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Introduction

NLO CGC calculations with cut-off

Many calculations have been performed at NLO in the CGC: evolution equations, DIS or
pA observables.
(See previous talk from Tuomas)

Most frequently used regularization technique (in particular in LFPT):

1 Perform transverse integration in dim. reg.
2 Expand in ϵ
3 And then perform integrations over k+ momenta regulated by a cut off k+min

Issues with this regularization procedure:

• Does not distinguish clearly soft divergences from rapidity/low x divergences

• Difficult to compare results with other pQCD communities, in particular TMD

• Biases us to consider BK/JIMWLK as evolutions along k+ (related to projectile),
instead of k− (related to target), which is physically more natural.
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Introduction

Rapidity regulators from pQCD/TMD
Many new regulators for rapidity divergences have been proposed by the TMD and
SCET communities in the last 15 years

Some of them should be suitable as well in the context of low x physics/CGC, for
example:
Chiu, Jain, Neill, Rothstein, 2011-2012
Becher, Neubert, 2011
Ebert, Moult, Stewart, Tackmann, Vita, Zhu, 2019

Such rapidity regulators have been used for CGC observables, but in the language of
SCET, in Liu, Kang, Liu, 2020; Liu, Xie, Kang, Liu, 2022

A similar rapidity regulator has been proposed for CGC in LFPT in Liu, Ma, Chao, 2019,
at the level of each energy denominator
→ By experience, does not seem to work in full generality
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Introduction

Using rapidity regulators in NLO CGC calculations
3 versions of rapidity regularisation:

Introduce a factor in the loop integrand (with gluon momentum k)

• regulator in k+:
(
k+

ν+

)η

• regulator in k−:
(
ν−

k−

)η
∼

(
2k+ν−

k2

)η

• true rapidity regulator:
(
k+

k−
ν−

ν+

) η
2 ∼

(
2(k+)2ν−

k2ν+

) η
2

Analogy with dim.reg. : η ↔ ϵ and ν± ↔ µ

Order of limits: take η → 0 at finite ϵ, and later expand in ϵ.

Aim: revisit the calculation of NLO DIS (FL, massless quarks) (G.B., 2016-2017) with
the + and − versions of the regulator validate their implementation in CGC in LFPT.

Remark: results with true rapidity regulator can be obtained from the average of the +
and − versions.
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Introduction

Using rapidity regulators in NLO CGC calculations
From a diagram with dim. reg. and a rapidity regulator: typical expression of the form

I(ϵ, η) =

∫ 1

0
dξ ξ−1+η f(ξ, ϵ, η)

with ξ the k+ momentum fraction of the gluon in the loop.

• First case: f(0, ϵ, η) = 0 ⇒ rapidity regularization unnecessary

I(ϵ, η) = I(ϵ, 0) +O(η) =

∫ 1

0
dξ ξ−1 f(ξ, ϵ, 0) +O(η)

• Second case: f(0, ϵ, η) ̸= 0 ⇒ rapidity regularization necessary

I(ϵ, η) =

∫ 1

0
dξ ξ−1+η f(0, ϵ, η) +

∫ 1

0
dξ ξ−1+η [f(ξ, ϵ, η)− f(0, ϵ, η)]

=
1

η
f(0, ϵ, η) +

∫ 1

0

dξ

(ξ)+
f(ξ, ϵ, 0) +O(η)

⇒ two contributions: η pole, and + prescription
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γ∗
L → qq̄ LFWF at one loop

Quark off-shell self-energy diagram
One loop corrections to the γ∗L → qq̄ Light-Front wave function:

ΨNLO
γ∗
L→qq̄ =

(
1 +

αsCF

2π
VL

)
ΨLO

γ∗
L→qq̄

Contribution of quark self-energy diagram, with dim. reg. only:

VL
q S. E. =

∫ 1

0

dξ

ξ

[
− 2 +O(ξ)

]
4π µ2ϵ

∫
d2−2ϵK

(2π)2−2ϵ

1[
K2 + ξ(1−ξ)

(1−z) (P
2 +Q

2
)
]

=Γ(ϵ)

[
P2 +Q

2

4πµ2(1−z)

]−ϵ ∫ 1

0
dξ ξ−1−ϵ (1−ξ)−ϵ

[
− 2 +O(ξ)

]

Scale ∝ ξ in the denominator of K integral ⇒ ξ−ϵ factor regulating the ξ = 0 IR div.

