Loop calculations in light cone perturbation theory

T. Lappi

University of Jyväskylä, Finland

GGI, March 2025

1/26

Outline

Outline of this talk

 DIS in the dipole picture at NLO: massless quarks Beuf [arXiv:1606.00777 [hep-ph]], [arXiv:1708.06557 [hep-ph]], H. Hänninen, T.L., R. Paatelainen [arXiv:1711.08207 [hep-ph]]

One loop DIS with massive quarks

Beuf, T.L. Paatelainen [2103.14549 [hep-ph]], [arXiv:2112.03158 [hep-ph]], [2204.02486 [hep-ph]]

Diffractive structure function at NLO G. Beuf, T. Lappi, H. Mäntysaari, R. Paatelainen, J. Penttala 2401.17251 [hep-ph], G. Beuf, H. Hänninen, T.L., Y. Mulian, H. Mäntysaari, arXiv:2206.13161

Process of interest DIS at high energy

High energy collisions as eikonal scattering

Dipole picture of DIS

Limit of small x, i.e. high γ^* -target energy

Leading order

- $\gamma^* \rightarrow q \bar{q}$ in vacuum
- $q\bar{q}$ interacts eikonally with target
- σ^{tot} is 2×Im-part of amplitude

"Dipole model": Nikolaev, Zakharov 1991 Many fits to HERA data, starting with Golec-Biernat, Würsthoff 1998

Leading Log: add soft gluon

Soft gluon: large logarithm

$$\int_{x_{Bj}}rac{\mathrm{d}k_{g}^{+}}{k_{g}^{+}}\sim\lnrac{1}{x_{Bj}}$$

Absorb into renormalization of target: BK equation Balitsky 1995, Kovchegov 1999

Dipole picture of DIS

Limit of small x, i.e. high γ^* -target energy

Leading order

- $\gamma^* \rightarrow q \bar{q}$ in vacuum
- $q\bar{q}$ interacts eikonally with target
- σ^{tot} is 2×Im-part of amplitude

"Dipole model": Nikolaev, Zakharov 1991 Many fits to HERA data, starting with Golec-Biernat, Würsthoff 1998

Leading Log: add soft gluon

Soft gluon: large logarithm

$$\int_{x_{Bj}}rac{\mathrm{d}k_g^+}{k_g^+}\sim\lnrac{1}{x_{Bj}}$$

Absorb into renormalization of target: BK equation Balitsky 1995, Kovchegov 1999

NLO: the same gluon with full kinematics

3/26

NLO DIS cross section with massless quarks

DIS at NLO: procedure

Beuf 2016, 2017, H. Hänninen, T.L., Paatelainen 2017

- 1. Evaluate diagrams
 - $\Psi^{\gamma^* \to q\bar{q}}$ to 1 loop
 - $\Psi^{\gamma^* \to q\bar{q}g}$ at tree level
- 2. Fourier-transform $\mathbf{k} \rightarrow \mathbf{x}$
- 3. Square $_{i}\langle\gamma_{\lambda}(\vec{q}',Q^{2})|(\hat{\mathcal{S}}_{E}-1)|\gamma_{\lambda}(\vec{q},Q^{2})\rangle_{i}$

On-shell vertex

$$\left[\bar{u}_{h'}(p') \not \varepsilon_{\lambda}^{*}(k) u_{h}(p)\right] = \frac{-2}{z\sqrt{1-z}} \left[\left(1 - \frac{z}{2}\right) \delta_{h',h} \delta^{ij} + \frac{z}{2} ih \delta_{h',h} \varepsilon^{ij} \right] \mathbf{q}^{i} \varepsilon_{\lambda}^{*j},$$

(This is in d = 4, generalize for d < 4) 2 index structures for massless quarks.

 \vec{p}, h

 $\vec{p}' \equiv \vec{p} - \vec{k}, h'$

 $= 70^{+}$

DIS at NLO: factorizing BK evolution

B. Ducloué, H. Hänninen, T. L. and Y. Zhu, (arXiv:1708.07328 (hep-ph)).

* UV-divergence

DIS at NLO: factorizing BK evolution

B. Ducloué, H. Hänninen, T. L. and Y. Zhu, (arXiv:1708.07328 (hep-ph)).

* UV-divergence LL: subtract leading log, N BK-evolved in $Y = \ln 1/X$

DIS at NLO: factorizing BK evolution

B. Ducloué, H. Hänninen, T. L. and Y. Zhu, (arXiv:1708.07328 (hep-ph)).

* UV-divergence LL: subtract leading log, \mathcal{N} BK-evolved in $Y = \ln 1/X$

- Parametrically $X(z_2) \sim x_{Bj}$, but $X(z_2) \sim 1/z_2$ essential!
- ▶ " k_T -factorization" with projectile z = 0 subtraction ("CXY") unstable @ NLO.
- Same probem in $p + A \rightarrow h + X$ and DIS

Including quark masses

Elementary vertex with masses

$$\vec{p}, h \qquad \vec{p}' \equiv \vec{p} - \vec{k}, h'$$

$$\mathbf{q} \equiv \mathbf{k} - z\mathbf{p}$$

$$\vec{k}, \lambda; \qquad k^{+} = zp^{+}$$

$$\mathbf{q}: \text{ center-of-mass } \perp \text{ momentum in splitting}$$

$$\mathbf{p}: \text{ polarization vector } \boldsymbol{\varepsilon}_{\lambda}^{*j}$$

$$\vec{u}_{h'}(p') \boldsymbol{\varepsilon}_{\lambda}^{*}(k) \boldsymbol{u}_{h}(p) \qquad \sim \overline{\hat{u}}_{h'} \gamma^{+} \boldsymbol{u}_{h} \delta^{ij} q^{i} \boldsymbol{\varepsilon}_{\lambda}^{*j} + \overline{\hat{u}}_{h'} \gamma^{+} [\gamma^{i}, \gamma^{j}] \boldsymbol{u}_{h} q^{i} \boldsymbol{\varepsilon}_{\lambda}^{*j} + \overline{\hat{u}}_{h'} \gamma^{+} \gamma^{j} \boldsymbol{u}_{h} m_{q} \boldsymbol{\varepsilon}_{\lambda}^{*j}$$

