Forward Hadron Productions in proton-nucleus collisions at NLO

Bo-Wen Xiao

School of Science and Engineering, CUHK-Shenzhen

[G. A. Chirilli, BX, Feng Yuan, 12][A. Stasto, BX, D. Zaslavsky, 14][Y. Shi, L. Wang, S.Y. Wei, BX, 22]

Saturation Physics, Color Glass Condensate

Describe the emergent property of high density gluons inside proton and nuclei.

- Gluon density grows rapidly as *x* gets small.
- Many gluons with fixed size packed in a confined hadron, gluons overlap and recombine ⇒ Non-linear QCD dynamics (BK-JIMWLK) ⇒ ultra-dense gluons with collective property.

Forward hadron production in pA collisions

[Dumitru, Jalilian-Marian, 02] Dilute-dense factorization at forward rapidity

- **\mathcal{F}(k_{\perp})** (dipole gluon distribution) encodes dense gluon info.
- Early attempts: [Dumitru, Hayashigaki, Jalilian-Marian, 06; Altinoluk, Kovner 11]
 [Altinoluk, Armesto, Beuf, Kovner, Lublinsky, 14]
- Full NLO: [Chirilli, BX and Yuan, 12]

Wilson Lines in Color Glass Condensate Formalism

The Wilson loop (color singlet dipole) in McLerran-Venugopalan (MV) model

Dipole amplitude $S^{(2)}$ then produces the quark k_T spectrum via Fourier transform

$$\mathcal{F}(k_{\perp}) \equiv \frac{dN}{d^2k_{\perp}} = \int \frac{d^2x_{\perp}d^2y_{\perp}}{(2\pi)^2} e^{-ik_{\perp}\cdot(x_{\perp}-y_{\perp})} \frac{1}{N_c} \left\langle \mathrm{Tr}U(x_{\perp})U^{\dagger}(y_{\perp}) \right\rangle.$$

d+Au collisions at RHIC

- Cronin effect at middle rapidity: redistribution of momentum
- **Rapidity evolution of the nuclear modification factors** R_{d+Au}
- Promising evidence for gluon saturation effects

New LHCb Results

[R. Aaet al. (LHCb Collaboration), Phys. Rev. Lett. 128 (2022) 142004] $R_{pPb} = \frac{1}{\langle N_{\text{coll}} \rangle} \frac{d^2 N_{p+Pb}/d^2 p_T d\eta}{d^2 N_{pp}/d^2 p_T d\eta}$

- Forward rapidity: Nuclear effects
 Small-x suppression
- Backward rapidity: Cronin enhancement

Rapidity evolution of the nuclear modification factors R_{pPb} similar to RHIC

NLO diagrams in the $q \rightarrow q$ channel

[Chirilli, BX and Yuan, 12]

- Take into account real (top) and virtual (bottom) diagrams together!
- Non-linear multiple interactions inside the grey blobs!
- Integrate over gluon phase space \Rightarrow Divergences!.

Factorization for single inclusive hadron productions

Factorization for the $p + A \rightarrow H + X$ process [Chirilli, BX and Yuan, 12]

- Include all real and virtual graphs in all channels $q \to q, q \to g, g \to q(\bar{q})$ and $g \to g$.
- 1. collinear to target nucleus; rapidity divergence \Rightarrow BK evolution for UGD $\mathcal{F}(k_{\perp})$.
- 2. collinear to the initial quark; \Rightarrow DGLAP evolution for PDFs
- 3. collinear to the final quark. \Rightarrow DGLAP evolution for FFs.

Factorization and NLO Calculation

 Factorization is about separation of short distant physics (perturbatively calculable hard factor) from large distant physics (Non perturbative).

 $\sigma \sim xf(x) \otimes \mathcal{H} \otimes D_h(z) \otimes \mathcal{F}(k_\perp)$

■ NLO (1-loop) calculation always contains various kinds of divergences.

- Some divergences can be absorbed into the corresponding evolution equations.
- Renormalization: cutting off infinities and hiding the ignorance.
- The rest of divergences should be canceled.
- Hard factor

$$\mathcal{H} = \mathcal{H}_{\mathrm{LO}}^{(0)} + rac{lpha_s}{2\pi} \mathcal{H}_{\mathrm{NLO}}^{(1)} + \cdots$$

should always be finite and free of divergence of any kind.

