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Motivation

Two prong: issues with NLO BFKL/JIMWLK and the need to account for
DGLAP logs, especially in view of EIC.
From the beginning of time (∼ 27 years) it has been known that frequency is
a more suitable evolution parameter than the longitudinal momentum. Salam
(1998), Sabio Vera (2005), Altinoluk et.al. (2014), Ducloe et. al. (2019)
In NLO BFKL switching to frequency (k−) evolution eliminates higher poles
in the characteristic function at γ = 1, and makes the kernel better behaved.
Seems to have a similar effect in NLO dipole model (beyond linear limit).
This is in the eikonal limit - i.e. assuming (multiple) soft scatterings off the
target. But not only. For DGLAP frequency also is the right evolution
parameter: increasing Q2 increases the frequency of the fluctuations in the
target resolved by the hard scattering:
DGLAP collinear splittings
(k+, k⊥ ∼ 0) → (p+ ∼ k+, p⊥ ≫ k⊥) + (k+ − p+ ∼ k+,−p⊥) increase the

frequency of the relevant modes
p2⊥
2p+ ≫ k2

⊥
2k+ .

Alex Kovner (University of Connecticut ) Born-Oppenheimer RG for high energy evolution March, 2025 2 / 18



Frequency increase ↔ Born-Oppenheimer physics

The physics principle for frequency evolution is exactly the same as for the
famous Born-Oppenheimer approximation. As the external frequency with
which we probe the system is increased (be it the total energy E or the
transverse resolution scale Q2), faster modes participate in the process.

Thus to understand the evolution, we need to solve for ”fast” modes
(higher frequency) on the background of the slower modes (lower
frequency).

Of course as we go higher and higher in the resolution (energy, Q2 ...) we
need to include faster and faster modes. We call this procedure ”the
Born-Oppenheimer RG”. The BO RG should unify the BFKL-type and the
DGLAP-type evolution in a single framework.
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The setup I

As always, we assume factorization between the projectile and target
degrees of freedom, so that the wave function before scattering

|Ψin⟩ = |ΨP⟩ ⊗ |ΨT ⟩

The projectile wave function contains modes with frequencies below those
of the target:

E Ee∆

Projectile

Target

Slow Fast
k−

Ψ
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The setup II

We neglect quarks. Also we assume dilute limit, i.e. projectile fields are
small.

The slow and fast modes of the projectile interact via H I
SF .

The LCWF of the fast modes is found by calculating

U(0, τ) = T exp{i
∫ τ

0
dx+H I

SF (x
+)}

The operator that diagonalizes the fast modes (in the fixed slow background)
is

Ω = lim
τ→∞

U(0, τ)

The LCWF of the projectile is then

|ΨP⟩ = Ω |0⟩F ⊗ |ψ0⟩S

We follow this procedure through perturbatively to leading order.
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The interaction Hamiltonian I

This is straightforward - just staring at the QCD Hamiltonian and separating out the
highest frequency mode:

HI (p) = −ig

∫
max(k−,(k−p)−)<p−

Aa
i (k

+, k)f abc ×

×
{[
δkiδjl

(
2k+

p+
− 1

)
+ ϵkiϵjl

]
Pbd
j A†d

l (p+,p)A†c
k (k+ − p+, k − p)+

+

[
δkiδjl

(
2k+

k+ − p+
− 1

)
+ ϵkiϵjl

]
(K − P)bdj A†d

l (k+ − p+, k − p)A†c
k (p+,p)

}
+ h.c

Here

Pab
i ≡ piδ

ab + igf abc
∫
k+≪p+;k−≪p−

[
α†c
i (k+, k) + αc

i (k
+,−k)

]
αi - are very slow and soft fields with all components of momentum small - ”soft
fields” in the SCET language. This interaction is outside of either BFKL or DGLAP
framework. The soft fields have to be dealt with in the dense limit. So far we have
only considered dilute limit, and so we close our eyes and hearts to their existence.
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The interaction Hamiltonian II

The no-soft - fields Hamiltonian is

HI (p) = −ig

∫
max(k−,(k−p)−)<p−

Aa
i (k

+, k)f abc ×

×
{[
δkiδjl

(
2k+

p+
− 1

)
+ ϵkiϵjl

]
pjA

†b
l (p+,p)A†c

k (k+ − p+, k − p)

−
[
δkiδjl

(
2k+

k+ − p+
− 1

)
+ ϵkiϵjl

]
pjA

†b
l (k+ − p+, k − p)A†c

k (p+,p)
}
+ h.c .