Dim. reg. enough in that case: no rapidity divergence!

Full result, with UV times IR double ϵ pole (with Sϵ ≡ [4π e−γE ]
ϵ
):

VL
q S. E. =2

Sϵ

ϵ2

[
P2+Q

2

µ2(1−z)

]−ϵ

+
3

2

Sϵ

ϵ

[
P2+Q

2

µ2(1−z)

]−ϵ

− π2

6
+

δs
2

+ 3 +O(ϵ)
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γ∗
L → qq̄ LFWF at one loop

Vertex correction
3 LFPT diagrams with vertex correction topology: 2 different ordering of vertices and 1
instantaneous gluon exchange

Individual diagrams have power divergences at ξ = 0 on top of log divergences
But power divergences (and some log) cancel between vertex correction LFPT diagrams

Leftover in the total vertex correction:

• Terms with no potential div at ξ = 0 ⇒ dim. reg. enough (single ϵ UV pole)

• Terms of the same type as quark self-energy ⇒ dim. reg. enough (double ϵ pole)

• Terms with potential div at ξ = 0 but finite K integral:

VL
v. corr.

∣∣∣∣
B0/ξ

=

∫ 1

0

dξ

ξ
(1−ξ)

[(
1+

zξ

(1−z)

)
P2 + (1−ξ)Q

2
]
B0

B0 ≡ 4π (µ2)ϵ
∫

d2−2ϵK

(2π)2−2ϵ

1

[K2 +∆1] [(K+ L)2 +∆2]

and its symmetric under q ↔ q̄.
Dim. reg. insufficient in such term: Rapidity regulator needed!

Remark need to calculate the finite integral B0 with full ϵ dependence because of
the ordering of limits.
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γ∗
L → qq̄ LFWF at one loop

Rapidity singular contribution with η+ regulator

Introducing the factor (ξzq+/ν+)η, performing the K integral thanks to Feynman
parametrization, and changing variables:

VL
v. corr.

∣∣∣∣η+
B0/ξ

=

[
zq+

ν+

]η
Γ (1+ϵ)

[
4π µ2

]ϵ ∫ 1

0
dy y−1−ϵ+η

∫ 1

0
dζ ζη−1

[
1+

zζ

(1−z)

]−1−ϵ

×
[
(1−y) P2 + (1−yζ)Q

2
]−1−ϵ

[(
(1−y) P2 + (1−yζ)Q

2
)
+ yP2

(
1+

zζ

(1−z)

)]

Dim. reg. can regulate the y = 0 div, but rapidity regulator needed for the ζ = 0 div.

Separating the η pole piece and the + prescription piece:

VL
v. corr.

∣∣∣∣η+
B0/ξ; η pole

=
1

η

[
zq+

ν+

]η
Γ (1+ϵ)

[
4π µ2

]ϵ [
P2 +Q

2
] ∫ 1

0
dy y−1−ϵ+η

[
(1−y) P2 +Q

2
]−1−ϵ

=

[
1

η
+ log

(
zq+

ν+

)]−Sϵ

ϵ

[
Q

2

µ2

]−ϵ

+ 2 log

(
P2 +Q

2

Q
2

)
−

Sϵ

ϵ2

[
P2+Q

2

µ2

]−ϵ

− Li2

(
P2

P2+Q
2

)
−

π2

12
+O(ϵ) +O(η)

Note: double pole in ϵ is a consequence of expanding in η first, at finite ϵ.
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γ∗
L → qq̄ LFWF at one loop

Rapidity singular contribution with η+ regulator

Introducing the factor (ξzq+/ν+)η, performing the K integral thanks to Feynman
parametrization, and changing variables:

VL
v. corr.