Hard Factor of the $q \rightarrow q$ channel

$$\frac{d^{3}\sigma^{p+A\to h+X}}{dyd^{2}p_{\perp}} = \int \frac{dz}{z^{2}} \frac{dx}{x} \xi_{Xq}(x,\mu) D_{h/q}(z,\mu) \int \frac{d^{2}x_{\perp}d^{2}y_{\perp}}{(2\pi)^{2}} \left\{ S_{Y}^{(2)}(x_{\perp},y_{\perp}) \left[\mathcal{H}_{2qq}^{(0)} + \frac{\alpha_{s}}{2\pi} \mathcal{H}_{2qq}^{(1)} \right] \right. \\ \left. + \int \frac{d^{2}b_{\perp}}{(2\pi)^{2}} S_{Y}^{(4)}(x_{\perp},b_{\perp},y_{\perp}) \frac{\alpha_{s}}{2\pi} \mathcal{H}_{4qq}^{(1)} \right\}$$

$$\begin{split} \mathcal{H}_{2qq}^{(1)} &= C_F \mathcal{P}_{qq}(\xi) \ln \frac{c_0^2}{r_{\perp}^2 \mu^2} \left(e^{-ik_{\perp} \cdot r_{\perp}} + \frac{1}{\xi^2} e^{-i\frac{k_{\perp}}{\xi} \cdot r_{\perp}} \right) - 3C_F \delta(1-\xi) \ln \frac{c_0^2}{r_{\perp}^2 k_{\perp}^2} e^{-ik_{\perp} \cdot r_{\perp}} \\ &- (2C_F - N_c) e^{-ik_{\perp} \cdot r_{\perp}} \left[\frac{1+\xi^2}{(1-\xi)_+} \widetilde{I}_{21} - \left(\frac{(1+\xi^2) \ln (1-\xi)^2}{1-\xi} \right)_+ \right] \\ \mathcal{H}_{4qq}^{(1)} &= -4\pi N_c e^{-ik_{\perp} \cdot r_{\perp}} \left\{ e^{-i\frac{1-\xi}{\xi} k_{\perp} \cdot (x_{\perp} - b_{\perp})} \frac{1+\xi^2}{(1-\xi)_+} \frac{1}{\xi} \frac{x_{\perp} - b_{\perp}}{(x_{\perp} - b_{\perp})^2} \cdot \frac{y_{\perp} - b_{\perp}}{(y_{\perp} - b_{\perp})^2} \right. \\ &- \delta(1-\xi) \int_0^1 d\xi' \frac{1+\xi'^2}{(1-\xi')_+} \left[\frac{e^{-i(1-\xi')k_{\perp} \cdot (y_{\perp} - b_{\perp})}}{(b_{\perp} - y_{\perp})^2} - \delta^{(2)}(b_{\perp} - y_{\perp}) \int d^2r'_{\perp} \frac{e^{ik_{\perp} \cdot r'_{\perp}}}{r'_{\perp}^2} \right] \right\}, \end{split}$$
where
$$\widetilde{I}_{21} = \int \frac{d^2b_{\perp}}{\pi} \left\{ e^{-i(1-\xi)k_{\perp} \cdot b_{\perp}} \left[\frac{b_{\perp} \cdot (\xi b_{\perp} - r_{\perp})^2}{b_{\perp}^2 (\xi b_{\perp} - r_{\perp})^2} - \frac{1}{b_{\perp}^2} \right] + e^{-ik_{\perp} \cdot b_{\perp}} \frac{1}{b_{\perp}^2} \right\}.$$

Numerical implementation of the NLO result

Single inclusive hadron production up to NLO

$$\mathrm{d}\sigma = \int x f_a(x) \otimes D_a(z) \otimes \mathcal{F}_a^{x_g}(k_\perp) \otimes \mathcal{H}^{(0)} + \frac{\alpha_s}{2\pi} \int x f_a(x) \otimes D_b(z) \otimes \mathcal{F}_{(N)ab}^{x_g} \otimes \mathcal{H}_{ab}^{(1)}.$$

Consistent implementation should include all the NLO α_s corrections.

- NLO parton distributions. (MSTW or CTEQ)
- NLO fragmentation function. (DSS or others.)
- Use NLO hard factors. [Chirilli, BX and Yuan, 12]
- Use the one-loop approximation for the running coupling
- rcBK evolution equation for the dipole gluon distribution [Balitsky, Chirilli, 08; Kovchegov, Weigert, 07]. Full NLO BK evolution not available.
- Saturation physics at One Loop Order (SOLO). [Stasto, Xiao, Zaslavsky, 13]

Numerical implementation of the NLO result

Saturation physics at One Loop Order (SOLO). [Stasto, Xiao, Zaslavsky, 13]

- Reduced factorization scale dependence!
- Catastrophe: Negative NLO cross-sections at high p_T .
- Fixed order calculation in field theories is not guaranteed to be positive.