To find the LO wave function we need the energy denominator. For k → p, k − p it
is

D−1 ≡ k− − p− − (k − p)− =
k2

2k+
− p2

2p+
− (k − p)2

2(k+ − p+)
≈ − p2k+

2p+(k+ − p+)
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The LCWF for a fast mode p

We then find the perturbative LCWF

Ωp = 1 + iG (p+,p) ≈ e iG(p+,p); G (p+,p) = HI (p)D

where

G (p+,p) = A†
i (p

+,p)Ci (p
+,p) + Ai (p

+,p)C †
i (p

+,p)

C a
i (p

+,p) = g

∫
k−<p−; (k−p)−<p−

F i
lk(k, p)A

†
l (k

+ − p+, k − p)T aAk(k
+, k)

F i
lk(k, p) =

4p+(k+ − p+)

k+

{
δklδji

k+

p+
+ δkiδjl

k+

k+ − p+
− δkjδil

}
pj

p2

No matter the details: Ci is the ”classical field” (Ω is a coherent operator) (in the
eikonal limit reduces to the usual pi

p2 ρ
a(p)).
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The evolved LCWF

Now that we have diagonalized the Hamiltonian for a single fast mode, we
write the wave function evolved over a finite range of frequency

|ΨP⟩E = P exp

{
i

∫ E

E0

dp−G(p−)
}
|ΨP⟩E0

where

G(p−) ≡
∫
p
δ(p− − p2

2p+
)G (p+,p2);

G (p+,p) = A†
i (p

+,p)Ci (p
+,p) + Ai (p

+,p)C †
i (p

+,p)

Given the wave function we can discuss evolution!
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On to the evolution

For any operator Ô in the projectile Hilbert space

⟨Ô⟩E = ⟨ΨP |Ô|ΨP⟩E

The evolution equation follows from

d

η
⟨Ô⟩ = lim

∆→0

1

∆

[
⟨Ô⟩Ee∆ − ⟨Ô⟩E

]
; η ≡ lnE/E0

Quite generally for an arbitrary Ô there are two types of contributions to
the evolution: virtual (or Lindblad) - due to gluonic degrees of freedom in
Ô that live below E , and real - due to those that live between E and Ee∆.

E Ee∆

Virtual Real

Slow/ Valence Fast
k−

For ⟨ρ(x)ρ(y)⟩ - both contributions are present (BFKL) - more difficult.

For TMD T (p+,p): p2

2p+ < E only the Lindblad term contributes (CSS) -
easier.
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Evolution of gluon TMD

Consider
T̂ (k) ≡ a†ai (k)aai (k); T (k) ≡ ⟨ΨP |T̂ (k)|ΨP⟩E ; k− < E

Direct calculation:

δT (k) = δT L(k) + δT NL(k)

with

δT L(k) =
g2Nc

2

∫
E<p−<Ee∆

∫
d3p

(2π)3
1

2p+

[ 1

4k+(k+ + p+)
F l
st(k + p, p)F l

st(k + p, p)T (k + p) gain

− 1

4k+(k+ − p+)
F l
st(k , p)F

l
st(k , p)T (k)

]
loss

(1)

and

δT NL(k) =
g2

2

∫
d3p

(2π)3

∫
d3l

(2π)3
1

2p+
×[

F i
lk(l , p)F

i
nm(k + p, p)⟨: A†

l (l
+ − p+, l − p)T aAk(l

+, l )A†
m(k

+ + p+, k + p)T aAn(k
+, k) :⟩

−F i
lk(l , p)F

i
nm(k , p)⟨: A

†
l (l

+ − p+, l − p)T aAk(l
+, l )A†

m(k
+, k)T aAn(k

+ − p+, k − p) :⟩

]
+ h.c .

These are long but make sense
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TMD and CSS

First:

F i
ln(k , p)F

i
ln(k, p) = 32(k+)2ζ(1− ζ)

[
ζ

1− ζ
+

1− ζ

ζ
+ ζ(1− ζ)

]
1

p2
; ζ ≡ p+

k+

The ”loss term””∫
d3p

(2π)3
1

2p+
1

4k+(k+ − p+)
F l
st(k , p)F

l
st(k , p)T (k , x) =

∆

2π2

∫ 1/2

0
dζ

[
ζ

1− ζ
+

1− ζ

ζ
+ ζ(1− ζ)

]
T (k , x)

The ”gain term” regulates the above at ζ ≈ k−/E
So that

∂

∂η
T (k , x) = −g2Nc

4π2

∫ 1/2

k−
E

dζ

[
ζ

1− ζ
+

1− ζ

ζ
+ ζ(1− ζ)

]
T (k , x) +NL

Looks a lot like CSS equation, but only a single equation, and the evolution
parameter is ln k−.
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BO and CSS I

Recall CSS

∂T (k+, k2;µ2; ξ)

∂ lnµ2
=− αs

2π
Nc

∫ 1−ξ/k+

ξ/k+

dζ
[1− ζ

ζ
+

ζ

1− ζ
+ ζ(1− ζ)

]
T
(
k+, k2;µ2; ξ

)
∂T (k+, k2;µ2; ξ)