∣∣∣∣η+
B0/ξ

=

[
zq+

ν+

]η
Γ (1+ϵ)

[
4π µ2

]ϵ ∫ 1

0
dy y−1−ϵ+η

∫ 1

0
dζ ζη−1

[
1+

zζ

(1−z)

]−1−ϵ

×
[
(1−y) P2 + (1−yζ)Q

2
]−1−ϵ

[(
(1−y) P2 + (1−yζ)Q

2
)
+ yP2

(
1+

zζ

(1−z)

)]

Dim. reg. can regulate the y = 0 div, but rapidity regulator needed for the ζ = 0 div.

Separating the η pole piece and the + prescription piece:

VL
v. corr.

∣∣∣∣η+
B0/ξ; + prescr.

= Γ (1+ϵ)
[
4π µ2

]ϵ ∫ 1

0

dζ

(ζ)+

∫ 1

0
dy y−1−ϵ

[
1+

zζ

(1−z)

]−1−ϵ

×
[(

(1−y) P2 + (1−yζ)Q
2
)]−1−ϵ

{[
(1−y) P2 + (1−yζ)Q

2
]
+ yP2

(
1+

zζ

(1−z)

)}
+O(η)

= − log(1−z)
Sϵ

ϵ

[
P2 +Q

2

µ2

]−ϵ

−
1

2

[
log(1−z)

]2
− Li2

(
−

z

(1−z)

)
+ Li2

(
P2

P2+Q
2

)
+O(ϵ) +O(η)
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γ∗
L → qq̄ LFWF at one loop

Rapidity singular contribution with η− regulator

Introducing instead the factor (2ξzq+ν−/K2)η, and following similar steps:

• The η pole piece is now obtained as

VL
v. corr.

∣∣∣∣η−
B0/ξ; η pole

=

[
1

η
+ log

(
2zq+ν−

P2 +Q
2

)]−Sϵ

ϵ

[
Q

2

µ2

]−ϵ

+ 2 log

(
P2 +Q

2

Q
2

)
−

π2

3
+O(ϵ) +O(η)

• Same + prescription piece is obtained as with the rapidity regulator in k+

G. Beuf (NCBJ, Warsaw) FL at NLO with rap. regulators March 24, 2025 9 / 18



γ∗
L → qq̄ LFWF at one loop

On-loop γ∗
L → qq̄ LFWF in momentum space

Collecting all one-loop corrections to the γ∗L → qq̄ LFWF:

• Result with rapidity regulator in k+:

VL

∣∣∣∣η+ =

[
2

η
+ 2 log

(
q+

ν+

)
+ log (z(1−z))−

3

2

]−Sϵ

ϵ

[
Q

2

µ2

]−ϵ

+ 2 log

(
P2+Q

2

Q
2

)
+

1

2

[
log

(
z

1−z

)]2
−

π2

6
+

(5+δs)

2
+O(ϵ) +O(η)

→ Very similar as earlier results with cut-off in k+ from G.B., 2016.

• Result with rapidity regulator in k−:

VL

∣∣∣∣η− =

[
2

η
+ 2 log

(
2q+ν−

Q
2

)
+ log (z(1−z))−

3

2

]−Sϵ

ϵ

[
Q

2

µ2

]−ϵ

+ 2 log

(
P2+Q

2

Q
2

)
+2

Sϵ

ϵ2

[
Q

2

µ2

]−ϵ

+ 2Li2

(
P2

P2+Q
2

)
− 3

[
log

(
P2+Q

2

Q
2

)]2

+
1

2

[
log

(
z

1−z

)]2
−

2π2

3
+

(5 + δs)

2
+O(ϵ) +O(η)

→ New: double pole in ϵ, and non-trivial dependence on relative momentum P of the
dipole.
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γ∗
L → qq̄ LFWF at one loop