The cross-section at high k_{\perp}

In the dilute limit $k_{\perp} \gg Q_s$, partonic cross-sections follow the power law

$$\sigma(k_{\perp}) \sim \mathcal{F}(k_{\perp}) \sim rac{Q_s^2}{4} \int d^2 r_{\perp} e^{-ik_{\perp} \cdot r_{\perp}} r_{\perp}^2 \ln(r_{\perp}\Lambda) \sim rac{Q_s^2}{k_{\perp}^4}.$$

■ NLO $\sigma_{NLO} \sim C\mathcal{F}(k_{\perp}) \sim C\frac{Q_s^2}{k_{\perp}^4}$ with C containing logarithms such as $\ln k_{\perp}^2/Q_s^2$.

Perturbative expansions vs Resummation (dijet productions)

Appearance of large logarithms such as L ~ ln² P²_⊥/q²_⊥ with P_⊥ ≫ q_⊥.
 Momentum imbalance q
_⊥ = p
_{1⊥} + p
{2⊥}, jet momenta P⊥ ~ p
_{1⊥} ~ p
_{2⊥}.

Extending the applicability of CGC calculation

- Goal: find a solution within our current factorization (exactly resum $\alpha_s \ln 1/x_g$) to extend the applicability of CGC. Other scheme choices certainly is possible.
- A lot of logs arise in pQCD loop-calculations: DGLAP, small-*x*, threshold, Sudakov.
- **Breakdown** of α_s expansion occurs due to the appearance of logs in certain PS.
- Demonstrate onset of saturation and visualize smooth transition to dilute regime.
- Add'l consideration: numerically challenging due to limited computing resources.
- Towards a more complete framework. [Altinoluk, Armesto, Beuf, Kovner, Lublinsky, 14; Kang, Vitev, Xing, 14; Ducloue, Lappi and Zhu, 16, 17; Iancu, Mueller, Triantafyllopoulos, 16; Liu, Ma, Chao, 19; Kang, Liu, 19; Kang, Liu, Liu, 20; Altinoluk, Armesto, Kovner, Lublinsky, 23]. Similar issues in other NLO calculations in CGC. [Taels, Altinoluk, Beuf, Marquet, 22; Iancu, Mulian, 22; Caucal, Salazar, Schenke, Stebel, Venugopalan, 23; Bergabo, Jalilian-Marian, 22, 23; Altinoluk, Armesto, Beuf, 23; Beuf, Lappi, Mäntysaari, Paatelainen, Penttala, 24; etc]

NLO hadron productions in pA collisions with kinematic constraints

[Watanabe, Xiao, Yuan, Zaslavsky, 15] Rapidity subtraction! with kinematic constraints

• Originally assume the limit $s \to \infty$

- Corrections related to threshold double logs. Negative when $p_T \gg Q_s$ at forward y $(x_p \rightarrow 1)!$ Approach threshold at high k_{\perp} .
- Ioffe time cutoff [Altinoluk, Armesto, Beuf, Kovner and Lublinsky, 14]

Numerical results with kinematic constraint

SOLO results [Stasto, Xiao, Zaslavsky, 13; Watanabe, Xiao, Yuan, Zaslavsky, 15]

SOLO still breaks down in the large p_{\perp} region with the new term.

Gluon Radiation at the Threshold

Near threshold: radiated gluon has to be soft! $\tau = \frac{p_{\perp}e^{y}}{\sqrt{s}}$ density ($\tau = x_p\xi z \le 1$)

If $q_{\perp} \sim k_{\perp}$, then $q^- \to \infty$, this is part of the small-*x* evolution.

If $q_{\perp}^2 \leq (1-\xi)k_{\perp}^2$, then q^- is finite, this is part of the Sudakov! $\Rightarrow \ln \frac{k_{\perp}^2}{q_{\perp}^2}$.

KLN ⇒ cancellation between real and virtual. - ∫_{Λ²}^{k²}/_{q²_⊥} ln k²/_{q²_⊥} = -1/2 ln² k²/_{Λ²}
 Introduce an additional semi-hard scale Λ² as the typical q_⊥.

Threshold resummation in the CGC formalism

Threshold logarithms:Collinear (plus-distribution) and Sudakov soft gluon part Performing Fouier transformations and Subtracting large logarithms

- Two equivalent methods to resum the collinear part $(P_{ab}(\xi) \ln \Lambda^2/\mu^2)$:
 - 1. Reverse DGLAP evolution; 2. RGE method (threshold limit $\xi \rightarrow 1$).
- Consistent with the threshold resummation in SCET[Becher, Neubert, 06]!
- Similar technique is used to extract the double log. At one loop Λ is arbitrary.
- After resumming all logs, μ^2 and Λ^2 dependences only cancel up to one-loop order.
- Choose proper μ^2 (hard scale) and Λ^2 (Saddle point) in resummation to minimize hard factors.

