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Double Copy: gluon — gravitational amplitudes

QCD at high occupancy < perturbative QCD
Strong field semi-classical double copy BCJ double copy

Gravity at high occupancy «—— perturbative gravity

Bern, Carrasco, Johannson,
Monteiro,O’Connell,White, arXlv:1410.0239 arXiv: 1004.0476
Goldberger, Ridgeway, arXiv:1611.03493



Double Copy: gluon — gravitational amplitudes

The BCJ double copy has been remarkably successful in computing the inspiral potential
of binary black holes to high powers in a post-Minkowskian expansion in GR — up to O(G?)

Bern et al, PRL 126 (2021) 17, 171601

Can we anticipate the same for ultrarelativistic regimes of BH mergers or close BH encounters?

As first emphasized by Weinberg, QFT/EFT ideas are powerful in thinking about gravity

(besides the geometrical picture)
From The

—and this is true for understanding the high occupancy (BH) regime as well... PAST
to The

FUTURE

The Legacy of

DP1 p3

A double copy of 2 = N gluon — graviton
scattering was discovered by Lipatov
more than 40 years ago

D2

Lipatov, PLB 116B (1982); JETP 82 (1982)



2 = N + 2 amplitudes in trans-Planckian gravitation scattering:
from wee partons to Black Holes

HIGH-ENERGY SCATTERING IN QCD AND IN QUANTUM GRAVITY The World as a Hologram
AND TWO-DIMENSIONAL FIELD THEORIES LEONARD SUSSKIND
LN. LIPATOV* Wee partons, by contrast, are not subject to Lorentz contraction. This implies that in

the Feynman Bjorken model, the halo of wee partons eternally ”floats” above the horizon at

We construct effective actions describing high-energy processes in QCD and in quantum a distance of order 10~ 13¢m as it transversley spreads. The remaining valence partons carry
gravity with intermediate particles (gluons and gravitons) having the multi-Regge kinematics.
The S-matrix for these effective scalar field models contains the results of the leading logarith-
mic approximation and is unitary. It can be expressed in terms of correlation functions for two

field theories acting in longitudinal and transverse two-dimensional subspaces wee. No Lorentz contraction takes place and the entire structure of the string floats on
the stretched horizon. I have explained in previous articles how this behavior prevents the

the various currents which contract onto the horizon as in the Einstein Lorentz case.

By contrast, both the holographic theory and string theory require all partons to be

accumulation of arbitrarily large quantities of information near the horizon of a black hole.
Thus we are led full circle back to Bekenstein’s principle that black holes bound the entropy
of a region of space to be proportional to its area.

Effective action and all-order gravitational eikonal J.Math.Phys. 36 (1995) 6377; 4018 cites !
at planckian energies

AMATI,CIAFALONIVENEZIANO NPB403 (1993)707

Building on previous work by us and by Lipatov, we present an effective action approach to
the resummation of all semiclassical (i.e. O(#~')) contributions to the scattering phase arising in

In Acknowledgements:

Finally I benefitted from discussions with Kenneth Wilson and Robert Perry, about

boosts and renormalization fixed points in light front quantum mechanics and Lev Lipatov

X L S5 K ) X % 3 about high energy scattering. —
high-energy gravitational collisions. By using an infrared-safe expression for Lipatov’s effective
action, we derive an eikonal form of the scattering matrix and check that the superstring
amplitude result is reproduced at first order in the expansion parameter R?/b?, where R, b are 30+ years of work by ACV et al. exp|0ring
the gravitational radius and the impact parameter, respectively. If rescattering of produced . . L. .
gravitons is neglected, the longitudinal coordinate dependence can be explicitly factored out and graV|tat|0na| shockwave collisions in 2-D EFT
exhibits the characteristics of a shock-wave metric while the transverse dynamics is described by
a reduced two-dimensional effective action. Singular behaviours in the latter, signalling black Summarized in Di Vecchia, Heissenberg, Russo, Veneziano,

hole formation, can be looked for. Phys.Rept. 1083 (2024) 1




From QCD to gravity in Regge asymptotics: reggeization

In GR, at large impact parameters, dominant
contribution is eikonal multiple scattering + * + o
(Einstein deflection)

. ia. iv(b.s K2s d’k 1 _ __ 8nm
’LMEik = 2S/d2b (& a-b (6 x(b,s) — 1) with X(b7 8) - 2 / (27‘(’)2 pe bk Kz_ 8nG = MIZDlanck

Reggeized (semi-classical) contributions
formally suppressed by R?/b?