- New 3rd ligh-cone-helicity-flip structure $\sim m_q$
- ▶ Note: \perp momentum in non-flip, but not in flip vertex \implies less UV-divergent
- Loops: also generate 4th structure $\bar{u}_{h'}\gamma^+\gamma^i u_h \varepsilon_{\lambda}^{*j} q^i q^j$
- In principle proceed as massless case, but a lot more algebra ... Beuf, T.L., Paatelainen, 2103.14549 [hep-ph], 2112.03158 [hep-ph], 2204.02486 [hep-ph]

6/26

First: result for $\gamma^* \rightarrow q\bar{q}$ with massive quarks

$$\begin{split} \widetilde{\psi}_{\text{NLO}}^{\gamma_T^* \to q\bar{q}} &= -\frac{\Theta \Theta_f}{2\pi} \left(\frac{\alpha_s C_{\text{F}}}{2\pi} \right) \left\{ \left[\left(\frac{k_0^+ - k_1^+}{q^+} \right) \delta^{ij} \overline{u}(0) \gamma^+ v(1) + \frac{1}{2} \overline{u}(0) \gamma^+ [\gamma^i, \gamma^j] v(1) \right] \mathcal{F} \left[\mathbf{P}^i \mathcal{V}^T \right] + \overline{u}(0) \gamma^+ v(1) \mathcal{F} \left[\mathbf{P}^j \mathcal{N}^T \right] \right] \right\} \\ &+ m \overline{u}(0) \gamma^+ \gamma^j v(1) \mathcal{F} \left[\left(\frac{\mathbf{P}^i \mathbf{P}^j}{\mathbf{P}^2} - \frac{\delta^{ij}}{2} \right) \mathcal{S}^T \right] - m \overline{u}(0) \gamma^+ \gamma^j v(1) \mathcal{F} \left[\mathcal{V}^T + \mathcal{M}^T - \frac{\mathcal{S}^T}{2} \right] \right\} \boldsymbol{\varepsilon}_{\lambda}^i. \end{split}$$

$$\begin{split} \mathcal{F}\Big[\mathbf{P}^{t}\boldsymbol{\gamma}^{T}\Big] &= \frac{i\mathbf{x}_{01}^{t}}{|\mathbf{x}_{01}|} \left(\frac{\kappa_{z}}{2\pi|\mathbf{x}_{01}|}\right)^{\frac{D}{2}-2} \Big\{ \Big[\frac{3}{2} + \log\left(\frac{\alpha}{z}\right) + \log\left(\frac{\alpha}{1-z}\right) \Big] \Big\{ \frac{(4\pi)^{2-\frac{D}{2}}}{(2-\frac{D}{2})} \Gamma\left(3-\frac{D}{2}\right) + \log\left(\frac{|\mathbf{x}_{01}|^{2}\mu^{2}}{4}\right) \\ &+ 2\gamma_{E} \Big\} + \frac{1}{2} \frac{(D_{z}-4)}{(D-4)} \Big\} \kappa_{z} K_{\frac{D}{2}-1} (|\mathbf{x}_{01}|\kappa_{z}) + \frac{i\mathbf{x}_{01}^{t}}{|\mathbf{x}_{01}|} \Big\{ \Big[\frac{5}{2} - \frac{\pi^{2}}{3} + \log^{2}\left(\frac{z}{1-z}\right) - \Omega_{V}^{T} + L \Big] \kappa_{z} K_{1} (|\mathbf{x}_{01}|\kappa_{z}) + I_{V}^{T} \Big\} \\ \hline \mathcal{F}\Big[\mathbf{P}^{t} \mathcal{N}^{T} \Big] = \frac{i\mathbf{x}_{01}^{t}}{|\mathbf{x}_{01}|} \Big\{ \Omega_{N}^{T} \kappa_{z} K_{1} (|\mathbf{x}_{01}|\kappa_{z}) + I_{N}^{T} \Big\} \\ \hline \mathcal{F}\Big[\mathbf{P}^{t} \mathcal{N}^{T} \Big] = \frac{i\mathbf{x}_{01}^{t}}{|\mathbf{x}_{01}|} \Big\{ \Omega_{N}^{T} \kappa_{z} K_{1} (|\mathbf{x}_{01}|\kappa_{z}) + I_{N}^{T} \Big\} \\ \hline \mathcal{F}\Big[\left(\frac{\mathbf{P}^{t} \mathbf{P}^{t}}{\mathbf{P}^{2}} - \frac{\delta^{t}}{2} \right) \mathcal{S}^{T} \Big] = \frac{(1-z)}{2} \left[\frac{\mathbf{x}_{01}^{t} \mathbf{x}_{01}^{T}}{|\mathbf{x}_{01}|^{2}} - \frac{\delta^{t}}{2} \right] \int_{0}^{z} \frac{d\chi}{(1-\chi)} \int_{0}^{\infty} \frac{d\chi}{(1-\chi)} \int_{0}^{\infty} \frac{d\mu}{(\mu+1)^{2}} |\mathbf{x}_{01}| \sqrt{\kappa_{z}^{2} + u\frac{(1-z)}{(1-\chi)} \kappa_{x}^{2}} \\ \times K_{1} \left(|\mathbf{x}_{01}| \sqrt{\kappa_{z}^{2} + u\frac{(1-z)}{(1-\chi)} \kappa_{x}^{2}} \right) + [z \leftrightarrow 1-z]. \\ \hline \mathcal{F}\Big[\mathcal{V}^{T} + \mathcal{M}^{T} - \frac{S^{T}}{2} \Big] = \left(\frac{\kappa_{z}}{(2\pi|\mathbf{x}_{01}|)}\right)^{\frac{D}{2}-2} \left\{ \left[\frac{3}{2} + \log\left(\frac{\alpha}{2}\right) + \log\left(\frac{\alpha}{(1-z)}\right) \right] \Big\{ \frac{(4\pi)^{2-\frac{D}{2}}}{(2-\frac{D}{2})} \Gamma \left(3-\frac{D}{2}\right) + \log\left(\frac{|\mathbf{x}_{01}|^{2}\mu^{2}}{4} \right) \\ + \frac{\kappa_{z}^{t} (\frac{(z-z)+1}{(z+z-2\infty)}) \Big| \mathcal{K}_{z}^{t} + \frac{\kappa_{z}^{t} (\frac{(z-z)+1}{(z+z)} - \frac{\omega}{2}} \right] \\ = \frac{\kappa_{z}} \left[\frac{(2\pi)^{2} (\mathbf{x}_{01}^{T} - \frac{\omega}{2} \right] \\ + 2\gamma_{E} \right\} + \frac{1}{2} \frac{(D_{x}-4)}{(D-4)} \right\} K_{\frac{D}{2}-2} (|\mathbf{x}_{01}|\kappa_{z}) + \left\{3-\frac{\pi^{2}}{3} + \log^{2}\left(\frac{z}{1-z}\right) - \Omega_{V}^{T} + L \right\} K_{0} (|\mathbf{x}_{01}|\kappa_{z}) + I_{V}^{T} \\ + \frac{\kappa_{z}} \left[\frac{(2\pi)^{2} (\mathbf{x}_{01}^{T} - \frac{\omega}{2} \right] \\ + \frac{\kappa_{z}} \left[\frac{(2\pi)^{2} (\mathbf{x}_{01}^{T} - \frac{\omega}{2} \right] \right] \left\{ \frac{(2\pi)^{2} (\mathbf{x}_{01}^{T} - \frac{\omega}{2} \right\} \\ + \frac{\kappa_{z}} \left[\frac{(2\pi)^{2} (\mathbf{x}_{01}^{T} - \frac{\omega}{2} \right] \\ + \frac{\kappa_{z}} \left[\frac{(2\pi)^{2} (\mathbf{x}_{01}^{T} - \frac{\omega}{2} \right] \\ + \frac{\kappa_{z}} \left[\frac{(2\pi)^{2} (\mathbf{x}_{01}^{T} - \frac{\omega}{2} \right] \right] \\ + \frac{\kappa_{z}} \left\{ \frac{(2\pi)^{2} (\mathbf{x}_{01}^{T} - \frac{\omega}{2} \right\} \\ + \frac{\kappa_{z}} \left\{ \frac{(2\pi)^$$

