Hoferichter, Stoffer, Zillinger, 2412.00178+2412.00190]: with new framework which avoids spurious kinematical singularities similar simple Quark Model ansatz for tensor TFFs gives $a_{\mu}^{f_2,a_2}|_{\rm IR} = -2.5(8) \times 10^{-11}$ (dispersive treatment not yet possible)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Despite prominence of tensor mesons $f_2(1270), a_2(1320)$ in $\gamma\gamma$ collisions, until recently considered almost negligible for a_{μ} : [Danilkin, Vanderhaeghen, 1611.04646]: $a_{\mu}^{f_2,a_2} = +0.64(13) \times 10^{-11}$

But [Hoferichter, Stoffer, Zillinger, 2412.00178+2412.00190]: with new framework which avoids spurious kinematical singularities similar simple Quark Model ansatz for tensor TFFs gives $a_{\mu}^{f_2,a_2}|_{\rm IR} = -2.5(8) \times 10^{-11}$ (dispersive treatment not yet possible)

Hard-wall AdS/QCD [Cappiello, Leutgeb, Mager, AR, 2501.09699+2501.19293]:

A. Rebhan

Despite prominence of tensor mesons $f_2(1270), a_2(1320)$ in $\gamma\gamma$ collisions, until recently considered almost negligible for a_{μ} : [Danilkin, Vanderhaeghen, 1611.04646]: $a_{\mu}^{f_2,a_2} = +0.64(13) \times 10^{-11}$

But [Hoferichter, Stoffer, Zillinger, 2412.00178+2412.00190]: with new framework which avoids spurious kinematical singularities similar simple Quark Model ansatz for tensor TFFs gives $a_{\mu}^{f_2,a_2}|_{\rm IR} = -2.5(8) \times 10^{-11}$ (dispersive treatment not yet possible)

Hard-wall AdS/QCD [Cappiello, Leutgeb, Mager, AR, 2501.09699+2501.19293]: only 1 additional free parameter (tensor normalization)

• when matched to pQCD tensor-tensor correlator OPE: (underestimates experimental $f_2 \rightarrow \gamma\gamma$)

 $a_{\mu}^{T_{1},\text{pole}}|_{\text{IR}} = +2.1 \times 10^{-11}, \qquad a_{\mu}^{T_{1},\text{full}}|_{\text{IR}} = +5.4 \times 10^{-11}, \qquad a_{\mu}^{T}|_{\text{IR}} = +6.2 \times 10^{-11}$

• when matched using symmetric longitudinal SDC, where axials alone give only 81%: (agrees with experimental $f_2 \rightarrow \gamma \gamma$!)

$$a_{\mu}^{T_{1,\text{pole}}}|_{\text{IR}} = +3.3 \times 10^{-11}, \qquad a_{\mu}^{T_{1},\text{full}}|_{\text{IR}} = +8.3 \times 10^{-11}, \qquad a_{\mu}^{T}|_{\text{IR}} = +9.5 \times 10^{-11}$$

Would remove tension between new dispersive result of [Hoferichter, Stoffer, Zillinger, 2412.00178+2412.00190] with most recent HLBL lattice evaluations

with HW AdS/QCD tensor results in place of $QM(m_{\rho})$:

$$a_{\mu}^{\text{HLbL}} = (102 \rightarrow 113) \times 10^{-11}$$

HLBL in AdS/QCD

< ロ > < 同 > < 回 > < 回 >

Conclusions for a_{μ}^{HLBL}

- hQCD is not QCD, but sophisticated toy model that can give clues on
 - how short-distance constraints can be implemented at the hadronic level
 - \bullet important fundamental role of axial-vector mesons \leftrightarrow anomaly
 - semi-quantitative estimates of the ballparks to be expected
 - pion contribution from hQCD in perfect agreement with data-driven approach
 - with finite quark masses and WV η^0 mass: good agreement with η , η' WP results, predicted axial-vector contributions greater than estimated previously

 $a_{\mu}^{\rm AV+MVSDC} = \mathbf{31.1}_{-4.1}^{+3.2} \times 10^{-11}$ for HW1m+U(1)_A (LMR)

but since Dec 2024 confirmed by dispersive approach

• New issue:

large positive contribution of tensor mesons in hQCD

 \rightarrow would remove tension between recent dispersive and lattice results

 \Rightarrow need doubly virtual TFF data to validate/falsify