K2 ) —t S —t

Eikonal Loop

d’k 1 1 1
Graviton Regge trajectory: a(t) = @/ @) K (q — k)’ [(k (g —k))? (? + (4 k)2> = 02] ,  ¢?=-—t

The IR virtual divergence cancels in the inclusive cross-section Lipatov, PLB 116B (1982); JETP 82 (1982)



From QCD to gravity in Regge asymptotics: Lipatov vertex

Gravitational Lipatov vertex:

1 1
/ Fuu(q17Q2) = icu(qlaq2)cl/(q1aq2) o §Nu(qvq2)Nl/(qlaq2)
\ J \ J
| |

Double copy of Double copy of
QCD Lipatov vertex QED Bremsstrahlung vertex

y4! P2
N , — 2.2 < B [l )
u(q1,42) = 1/ 4193 Py

H-diagram of Amati, Ciafaloni, Veneziano

S-matrix power counting a la ACV:

2 3.2 : 2
S’ — 62'1:(50+51+52+“' ) do = Gslog (E) ; 0 = 6G28 log s , 0o = 2Gs [l—i- ilogs (logL— +2>]
- b b T

} 1 ' \1)2 "
Leading Eikonal term (real)

Sub-leading quantum Sub-leading loop contribution

112; 2

i ion ~ R%Z . o
gravity correction ~ -5 ~ b—g - includes absorptive piece

62 > 61 for RS > lp




The BFKL equation in Einstein gravity

I. Rothstein, M. Saavedra, arXiv:2412.04428
H. Raj, A. Stasto, RV, in preparation

d’k 1
2m)? k(g — k)’

Integral equation derived by Lipatov for the Mellin amplitude: M,(t) = 1t—6 / ( fe(k,q)

d2k, f@ k/a q
;AR D e, )
(2m)° k"% (q — k) \ |
C”“’i(ki, ki+1)c ivi(q — ki, q— ki+1)

** The solution is IR and UV safe”: IR is obvious but UV is subtler — but works because pure Einstein
is 1-loop renormalizable (t’"Hooft+Veltman)

(¢~ atk) ~allg - DSk ) =1+ [

Some comments:

< The large double logs ( a;rLn?(s) ) we have been discussing are included in this resummation
(this BFKL is “kinematically constrained”) but not the “CSS” logs (GGFL: Gorshkov,Gribov,Frolov,Lipatov, rather, + Bj+T.T.Wu)



The BFKL equation in Einstein gravity

I. Rothstein, M. Saavedra, arXiv:2412.04428
H. Raj, A. Stasto, RV, in preparation

d’k 1
(2m)? k(g — k)

Integral equation derived by Lipatov for the Mellin amplitude: M,(t) = i/

16

ff(k’ Q)

(k) — ol (g — k)2 _ L K[ PK fi(K,q) :
(¢~ alk?) ~al(a— RN flk ) = 1+ 1 [ 25t Kt k)
‘ CH¥ (ki, kit1)Cpivi (@ — ki, ¢ — Kis1)

s2 1

. . s 1
% The amplitude has the structure 4,_,, = Kk? T a I, (a¢) where & = Ln (—t) and a =;T\/K2(—t)
- corresponding to a branch point in the t-j plane j~ 2+ k% \/—t

Some comments:

(DUs in impact factor were taken into account by Bartels, Lipatov, Sabio-Vera, arXiv:1208.3423)

s Very interestingly, the soft limit of the Lipatov vertex gives the ultrarelativistic limit of the Weinberg theorem
(for radiative amplitude of soft gravitons)



From amplitudes to shockwaves in QCD and GR

el ------------------

As one approaches the dense field regime
In QCD, the shockwave/CGC formalism

is more efficient (and nearly as accurate)
as the amplitude formalism in

computing inclusive final states

pr (25 ym)
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Hentschinski, 1802.06755

In dilute-dilute and dilute-dense
Yang-Mills shockwave collisions,
recover QCD Lipatov vertex

Blaizot,Gelis,RV, hep-ph/9402256
Gelis, Mehtar-Tani, hep-ph/0512079
The same may be true in general relativity

Himanshu Raj, RV: arXiv, 2311.03463, 2312.035407, 2312.11652, 2406.10483, 100+ page review in preparation
Raj, Stasto, RV, in preparation



Shockwave collisions in general relativity: single shock background

Aichelburg-Sex| shockwave metric of a shockwave

ds®> = 2dztdx~ — §;;dx*dx? + f(z ™, x) (da:_)2
2

with f(z7,z) = 2&2;1,115(3:_)“5(;1:) = %uHé(x_) /dzy InAlz — y|pg(y)