$$\begin{split} & \eta_{1}^{L} = -\left(1 + \frac{1}{2}\right) \left[\log(1 - i) + \gamma \log\left(\frac{1 + \gamma}{1 + \gamma}\right) \right] + \frac{1}{2n} \left[\left(i + \frac{1}{2}\right) (1 - \gamma) + \frac{2}{6^{2}} \right] \log\left(\frac{d_{1}^{2}}{2}\right) + (i + 1 - i) \\ & \beta_{2}^{L} = \int_{0}^{L} \frac{d_{1}^{L} \left(\frac{1 + 2 (1 - i)}{1 - \zeta_{1}} + \frac{1}{2}\right) \left\{ \sqrt{\frac{1 + 1 - i}{1 - \zeta_{1}}} + \frac{1}{2} \left(\frac{1 - \zeta_{1}}{1 - \zeta_{1}}\right) + \frac{1}{2} \left(\frac{1 - \zeta_{1}$$

-31 / 31

 $+ \frac{u}{|\mathbf{x}|^2} + \frac{u}{|\mathbf{x}|} \frac{1}{\sqrt{\kappa_s^2}} + \frac{u}{(1-\chi)} \frac{\kappa_\chi}{\kappa_s} K_1 \left(\frac{|\mathbf{x}_{01}|}{|\mathbf{x}_{1}|} \sqrt{\kappa_s^2 + u} \frac{(1-\chi)}{(1-\chi)} \kappa_\chi^2} - [u \rightarrow 0] \right] - [z \leftrightarrow 1-z]. \quad (10)$

$$\begin{split} & R_{ABB}^{2} = \int_{0}^{1} \frac{d\xi}{\xi} \left(\frac{2 |w| (2)}{1 - 1} - \frac{1}{2} \right) \left\{ k_{k} \left(|w_{k}| \sqrt{k + \frac{d(1-\varepsilon)}{(1-\varepsilon)} m} \right) - |\xi + d| \right\} \\ & + \int_{0}^{1} dx_{k} \left(\frac{2 |w_{k}|}{(1-\varepsilon)} - \frac{1}{2} \right) \lambda_{k} \left(|w_{k}| \sqrt{k + \frac{d(1-\varepsilon)}{(1-\varepsilon)} m} \right) \\ & + \int_{0}^{1} \frac{dx_{k}}{(1-\varepsilon)} \int_{0}^{1} \frac{dx_{k}}{(1+\varepsilon)^{2}} \left\{ -\frac{1}{(1-\varepsilon)} - \frac{1}{m} \frac{(1+\varepsilon)}{(1-\varepsilon)} - (1-\varepsilon) \right\} \delta_{k} \left(|w_{k}| \sqrt{k + \frac{d(1-\varepsilon)}{(1-\varepsilon)} k} \right) \\ & + \int_{0}^{1} dx_{k} \int_{0}^{1} \frac{dx_{k}}{(1+\varepsilon)^{2}} \left\{ -\frac{1}{(1-\varepsilon)} + \frac{w_{k}^{(1-\varepsilon)}}{(1-\varepsilon)^{2}} - \frac{1}{k} \frac{(1-\varepsilon)}{(1-\varepsilon)^{2}} \right\} \\ & \times \left\{ \kappa_{k} \left(|w_{k}| \sqrt{k + \frac{d(1-\varepsilon)}{(1-\varepsilon)^{2}} + \frac{d(1-\varepsilon)}{(1-\varepsilon)^{2}} + \frac{1}{k} - 1 \right) \right\} \\ & + \left\{ \kappa_{k} \left(|w_{k}| \sqrt{k + \frac{d(1-\varepsilon)}{(1-\varepsilon)^{2}} + \frac{d(1-\varepsilon)}{(1-\varepsilon)^{2}} + \frac{1}{k} + 1 - 1 \right) \right\} \end{split}$$