Fixing μ^2 and Λ^2

- Rationales: 1. Estimate Λ according to strengths of Sudakov and Saturation effects;
 2. make sure the un-resummed contribution is small, restore perturbative expansion.
- Choose proper μ^2 (hard scale) and Λ^2 (Saddle point); Similar to the technique used in collinear and TMD factorization with minimized hard factors.
- Define $F(k_{\perp} q_{\perp})$ and $G_{\text{th}}(q_{\perp})$ as the Fourier transform of $S^{(2)}(r_{\perp})$ and the Sudakov factor, respectively, and use Saddle point approximation to find the dominant region for resummed contribution:

$$\frac{\mathrm{d}\sigma_{\mathrm{resummed}}^{qq}}{\mathrm{d}y\mathrm{d}^{2}p_{T}} = S_{\perp} \int_{\tau}^{1} \frac{\mathrm{d}z}{z^{2}} \int_{x_{p}}^{1} \frac{\mathrm{d}x}{x} q(x,\mu) \int_{z}^{1} \frac{\mathrm{d}z'}{z'} D_{h/q}(z') \int d^{2}q_{\perp}F(k_{\perp}-q_{\perp})G_{\mathrm{th}}(q_{\perp}),$$

For running coupling, $\Lambda^{2} \approx \frac{1}{r_{sp}^{2}} \simeq \max\left\{\Lambda_{\mathrm{QCD}}^{2} \left[\frac{k_{\perp}^{2}(1-\xi)}{\Lambda_{\mathrm{QCD}}^{2}}\right]^{\frac{C_{F}}{C_{F}+N_{c}\beta_{0}}}, Q_{s}^{2}\right\}$

Threshold Logarithms

[Watanabe, Xiao, Yuan, Zaslavsky, 15; Shi, Wang, Wei, Xiao, 21] • 2112.06975 [hep-ph]

- Threshold enhancement for σ : $e^{-x} = 1 x + \frac{x^2}{2} + \cdots$
- In the coordinate space, we can identify two types of logarithms

single log:
$$\ln \frac{k_{\perp}^2}{\mu_r^2} \to \ln \frac{k_{\perp}^2}{\Lambda^2}$$
, $\ln \frac{\mu^2}{\mu_r^2} \to \ln \frac{\mu^2}{\Lambda^2}$; double log: $\ln^2 \frac{k_{\perp}^2}{\mu_r^2} \to \ln^2 \frac{k_{\perp}^2}{\Lambda^2}$,

with $\mu_r \equiv c_0/r_\perp$ with $c_0 = 2e^{-\gamma_E}$.

- Introduce a semi-hard auxiliary scale $\Lambda^2 \sim \mu_r^2 \gg \Lambda_{QCD}^2$. Identify dominant r_{\perp} !
- Dependence on μ^2 , Λ^2 cancel order by order. Choose "natural" values at fixed order.

•
$$\Lambda^2 = \max\left\{\Lambda^2_{QCD}\left[\frac{(1-\xi)k_{\perp}^2}{\Lambda^2_{QCD}}\right]^{C_R/[C_R+\beta_1]}, Q_s^2\right\}$$
. Akin to CSS & Catani *et al*.

Numerical Results for pA spectra

- Excellent agreement with data across many orders of magnitudes for different energies and p_T ranges measured from both RHIC and the LHC!
- Explain the rapidity dependence: threshold (Sudakov) logs are less important in the forward regime. In middle rapidity, large phase space gives large $\alpha_s \ln^2 \frac{k_\perp^2}{\Lambda^2}$

Comparison with the new LHCb data

LHCb data: 2108.13115

▶ Data Link ▶ DIS2021

- Threshold effect is not important at low p_T for LHCb data. Saturation effects are still dominant.
- Predictions are improved from LO to NLO.
- Solve the negativity problem at both RHIC and LHC.

Summary

- Ten-Year Odyssey in NLO hadron productions in *pA* collisions in CGC.
- Towards the precision test of saturation physics (CGC) at RHIC and LHC.
- New developments in DIS (EIC), e.g. [Caucal, et al 22; Taels, et al 22]
- Exciting time of NLO CGC phenomenology with the upcoming EIC.

My Personal Reflection of Edmond

- I first came across Edmond and his work as a graduate student 20 years ago.
- His papers are always very long, and they are a goldmine of detail, clarity, and insight.
- They were like my go-to resource and roadmap through complex ideas.
- It's a pity we never got the chance to collaborate (though I'm still holding out hope!).

Happy Birthday, Edmond!