∂ ln 1
ξ

=− αs

2π
2Nc

∫ µ2

k2

dp2

p2
T
(
k+, k2;µ2; ξ

)
The CSS and BO cascades are different: for an initial gluon with momentum k

ln µ2

k2

ln k+

ξ

ln p2

k2

ln k+

p+

Figure: The phase space of the DGLAP/CSS cascade with resolution scales µ2 and ξ.
Only gluons with momenta (p+,p2) inside the blue rectangle are allowed in the wave
function.
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BO and CSS II
BO evolution - a single evolution parameter

∂

∂η
T (k , x) = −g2Nc

4π2

∫ 1/2

k−
E

dζ

[
ζ

1− ζ
+

1− ζ

ζ
+ ζ(1− ζ)

]
T (k , x) +NL

ln E
k−

ln E
k−

ln p2

k2

ln k+

p+

Figure: The phase space of the BO cascade. Only gluons with p− < E , p+ < k+ and
p2 > k2 are present in the wave function.

Nevertheless the two cascades are exactly equivalent (as far as the evolution of
TMD is concerned) if we identify

TBO(k , k+;E ) = TCSS(k
+, k ;µ2(E ); ξ(E ))

ln
µ2(E )

k2
= ln

E

k−
; ln

k+

ξ(E )
− 11

12
=

1

2

[
ln

E

k−
− 11

12

]
The CSS evolution equations then collapse onto the BO evolution.
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The Nonlinear terms - the stimulated emission I

Recall that we got nonlinear contributions to the evolution

δT NL(k) =
g2

2

∫
d3p

(2π)3

∫
d3l

(2π)3
1

2p+
×[

F i
lk(l , p)F

i
nm(k + p, p)⟨: A†

l (l
+ − p+, l − p)T aAk(l

+, l )A†
m(k

+ + p+, k + p)T aAn(k
+, k) :⟩

−F i
lk(l , p)F

i
nm(k , p)⟨: A

†
l (l

+ − p+, l − p)T aAk(l
+, l )A†

m(k
+, k)T aAn(k

+ − p+, k − p) :⟩

]
+ h.c .

Those look complicated, but have a simple interpretation in ”dilute approximation”.

Essentially we assume that spectators don’t matter, and that the two particles that
scatter here must be in the same final state as in the initial state in order to contribute
to the forward scattering amplitude.
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The Stimulate emission II

The things then simplify

∂

∂η
[xT (k , x)] = −g2Nc

4π2

[ ∫ 1/2

k2/Q2

dζ

[
ζ

1− ζ
+

1− ζ

ζ
+ ζ(1− ζ)

]

+
1

4π(N2
c − 1)

1

Q2S⊥

∫ p2=Q2

p2=k2

d2p
(2π)2

[xT (p, x)]

]
[xT (k , x)]

Here transverse resolution Q2 = 2Ek+ - the highest transverse momentum allowed in
the BO wave function for particles with longitudinal momentum k+.
The nonlinear term is just a stimulated emission: the probability of splitting
(k) → (p) + (k − p) is enhanced if there is already a particle with momentum p in the
wave function!

It is a nonlinear (higher twist) effect that depletes the number of particles at k . It has
nothing to do with low x physics - indeed our ”dilute approximation” in the low x
regime is hardly justified.
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PDF and DGLAP

Where there is TMD, there is PDF.
For PDF we need to include the real corrections due to the gluons in the ”window”
between E and Ee∆. This does not present difficulties. We find that at moderate
x the DGLAP equation is reproduced where Q2 = 2Ek+.

∂

∂ lnQ2

[
xG (x ,Q2)

]L
=
αs

2π

∫ 1

x
dζPgg (ζ)

[
x

ζ
G

(
x

ζ
,
Q2

ζ

)]
(2)

At low x this deviates from the standard BFKL, as the resolution scale on the RHS
becomes different from Q2.

In addition the stimulated emission corrections also contribute, and are dominated
by their virtual terms.

∂

∂ lnQ2
[xG (Q2, x)]NL = −αsNc

4π

1

(2π)3
1

N2
c − 1

1

Q2S⊥
[xG (Q2, x)]2

A higher twist (obviously), but not the GLR-MQ term! No ln x , but leading in αs .
A completely different physical effect, but also leads to slowing down of the
evolution.
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Future ...

Our ultimate goal is of course to unify DGLAP with BFKL. We need to
consider the multiple soft scatterings, a.k.a. Wilson lines. That is still
some way off.

The next step is to look at soft scattering off a dilute target, meaning
consider the evolution of ⟨ρa(x)ρa(y)⟩. We thought we had it, but we
don’t - still working on it. It is not straightforward, but we are slowly
progressing, and we will do it.

Then there is the question of soft fields, which we have set aside for now.
Physically these describe rescattering of emitted gluons on the fields of the
projectile when the projectile is dense. Are they important? Probably. One
thing we know for sure - they contribute to part of the large transverse
logs in NLO BFKL.
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