(9)

Comparison to HERA data

Massless: G. Beuf, H. Hänninen, T. L. and H. Mäntysaari, [arXiv:2007.01645 [hep-ph]]. Massive: H. Hänninen, H. Mäntysaari, R. Paatelainen and J. Penttala, PRL **130** (2023) no.19, 19 [arXiv:2211.03504 [hep-ph]] Combined fit H. Mäntysaari, C. Casuga, in prog.

At NLO: dipole picture with BK evolution describes both F_2 and $F_2^{c\bar{c}}$ (did not work at LO)

Mass renormalization

Vertex corrections to LC helicity flip vertex

• Only divergence from 1 out of 3 diagrams flip (All 3 flip \rightarrow finite) :

$$\sim m_q rac{1}{arepsilon}$$

• Absorb into vertex mass counterterm δm_v , same as δm_q in conventional perturbation theory (Corrections to nonflip vertex \implies massless-like, no mass renormalization)

Quark propagator corrections

Still divergent with 2 flip vertices (1 gives zero by symmetry)

• Loops give m_q -dependent divergence \sim

• Absorb into a renormalization of m_q^2 in ED of LO LCWF

 $(k_q^- = (\mathbf{k}_q^2 + m_q^2)/(2k_q^+))$

- But now the problem Known since 90's e.g. Haridranath, Zhang, also Burkardt in Yukawa th.
- ► In our regularization: k^+ cutoff, \perp dim. reg. this kinetic mass counterterm is not same as the vertex mass one $\delta m_k \neq \delta m_v$ (In fact δm_v is same as in covariant theory, δm_k different)
- So how to determine finite part of δm_v and δm_k ?

Mass renormalization

- Mass has 2 conceptually different roles here:
 - Kinetic mass: relates energy and momentum
 - Vertex mass: amplitude of helicity flip in gauge boson vertex
- 1 parameter in Lagrangian, but 2 parameters in LCPT Hamiltonian
- Lorentz-invariance requires they stay the same
- ▶ Both gauge condition $A^+ = 0$ and regularization (*k*⁺-cutoff and \perp dim. reg.) violate rotational invariance $\implies m_v \neq m_k$ at loop level \implies "textbook stuff"

There are 3 options to deal with this

- 1. Renormalization conditions to set separately m_v and $m_k \implies$ discuss next
- 2. Smartly combine with instantaneous "normal ordering" diagrams before regularizing & integrating \implies can keep $m_k = m_v$ but cannot calculate blindly For details see Beuf @ Hard Probes 2018
- 3. Use some other regularization \implies finite parts hard!

Two mass renormalization conditions

Pole mass/on shell renormalization point:

- Timelike virtual $\gamma^* \rightarrow q\bar{q}$ with $q^2 = M^2$ (Same diagrams as for spacelike γ^*)
- On shell final state $M^2 = (\mathbf{k}_q^2 + m_q^2)/(z(1-z))$ (i.e. $ED_{LO} \rightarrow 0$)

One condition: propagator diagram

is the most divergent at on-shell point \implies cancel this \implies kinetic mass

Vertex mass (+ cross checks) from Lorentz-invariance Coefficients of 4 independent structures ($\mathbf{P} = (1 - z)\mathbf{k}_q - z\mathbf{k}_{\bar{q}}$)

$$\bar{u}(0) \notin_{\lambda}(q) v(1) \quad (\mathbf{P} \cdot \varepsilon_{\lambda}) \bar{u}(0) \gamma^{+} v(1) \quad \frac{(\mathbf{P} \cdot \varepsilon_{\lambda})}{\mathbf{P}^{2}} \mathbf{P}^{j} \bar{u}(0) \gamma^{+} \gamma^{j} v(1) \quad \varepsilon_{\lambda}^{j} \bar{u}(0) \gamma^{+} \gamma^{j} v(1)$$

must reproduce 2 Lorentz-invariant form factors (Dirac & Pauli) @ on-shell point

Diffractive DIS

Inclusive diffraction, kinematics

 $\gamma^* + A \rightarrow X + A$, differential in M_X

- Momentum transfer $t = (P P')^2$
- Gap size $x_{\mathbb{P}}$, target evolution rapidity $\sim \ln 1/x_{\mathbb{P}}$
- Diffractive system mass M_X^2 , $\beta = Q^2/(Q^2 + M_X^2)$
- \blacktriangleright Virtuality Q^2
- Lower $x_{\mathbb{P}}$ than dijets (e.g. at EIC)

 $x_{Bj} = x_{\mathbb{P}}eta$ This talk: $x_{\mathbb{P}}$ small, eta not. 13/26 Dependence on β , i.e. M_X M_X^2 = photon remnants.