On-loop γ∗
L → qq̄ LFWF in mixed space

Taking Fourier transform from P to dipole size x01:

One loop corrections to the γ∗L → qq̄ LFWF still factorizes in mixed space:

Ψ̃NLO
γ∗
L
→qq̄ =

(
1 +

αsCF

2π
ṼL

)
Ψ̃LO

γ∗
L
→qq̄

• With rapidity regulator in k+ (with c0 ≡ 2e−γE ):

ṼL

∣∣∣∣η+ = −
[
2

η
+ 2 log

(
q+

ν+

)
+ log (z(1−z))−

3

2

]
Sϵ

ϵ

[
x2
01µ

2

c20

]ϵ
+

1

2

[
log

(
z

1−z

)]2
−

π2

6
+

(5+δs)

2
+O(ϵ) +O(η)

• With rapidity regulator in k−:

ṼL

∣∣∣∣η− = −
[
2

η
+ 2 log

(
2q+ν−x2

01

c20

)
+ log (z(1−z))−

3

2

]
Sϵ

ϵ

[
x2
01µ

2

c20

]ϵ
+2

Sϵ

ϵ2

[
x2
01µ

2

c20

]ϵ
+

1

2

[
log

(
z

1−z

)]2
−

π2

3
+

(5 + δs)

2
+O(ϵ) +O(η)

Differences: double pole term in ϵ, and scale for rapidity/low x log.
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γ∗
L → qq̄ LFWF at one loop

On-loop γ∗
L → qq̄ LFWF in mixed space

qq̄ contribution to FL structure function at NLO:

FL|qq̄ =16Q4 Nc

∑
f

e2f

∫ 1

0
dz z2(1−z)2

∫
d2−2ϵx0

(2π)2

∫
d2−2ϵx1

(2π)2
Re [1−S01]

×
(
4π2µ2x2

01

Q
2

)ϵ [
Kϵ
(
Q|x01|

) ]2 (
1 +

αsCF

π
ṼL

)

• With rapidity regulator in k+ (with c0 ≡ 2e−γE ):

ṼL

∣∣∣∣η+ = −
[
2

η
+ 2 log

(
q+

ν+

)
+ log (z(1−z))−

3

2

]
Sϵ

ϵ

[
x2
01µ

2

c20

]ϵ
+

1

2

[
log

(
z

1−z

)]2
−

π2

6
+

(5+δs)

2
+O(ϵ) +O(η)

• With rapidity regulator in k−:

ṼL

∣∣∣∣η− = −
[
2

η
+ 2 log

(
2q+ν−x2

01

c20

)
+ log (z(1−z))−

3

2

]
Sϵ

ϵ

[
x2
01µ

2

c20

]ϵ
+2

Sϵ

ϵ2

[
x2
01µ

2

c20

]ϵ
+

1

2

[
log

(
z

1−z

)]2
−

π2

3
+

(5 + δs)

2
+O(ϵ) +O(η)

Differences: double pole term in ϵ, and scale for rapidity/low x log.
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qq̄g contribution to NLO FL

qq̄g contribution to FL: Rapidity safe terms
Other contributions to FL at NLO at low xBj : with qq̄g Fock state scattering on the
target

Can be split into regular terms and potentially log divergent terms at ξ = 0

Regular terms at ξ = 0 don’t need rapidity regularization ⇒ same results as G.B., 2017

Reminder: UV divergences for gluon close to the quark (x2 → x0) or to the antiquark
(x2 → x1) should cancel with UV divergences from the qq̄ contribution, thanks to color
coherence

• Extract UV divergent dipole-like contribution (to be combined with the qq̄
contribution)

ṼL
qq̄g; ξ reg.; UV = −

3

2

Sϵ

ϵ

[
x2
01µ

2

c20

]ϵ
−

δs

2
+O(ϵ)