Linearizing around the metric guv = Guv + K h“,, U= my Y = fixed for y = oo

K’=8mG
Fix light cone gauge hy,;=0. Find solution: h;;(z*,27,x) = V(2™ ,x)h(z", 2~ = x5, )
. o . : _ I _ Exactly analogous to the QCD case
with the gravitational Wilson line V(z7,z) = —/ dz=g__(z7,x)0
g (x~,x) = exp (2 4z (27, x) +) withA_ - g._andT% — a,

5 |
Shapiro time-delay

Melville,Nachulich,Schnitzer,White,
arXiv:1306.6019



Shockwave collisions in general relativity: dilute-dilute approximation

Now consider interaction of two shockwaves: p; with py
T,, =08, 0, pyd (x7) py(xX) +6,,0, .16 (x+) pr(x)

Solve for metric in region IV — forward lightcone around py

Pu(X)

1

g,uy = g;u/ + h/w g__= 2K,UH§ x7)

U= my Y = fixed for y - oo

K*=8T G

We decompose the perturbation h,,, due to p; into a term linear in p; and one bi-linear in p; py

Linearized Einstein’s equations in light-cone gauge (h, ,=0) take the form

I 2
g Phy—hy = [(266 0.6) = e+ 2Ty 0T - — (o + 0T, - 6,0.T. )]

+

hij = hij — %&jh where h = 5,-jhij Raj, RV: arXiv, 2311.03463



Shockwave collisions in general relativity: geodesics

Unlike the QCD case, the sub-Eikonal contributions T,;, T;; are required for consistency of equations of motion

Since these are not uniquely fixed by energy-momentum conservation, the dynamics of the sources is needed
to fix this. In the point particle approximation,

TH (z) = d)\ XEXY 5@ (2 — X (X))

F

The solution of the corresponding null geodesic equations Xr 4 I“,ij”X" =0, g,,pX”Xp =0

Oipr (b)
I

4,2 ‘ 2
X+ = —r2pgo(x—) PO L K HE y g x- (—@”H(b))
O, 2 0,

In the shockwave background, givenby X~ =X, X'=b"—rZ2ugX 0(X")

From the geodesic solutions, we can reconstruct the required components of the stress-energy tensor



Shockwave collisions in general relativity: Lipatov vertex

Solving egns of motion, taking the Fourier transform, and putting the graviton momenta on-shell, one obtains

2
Gravitational h(z)(k) 26° UH L / d"q, T ( PH FL
radiational field k2 +iek= ) (2m)? ai 95

Gravitational Lipatov vertex

1 1
recovering Lipatov’s result! I',,(qq,95) = §C“(q1,q2)C',,(q1,q2) — §Nu(q1,q2)Ny(q1,q2)

3 2
Compare to gauge theory ai(k) = -5 g. — / d q220 ( 2)pH TpL
radiation field k* + ek (2m) a a
. Is there a
—if**T,T.C,(q:,95) - sT,.(41, 92)
CK relation?

H.Johansson, A.Sabio Vera, E.Serna Campillo, and M.Vaszquez-Mozo,
JHEP10,215(2013),arXiv:1307.3106 [hep-th]



Classical color-kinematic duality-|

Y

@ (67
% P :%i\%a\
v w i v
|
B B
(b)

(9)

From Goldberger, Ridgway
arXiv:1611.03493

(a)

A classical color-kinematic duality between QCD and GR exists but it requires
one include sub-eikonal corrections to the QCD Lipatov vertex

For this, require a detailed theory of sources: Yang-Mills+ Wong equations for classical color sources c?:

D/ ¥ =gl, JH(x) = Z Jdrcg(r)vg(r)éd (x — x,(0)
a=1,2
dc* dp*
= gf A (x(D)cr) = gcFhy

dr dr



Classical color-kinematic duality-II

Ultrarelativistic limit of Goldberger-Ridgway solution

a 9 d q; € ' € ? - pabe c b2 - k q p1- k q '
AR (k) = —75 (%)22 & p [zf *dies (—q’l‘ +4q5 +pi (p1 T 1k) — P (m e 2k>> QCD Lipatov vertex

2 .a 2 .a .
gic k- qo k- p k- p2 g5 k-q k- p2 k-p E
iy .Cz{ 161 (_q5+ P+ P — p’f) + 2% (—Q’f+ P+ Pl — o sub-eikonal
Pk k- p P1 P2 P12 p2-k k- p2 P1- D2 P1 P2 correction

i !