Essential regimes:

 $\begin{array}{|c|c|c|} & \text{Large } \beta \rightarrow 1 - \text{small } M_X: \\ & \text{longitudinal } \gamma^* \rightarrow q\bar{q} \\ & \text{Medium } \beta \sim 0.5 - M_X^2 \sim Q^2: \\ & \text{transverse } \gamma^* \rightarrow q\bar{q} \\ & \text{ONE} \\ & \text{Small } \beta \ll 1 - \text{large } M_X^2: \\ & \text{higher Fock states } (q\bar{q}g \text{ etc.}) \end{array}$

NLO amplitude for diffractive DIS

Diffractive DIS at leading order

Full kinematics and impactg parameter dependence
 G. Beuf, H. Hänninen, T.L., Y. Mulian, H. Mäntysaari, arXiv:2206.13161

$$\frac{\mathrm{d}\sigma_{\lambda,\,q\bar{q}}^{\mathrm{D}}}{\mathrm{d}M_{X}^{2}\,\mathrm{d}|t|} = \frac{N_{\mathrm{c}}}{4\pi} \int_{0}^{1} \mathrm{d}z \int_{\mathbf{x}_{0}\mathbf{x}_{1}\bar{\mathbf{x}}_{0}\bar{\mathbf{x}}_{1}} \mathcal{I}_{\mathbf{\Delta}}^{(2)} \mathcal{I}_{M_{X}}^{(2)}$$
$$\times \sum_{f,h_{0},h_{1}} \left(\tilde{\psi}_{\gamma_{\lambda}^{*}\to q_{0}\bar{q}_{1}}\right)^{\dagger} \left(\tilde{\psi}_{\gamma_{\lambda}^{*}\to q_{0}\bar{q}_{1}}\right) \left[\left[S_{01}^{\dagger}-1\right] \left[S_{01}-1\right] \right]$$

(Blue: shockwave target)

- $q\bar{q}$ crossing shockwave: dipole S_{01}
- "Transfer functions:" relate coordinates at shockwave to:
 - Momentum transfer $t = -\Delta^2 \mathcal{I}_{\Delta}^{(2)} = \frac{1}{4\pi} J_0 \left(\sqrt{|t|} \| z \mathbf{x}_{\bar{0}0} (1-z) \mathbf{x}_{\bar{1}1} \| \right)$

• Invariant mass
$$\mathcal{I}_{M_X}^{(2)} = \frac{1}{4\pi} J_0 \left(\sqrt{z(1-z)} M_X \| \mathbf{\bar{r}} - \mathbf{r} \| \right)$$

Now to NLO

NLO radiative corrections

Emission before target

- Squares already in G. Beuf, H. Hänninen, T.L., Y. Mulian, H. Mäntysaari arXiv: 2206.13161
- Contain leading In Q² contribution
- Emission after target

Interferences => simplify with some of the virtual corrections

NLO virtual

► Vertex corrections: known 1-loop $\gamma \rightarrow q\bar{q}$ wavefunction

> See also Boussarie et al 2014: diffractive jets, also Caucal et al 2021 inclusive

NLO virtual

- ► Vertex corrections: known 1-loop $\gamma \rightarrow q\bar{q}$ wavefunction
- Gluon crosses shockwave, but not the cut:
 - Loop corrections to amplitude,

tree level wavefunctions

- 3-point operator of Wilson lines
- BK/JIMWLK evolution of LO amplitude

See also Boussarie et al 2014: diffractive jets, also Caucal et al 2021 inclusive

NLO virtual

- ► Vertex corrections: known 1-loop $\gamma \rightarrow q\bar{q}$ wavefunction
- Gluon crosses shockwave, but not the cut:
 - Loop corrections to amplitude,

tree level wavefunctions

- 3-point operator of Wilson lines
- BK/JIMWLK evolution of LO amplitude
- ► Final state interactions (Propagator corrections {} → State renormalization, in fact = 0 in dim. reg.)

See also Boussarie et al 2014: diffractive jets, also Caucal et al 2021 inclusive

NLO diffractive DIS cross section

Calculation in 2401.17251 [hep-ph]

Beuf, T.L., Paatelainen, Mäntysaari, Penttala

We have calculated all these contributions

Diffractive structure function: clean IR-safe, [perturbative = experimental] final state definition M_X! (No fragmentation function, jet definition)

 \implies Divergences must cancel

Explicit expressions will not fit in the slides, but there in 2401.17251 [hep-ph]

Features of the calculation:

- Divergence structure
- Treatment of energy denominators
- Collinear factorization limit (Wüsthoff limit)

Regularization procedure

- Transverse momentum in $2 2\varepsilon$ dimensions $\implies \frac{1}{\varepsilon}$ divergences, collinear or UV
- ▶ Longitudinal k^+ : cutoff $k^+ > \alpha, \alpha \to 0 \implies 1/\alpha, \ln^2 \alpha, \ln \alpha$ divergences
- 1. UV $\frac{1}{\varepsilon}$ and $\frac{1}{\varepsilon} \ln \alpha$ divergences: $\gamma^* \rightarrow q\bar{q}$ vertex, gluon crossing shock, wavefunction renormalization

19/26

Regularization procedure

- Transverse momentum in $2 2\varepsilon$ dimensions $\implies \frac{1}{\varepsilon}$ divergences, collinear or UV
- ▶ Longitudinal k^+ : cutoff $k^+ > \alpha, \alpha \to 0 \implies 1/\alpha, \ln^2 \alpha, \ln \alpha$ divergences
- 1. UV $\frac{1}{\epsilon}$ and $\frac{1}{\epsilon} \ln \alpha$ divergences: $\gamma^* \rightarrow q\bar{q}$ vertex, gluon crossing shock, wavefunction renormalization
- 2. Collinear $\frac{1}{\varepsilon}$:

wavef. renormalization, final state emission

Regularization procedure

- Transverse momentum in $2 2\varepsilon$ dimensions $\implies \frac{1}{\varepsilon}$ divergences, collinear or UV
- ▶ Longitudinal k^+ : cutoff $k^+ > \alpha, \alpha \to 0 \implies 1/\alpha, \ln^2 \alpha, \ln \alpha$ divergences
- 1. UV $\frac{1}{\varepsilon}$ and $\frac{1}{\varepsilon} \ln \alpha$ divergences: $\gamma^* \rightarrow q\bar{q}$ vertex, gluon crossing shock, wavefunction renormalization
- 2. Collinear $\frac{1}{\varepsilon}$:

wavef. renormalization, final state emission

3. $1/\alpha$ cancels between normal and instantaneous exchange

Regularization procedure

- Transverse momentum in $2 2\varepsilon$ dimensions $\implies \frac{1}{\varepsilon}$ divergences, collinear or UV
- ▶ Longitudinal k^+ : cutoff $k^+ > \alpha, \alpha \to 0 \implies 1/\alpha, \ln^2 \alpha, \ln \alpha$ divergences
- 1. UV $\frac{1}{\varepsilon}$ and $\frac{1}{\varepsilon} \ln \alpha$ divergences: $\gamma^* \rightarrow q\bar{q}$ vertex, gluon crossing shock, wavefunction renormalization
- 2. Collinear $\frac{1}{\epsilon}$: wavef. renormalization, final state emission
- 3. $1/\alpha$ cancels between normal and instantaneous exchange
- 4. $\ln^2 \alpha$ from final state exchange and emission (M_X restriction matters here!)