• Same UV-subtracted leftover from the terms regular terms at ξ = 0 as in G.B.,
2017
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qq̄g contribution to NLO FL

qq̄g contribution to FL: Rapidity sensitive terms

Rapidity divergent piece of the qq̄g contribution:

FL|qq̄g1/ξ
=

16Q4

2π
Nc

∑
f

e2f

∫ 1

0
dz z2(1−z)2

∫
d2−2ϵx0

∫
d2−2ϵx1

αsCF

π

∫
d2−2ϵx2

× Re
[
1−S(3)

012

] ∫ 1

0
dξ

2

ξ

{
|Ij(a)|2 − Re

(
Ij(a)∗Ij(b)

)}
+ (q ↔ q̄)

with Fourier integral (and similar for Ij(b))

Ij(a) ≡µ2ϵ

∫
d2−2ϵP

(2π)2−2ϵ

eiP·(x01+ξx20)

(P2 +Q
2
)

∫
d2−2ϵK

(2π)2−2ϵ

Kj eiK·x20[
K2 +

ξ(1−ξ)
(1−z)

(P2 +Q
2
)
]

Remark on implementation of k− rapidity reg. : different K gluon momentum before
and after the target
⇒ Insert the factor (2ξzq+ν−/K2)

η
2 in each integral Ij(a) or Ij(b).

Observation: taking ξ = 0 in Ij(a) is equivalent to focusing on its UV regime x2 → x0

(and K → +∞).
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qq̄g contribution to NLO FL

qq̄g contribution to FL: + prescription piece

Both rapidity regulators in k+ and k− lead to the same + prescription contribution:

FL|qq̄g+ prescr. =
16Q4

2π
Nc

∑
f

e2f

∫ 1

0
dz z2(1−z)2

∫
d2−2ϵx0

∫
d2−2ϵx1

αsCF

π

∫
d2−2ϵx2

× Re
[
1−S(3)

012

] ∫ 1

0
dξ

2

(ξ)+

{
|Ij(a)|2 − Re

(
Ij(a)∗Ij(b)

)}
+ (q ↔ q̄)

But subtracting the ξ = 0 value of the bracket simultaneously subtracts its UV behavior
⇒ Fully finite contribution, can take ϵ = 0:

FL|qq̄g+ prescr. = 16Q4 Nc

∑
f

e2f

∫ 1

0
dz z2(1−z)2

∫
d2x0

(2π)2

∫
d2x1

(2π)2
αsCF

π

∫
d2x2

2π

[
x20

x2
20

·
(
x20

x2
20

−
x21

x2
21

)]

× Re
[
1−S(3)

012

]
2

∫ 1

0

dξ

ξ

{[
K0

(
Q

√
(1−ξ)x2

01 + ξx2
21 +

zξ(1−ξ)

(1−z)
x2
20

)]2
−
[
K0

(
Q|x01|

) ]2}
+ (q ↔ q̄)

However, in the regime of large daughter dipoles x2
20 ∼ x2

21 ≫ x2
01, the ξ integration

gives a large log(x2
20/x

2
01).
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qq̄g contribution to NLO FL

qq̄g contribution to FL: UV term from the η pole
From the rapidity sensitive qq̄g term, apart from the + prescription piece, one gets the
η pole piece:
Contains UV divergences that can be isolated into a dipole-like combination by writing(

1−S(3)
012

)
= (1−S01) +

(
S01−S(3)

012

)
• With rapidity regulator in k+:

ṼL
qq̄g; η pole.; UV

∣∣∣∣η+ =

[
2

η
+ 2 log

(
q+

ν+

)
+ log (z(1−z))

]
Sϵ

ϵ

[
x2
01µ

2

c20

]ϵ
+O(ϵ) +O(η)

• With rapidity regulator in k−:

ṼL
qq̄g; η pole.; UV

∣∣∣∣η− =

[
2

η
+ 2 log

(
2q+ν−x2

01

c20

)
+ log (z(1−z))