1/p} 1/py

Sub-Eikonal contributions are not universal — for instance, they depend on the spin of the particles

Classical color-kinematic replacement rule:
Co = Ph
: 1
if 120 = T (q1,42,93) = =5 (177 (@1 — ¢3)™ + 0" (@2 = 91)™ + 1" (g3 — 02)™")

g—k, Gluon 3-pt vertex with % stripped off



Classical color-kinematic duality-Ill

Ultrarelativistic limit of Goldberger-Ridgway solution

a g d q; € ' € ? . pabe c b2 - k q b1 k q :
AR (k) = —75 (%)‘; & p [zf *dies (—q’f +q5 +pi (p1 T 1k) — P (m e 2k)) QCD Lipatov vertex

2 .a 2 a .
gic k- qo k- p k- p2 g5 k-q k- p2 k-p E
iy .62{ 161 (_q5+ P+ P — p’f) 4+ 2% (—Q’f+ P+ Pl — o sub-eikonal
Pk k-p1 P1 P2 P12 p2-k k- p2 P1- D2 p1 D2 correction

i !

1/p} 1/py

Sub-Eikonal contributions are not universal - for instance, they depend on the spin of the particles

Performing the substitution, one finds the result we obtained by direct computation!

uv — 2 - LYW AT ATV w 2
AR = ok (2m)* af ¢ 2 e TN ( pz-qu)]

Unphysical — drops out when contracted

with the gravitational polarization tensor
Raj, RV, arXiv: 2312.035407



Shockwave propagators in GR-|

NLO corrections (absorptive piece of three loop diagram in GR counting) in strong background field

Rederive Lipatov’s GR “BFKL equation” in shockwave language - in preparation

Key ingredients are retarded shockwave propagators



Shockwave propagators-I|

Shockwave propagators - >
(graviton-reggeized graviton-graviton propagator) - > + 2 ‘n

Raj, RV, arXiv:2406.10483

d'k ! o AN GR Wilson li
Clanpa B _/ (2 )4 k? + ik~ Z hﬁ“/ k) )hpg,k )(y) Ifon Ine
%Y B
Soln. of small fluctuation equation: hf;},’\k) (z7,zt,2) = e (k) [@(—m‘) e T 1 9(z7) e_ik‘”Uk(a:)]

éNVPU(p,p,) = é(;)u/pa (p)(27’(’)45(4) (p - p,) T ézyaﬁ (p)Taﬁ’Y(s(p, ) 'yépo'(p )
where GV is the free propagator and the shockwave effective vertex is

1 : - — — i(p—p')-z [ Lif1(2)p/
nupa(p7p,) = _5 (AupAua + A/,AO'Al/p - AuuApa) 471"1,(}7/) 5(19 - (p/) )/dzz € (p—p") (8 f(2)py 1)

nuk, +n,k, — 2 p(x)
s filw) = RTpee 0,

Remarkably, they satisfy double-copy relations to the QCD shock wave propagators

Auz/ = MNuv —



Geodesic congruence: the geometry of quantum information

The Raychaudhuri equation
- key in Hawking-Penrose singularity theorems :

Volume change of geodesic convergence
0 = —QZjQJi -+ Kzi
1

_ 2 1] 1] )
= —59 —az-ja”—l—wijw’—l—Ki'

l l l ‘ Includes Ricci curvature + stochastic graviton noise

Bulk scalar Shear tensor Rotation tensor
H.-T. Cho and B.-L Hu, arxiv:2301.06325

M. Parikh, F. Wilczek, G. Zaharaide, PRL (2021)



Geodesic congruence: the geometry of quantum information

The Raychaudhuri equation
- key in Hawking-Penrose singularity theorems :

Volume change of geodesic convergence

= -, + K

1 . . :
2
= —gg — O'f,;jO'Z] + wz-jw” + Kzi.
l l : Includes Ricci curvature + stochastic graviton noise

Bulk scalar - Shear tensor ~ Rotation tensor H.-T. Cho and B.-L Hu, arxiv:2301.06325
M. Parikh, F. Wilczek, G. Zaharaide, PRL (2021)

Remarkably, the Raychaudhuri equation can be rephrased as a Bishop-Gromov
upper bound on the “complexity volume in D-1 dimensions” of gate complexity — as envisioned by M. A. Nielsen

A.R. Brown and L. Susskind, arXiv:1903.12621
A. R. Brown, arXiv:2112.05724

Some speculations:
A) Can we understand Black Hole formation as a non-trivial fixed point of RG evolution

—in the dilute-dense framework?
B) Does this saturate the Bekenstein-Hawking bound — on the maximal entropy in a localized volume