19/26

Regularization procedure

- Transverse momentum in $2 2\varepsilon$ dimensions $\implies \frac{1}{\varepsilon}$ divergences, collinear or UV
- ▶ Longitudinal k^+ : cutoff $k^+ > \alpha, \alpha \to 0 \implies 1/\alpha, \ln^2 \alpha, \ln \alpha$ divergences
- 1. UV $\frac{1}{\varepsilon}$ and $\frac{1}{\varepsilon} \ln \alpha$ divergences: $\gamma^* \rightarrow q\bar{q}$ vertex, gluon crossing shock, wavefunction renormalization
- 2. Collinear $\frac{1}{\varepsilon}$:

wavef. renormalization, final state emission

- 3. $1/\alpha$ cancels between normal and instantaneous exchange
- 4. $\ln^2 \alpha$ from final state exchange and emission (M_X restriction matters here!)
- 5. Remaining $\ln \alpha$ absorbed into BK/JIMWLK

Final state corrections

How to dig out different types of divergences? Penttala

20/26 ロ > < ほ > < き > く き > く き > く つ へ へ つ

Final state corrections

How to dig out different types of divergences? Penttala

As an example: consider 1st row

きょう 日前 エル・エット (四)・ (日)

20/26

Combine energy denominators

"Beuf trick": write M_X delta function as imaginary part of "propagator"

$$\frac{\delta(M_{x}^{2} - M_{2}^{2})}{(M_{2}^{2} - M_{1}^{2} + i\delta)(M_{2}^{2} - M_{0}^{2} + i\delta)} + \frac{\delta(M_{x}^{2} - M_{1}^{2})}{(M_{1}^{2} - M_{0}^{2} + i\delta)(M_{1}^{2} - M_{2}^{2} - i\delta)} + \frac{\delta(M_{x}^{2} - M_{0}^{2})}{(M_{0}^{2} - M_{1}^{2} - i\delta)(M_{0}^{2} - M_{2}^{2} - i\delta)}$$

Note: sign of *i* δ essential)
$$= \frac{1}{2\pi i} \left[\frac{1}{(M_{x}^{2} - M_{0}^{2} - i\delta)(M_{x}^{2} - M_{1}^{2} - i\delta)(M_{x}^{2} - M_{2}^{2} - i\delta)} - \text{c.c.} \right]$$

21/26

- Then express numerator (\perp momentum dot products) in terms of M_0^2, M_1^2, M_2^2
- Combine before integration ⇒ separate different divergence types

Wüsthoff limit

Recover "Wüsthoff result" (origin somewhat mysterious)

$$\begin{split} x_{\mathbb{P}}F_{T,q\bar{q}g}^{\mathsf{D}\,(\mathsf{GBW})} &= \frac{\alpha_{\mathsf{s}}\beta}{8\pi^4}\sum_{f} \mathbf{e}_{f}^{2}\int_{\mathbf{b}}\int_{\beta}^{1}\mathrm{d}z \bigg[\left(1-\frac{\beta}{z}\right)^{2} + \left(\frac{\beta}{z}\right)^{2} \bigg] \int_{0}^{\mathbf{Q}^{2}}\mathrm{d}k^{2}k^{4}\ln\frac{\mathbf{Q}^{2}}{k^{2}} \qquad \\ & \times \left[\int_{0}^{\infty}\mathrm{d}rrK_{2}(\sqrt{z}kr)J_{2}(\sqrt{1-z}kr)\frac{\mathrm{d}\tilde{\sigma}_{\mathrm{dip}}}{\mathrm{d}^{2}\mathbf{b}}(\mathbf{b},\mathbf{r},x_{\mathbb{P}})\right]^{2}. \end{split}$$

- Explicit In Q²
- $g \rightarrow q\bar{q}$ DGLAP splitting function: target evolution
- ► Color-octet small-size $q\bar{q}$ is "effective gluon" $\tilde{g} \implies$ adjoint dipole \implies diffractive gluon PDF
- ► J_2, K_2 from curious "effective gluon wavefunction"

$$\psi^{\gamma o g ilde{g}} \sim k^{i} k^{j} - rac{1}{2} \mathbf{k}^{2} \delta^{ij}$$

◇ ◇ ● ◇ ● ◇ ● ◇ ● ◆ ● ◆ ● ◇ ◇ ◆

Deriving large Q^2 limit: aligned jet limit

Leading large Q^2 from:

- $\triangleright z_0 \gg z_1 \gg z_2$
- ▶ $p_0^2 \sim p_1^2 \gg p_2^2$
- p₀⁻ ~ p₁⁻ ~ p₂⁻
 ⇒ Wüsthoff momentum fractions

Consistently taking this limit derivation is straightforward:

- ▶ q and \bar{q} close: not resolved by target \implies point-like "effective gluon" \tilde{g}
- Consequently relative momentum of qq pair does not change in shockwave only relative momentum of aq
- Explicit log from $q\bar{q}$ internal dynamics, $g
 ightarrow q\bar{q}$ (!) splitting function
- \blacktriangleright Rank-2 tensor for $\gamma^* o g ilde{g}$ Edmond and Dionysios had a much more elegant way!