]
Sϵ

ϵ

[
x2
01µ

2

c20

]ϵ
−2

Sϵ

ϵ2

[
x2
01µ

2

c20

]ϵ
+

π2

6
+O(ϵ) +O(η)

In both cases: total dipole-like contribution to NLO FL (qq̄ terms + dipole-like UV
terms from qq̄g):

ṼL
total =

1

2

[
log

(
z

1−z

)]2
−

π2

6
+

5

2
+O(ϵ) +O(η)

Same result, finite, as with cut-off in k+, G.B., 2017.
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qq̄g contribution to NLO FL

UV subtracted η pole piece with η+ regulator

Expanding in η and then taking ϵ = 0 in the leftover contribution, in the case of rapidity
regulator in k+:

FL|qq̄g ; η+
η pole, UV sub. = 16Q4 Nc

∑
f

e2f

∫ 1

0
dz z2(1−z)2

∫
d2x0

(2π)2

∫
d2x1

(2π)2

[
K0

(
Q|x01|

) ]2
×

2αsCF

π

∫
d2x2

2π

x2
01

x2
20x

2
21

Re
[
S01−S(3)

012

] [ 1
η
+ log

(
q+
√

z(1− z)

ν+

)]
+O(ϵ) +O(η)

Need to define a rapidity subtracted (or renormalized) dipole operator to absorb the 1/η
into the LO, as

S01|rap. sub. ≡S01|unsub. +
1

η

2αsCF

π

∫
d2x2

2π

x2
01

x2
20x

2
21

Re
[
S01−S(3)

012

]

The rapidity subtracted dipole operator should then depend on ν+, according the
standard BK equation.

Natural scale choice: ν+ = q+
√
z(1−z), to resum low x leading logs.

However: large collinear logs mentioned earlier for large daughter dipoles
x2
20 ∼ x2

21 ≫ x2
01 still there.
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qq̄g contribution to NLO FL

UV subtracted η pole piece with η− regulator

Expanding in η and then taking ϵ = 0 in the leftover contribution, in the case of rapidity
regulator in k−:

FL|qq̄g ; η−
η pole, UV sub. = 16Q4 Nc

∑
f

e2f

∫ 1

0
dz z2(1−z)2

∫
d2x0

(2π)2

∫
d2x1

(2π)2

[
K0

(
Q|x01|

) ]2
×

2αsCF

π

∫
d2x2

2π
Re
[
S01−S(3)

012

] {[ 1
η
+ log

(
2zq+ν− x2

20

c20

)][
x20

x2
20

·
(
x20

x2
20

−
x21

x2
21

)]
+

[
1

η
+ log

(
2(1−z)q+ν− x2

21

c20

)][
x21

x2
21

·
(
x21

x2
21

−
x20

x2
20

)]}
+O(ϵ) +O(η)

After similar rapidity subtraction of dipole operator, it should depend on ν−, according
the standard BK equation.

Natural scale choice: ν− = c20/
(
2q+

√
z(1−z)x2

01

)
, to resum low x leading logs.

Leftover after this choice: terms in log(x2
20/x

2
01) and in log(x2

21/x
2
01):

• Cancel the large collinear logs mentioned earlier for large daughter dipoles
x2
20 ∼ x2

21 ≫ x2
01

• Become new large logs in the small daughter dipole regimes x2
20 ≪ x2

21 ∼ x2
01 or

x2
21 ≪ x2

20 ∼ x2
01
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Conclusion

Summary and comments

• Rapidity regulators used to rederive:
• γ∗

L → qq̄ LFWF at one loop

• DIS structure function FL at NLO

• Transverse photon case: calculations being finalized

In this calculation:

• LL BK equation recovered, with either scale ν+ or ν− as evolution
variable, depending on the type of rapidity regulator used

• Expected scheme-dependent pattern of large collinear logs recovered

Using these rapidity regulators: new insights on collinear logs in
BK/JIMWLK and their resummation?
G.B., 2014; Edmond et al. 2015-2019
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