Deriving large Q^2 limit: matching

Identification with collinear variables via invariant masses

▶ K_{gã}: before shock, Fourier-transform

K_{gğ}: final state, fixed

$$M_{q\bar{q}}^2 \approx \mathbf{P}_{q\bar{q}}^2/z_1 \approx (1/\xi - 1)\mathbf{Q}^2$$
$$M_{q\bar{q}g}^2 \approx M_{q\bar{q}}^2 + \mathbf{K}_{g\tilde{g}}^2/z_2 \qquad M_X^2 = (1/\beta - 1)\mathbf{Q}^2 \approx M_{q\bar{q}}^2 + \widehat{\mathbf{K}}_{g\tilde{g}}^2/z_2 \qquad 24/26$$

Conclusions

- High energy scattering of dilute probe off strong color fields:
 - Target: classical color field
 - Probe: virtual photon,
 - develop in a Fock state expansion in Light Cone Perturbation Theory
- Total cross section to one-loop order for massive quarks
- Inclusive diffraction at one loop: key piece of EIC physics

DIS at NLO: real and virtual corrections

Here example diagams only

+ UV divergence in loop

UV (!) divergence in x₂-integral

UV-divergences cancel because for Wilson lines \in SU(N_c)

 $\mathcal{N}_{q\bar{q}g}(\boldsymbol{x}_{0},\boldsymbol{x}_{1},\boldsymbol{x}_{2}\rightarrow\boldsymbol{x}_{0})=\mathcal{N}_{q\bar{q}g}(\boldsymbol{x}_{0},\boldsymbol{x}_{1},\boldsymbol{x}_{2}\rightarrow\boldsymbol{x}_{1})=\mathcal{N}_{q\bar{q}}(\boldsymbol{x}_{0},\boldsymbol{x}_{1})$

(Why UV, not IR? ...)

Eikonal scattering off target of glue

How to measure small-x glue?

- Dilute probe through target color field
- At high energy interaction is eikonal,
 x (2d ± coordinate) conserved in scattering (*T*-matrix diagonal in ± coordinate space)
- Amplitude for quark: Wilson line

$$\mathbb{P}\exp\left\{-ig\int^{x^+} dy^+ A^-(y^+,x^-,\mathbf{x})\right\} \underset{x^+ \to \infty}{\approx} V(\mathbf{x}) \in \mathrm{SU}(N_{\mathrm{c}})$$

Amplitude for color dipole

$$\mathcal{N}(r = |\mathbf{x} - \mathbf{y}|) = 1 - \left\langle \frac{1}{N_{c}} \operatorname{tr} V^{\dagger}(\mathbf{x}) V(\mathbf{y}) \right\rangle$$

▶ r = 0: color transparency, $r \gg 1/Q_s$: saturation ,

 $\begin{array}{c} 1 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.01 \\ 0.01 \\ r\Lambda_{QCD} \end{array}$

nonperturbative!

DIS at NLO: Fock state expansion

Fock state decomposition of $|\gamma_{\lambda}(\vec{q}, Q^2)\rangle_i$ (and $_i(\gamma_{\lambda}(\vec{q}', Q^2)))$ up to g^2 :

$$\begin{split} |\gamma_{\lambda}(\vec{q}, Q^{2})\rangle_{l} &= \sqrt{Z_{\gamma^{*}}} \left[|\gamma_{\lambda}(\vec{q}, Q^{2})\rangle + \sum_{q\bar{q}} \Psi^{\gamma^{*} \to q\bar{q}} |q(\vec{k}_{0})\bar{q}(\vec{k}_{1})\rangle \right. \\ &+ \sum_{q\bar{q}g} \Psi^{\gamma^{*} \to q\bar{q}g} |q(\vec{k}_{0})\bar{q}(\vec{k}_{1})g(\vec{k}_{2})\rangle + \cdots \right] \end{split}$$

with Light Cone Wave Functions $\Psi^{\gamma^* \to q\bar{q}}$ and $\Psi^{\gamma^* \to q\bar{q}g}$

- ► Fourier-transform to ⊥ coordinate: (eikonal scattering)
- Scattering off target: Wilson line correlators

 $\begin{aligned} \hat{\mathcal{S}}_{E} |q(\mathbf{x})\bar{q}(\mathbf{y})\rangle &= V(\mathbf{x})V^{\dagger}(\mathbf{y})|q(\mathbf{x})\bar{q}(\mathbf{y})\rangle \\ \hat{\mathcal{S}}_{E} |q(\mathbf{x})\bar{q}(\mathbf{y})g(\mathbf{z})\rangle &= V(\mathbf{x})V^{\dagger}(\mathbf{y})V_{\text{adj}}(\mathbf{z})|q(\mathbf{x})\bar{q}(\mathbf{y})g(\mathbf{z})\rangle \end{aligned}$

Heavy quarks, motivation, issues

- Data
 - ► HERA F_2^c
 - Charm big part of EIC program
- LO F^c₂ problematic in existing fits Dirty little secret: heavy quarks in LO rcBK fits do not actually work!

LCPT loops with massive quarks are so much fun!

- Working with fixed helicity states (not Dirac traces=sums) : physics very explicit

Approach for this talk: same regularization as in massless case

- Cutoff in k^+
- ▶ ⊥ dim. reg.

(Recall: Hamiltonian perturbation theory, k^- -integrals already done)

Dirac and Pauli form factors

 $\Psi_{\rm I}^{\gamma}$

$$\begin{split} \Gamma^{\mu}(q) &= F_{D}(q^{2}/m^{2}) \gamma^{\mu} + F_{P}(q^{2}/m^{2}) \frac{q_{\nu}}{2m} i\sigma^{\mu\nu} \\ \frac{\pi}{2m} \int_{0}^{\pi} e^{q\bar{q}} + \Psi_{\rm NLO}^{\gamma_{1}^{*} \to q\bar{q}} &= \delta_{\alpha_{0}\alpha_{1}} \frac{ee_{f}}{ED_{\rm LO}} \left\{ \bar{u}(0) \not \epsilon_{\lambda}(q) v(1) \left[1 + \left(\frac{\alpha_{s}C_{\rm F}}{2\pi} \right) \mathcal{V}^{T} \right] + \frac{q^{+}}{2k_{0}^{+}k_{1}^{+}} (\mathbf{P} \cdot \boldsymbol{\epsilon}_{\lambda}) \bar{u}(0) \gamma^{+} v(1) \left(\frac{\alpha_{s}C_{\rm F}}{2\pi} \right) \mathcal{N}^{T} \\ &+ \frac{q^{+}}{2k_{0}^{+}k_{1}^{+}} \left(\frac{\mathbf{P} \cdot \boldsymbol{\epsilon}_{\lambda}}{\mathbf{P}^{2}} \mathbf{P}^{I} m \bar{u}(0) \gamma^{+} \gamma^{I} v(1) \left(\frac{\alpha_{s}C_{\rm F}}{2\pi} \right) \mathcal{S}^{T} + \frac{q^{+}}{2k_{0}^{+}k_{1}^{+}} m \bar{u}(0) \gamma^{+} \not \epsilon_{\lambda}(q) v(1) \left(\frac{\alpha_{s}C_{\rm F}}{2\pi} \right) \mathcal{M}^{T} \right\}. \\ &- \left(\frac{\alpha_{s}C_{\rm F}}{2\pi} \right) \left. \frac{m^{2}}{\mathbf{P}^{2}} \mathcal{S}^{T} \right|_{\mathbf{P}^{2} = -\overline{\Theta}^{2} - m^{2}} = F_{P}(q^{2}/m^{2}) \\ &- \left(\frac{\alpha_{s}C_{\rm F}}{2\pi} \right) \left. \frac{1}{(2z-1)} \mathcal{N}^{T} \right|_{\mathbf{P}^{2} = -\overline{\Theta}^{2} - m^{2}} = -1 + F_{D}(q^{2}/m^{2}) + F_{P}(q^{2}/m^{2}) \\ &\qquad \mathcal{M}^{T} \right|_{\mathbf{P}^{2} = -\overline{\Theta}^{2} - m^{2}} = 0 \end{split}$$

ロ > 《圖 > 《 문 > 《 문 > 문 님 이 오 @

Fits to HERA data

G. Beuf, H. Hänninen, T. L. and H. Mäntysaari, (arXiv:2007.01645 (hep-ph)).

Actually many fits. Choices:

- Evolution equation: not full NLO but resummed, running coupling LO, (very good approximation of full NLO (arXiv:1601.06598 (hep-ph)).)
 - 1. Kinematically constrained BK, nonlocal in $Y \sim \ln k^+$
 - Beuf (arXiv:1401.0313 (hep-ph))
 - 2. Resummed BK , local in $Y \sim \ln k^+$ E. Iancu, J. D. Madrigal, A. H. Mueller, G. Soyez and D. N. Triantafyllopoulos, (arXiv:1502.05642 (hep-ph)).
 - 3. Target rapidity resummed BK, nonlocal in $\eta = Y \ln 1/r^2$ B. Ducloue, E. Iancu, A. H. Mueller, G. Soyez and D. N. Triantafyllopoulos, (arXiv:1902.06637 (hep-ph)),
- What comes before initial condition?
 - Look at data $x_{Bj} < 0.01$
 - But cross section & (nonlocal in rapidity) evolution need values up to x = 1
 - Either 1. Freeze above x = 0.01 or 2. start BK evolution at x = 1
- Running coupling:
 - 1. Parent dipole
 - 2. Balitsky for LO-like part, smallest dipole for NLO

Messages from fits

Free parameters:

- \blacktriangleright σ_0 : proton area
- ► Q_{s0}: initial saturation scale
- γ shape of initial condition as function of r
- C²: scale of α_s as function of r (could think of as fitting α_s or Λ_{QCD})

Main conclusions

- Fits are very good, χ^2/N varies 1.03 ... 2.77
- Different BK-eqs equally good (Differences absorbed in initial conditions) .
 Similar to finding of Albacete 2015 Only see differences at LHeC kinematics
- Generally prefer smallish σ_0

Unsubtracted cross section, N_c-term

Discussion here following lancu et al 2016 leave out $C_{\rm F}$ /DGLAP-terms

$$\frac{\mathrm{d}N^{\mathrm{LO}+N_{\mathrm{c}}}}{\mathrm{d}^{2}\mathbf{k}\,\mathrm{d}y}\sim\mathcal{S}_{0}(k_{\mathrm{T}})+\alpha_{\mathrm{s}}\int_{0}^{1-x_{\mathrm{g}}/x_{\mathrm{0}}}\frac{\mathrm{d}\xi}{1-\xi}\mathcal{K}(k_{\mathrm{T}},\xi,X(\xi))$$

- Dipole operator S_0 is "bare"
- Rapidity at which dipoles are evaluated $X(\xi)$
- \blacktriangleright x_g : the target momentum fraction for LO kinematics
- Multi-Regge-kinematics: $X(\xi) = x_g/(1-\xi)$
- Only target $X(\xi) < x_0 \implies$ phase sp. limit $\xi < 1 x_g/x_0$:

BK:
$$\mathcal{S}(k_T, x_g) = \mathcal{S}(k_T, x_0) + \alpha_s \int_0^{1-x_g/x_0} \frac{d\xi}{1-\xi} \mathcal{K}(k_T, 1, X(\xi))$$

Combine these, taking $S(k_T, x_0) \equiv S_0(k_T) \dots$

8/26

Subtracted form for cross section

Unsubtracted form

$$S_{0}(k_{T}) + \alpha_{s} \int_{0}^{1-x_{g}/x_{0}} \frac{\mathrm{d}\xi}{1-\xi} \mathcal{K}(k_{T},\xi,X(\xi))$$
$$= S(k_{T},\mathbf{x}_{g}) + \alpha_{s} \int_{0}^{1-x_{g}/x_{0}} \frac{\mathrm{d}\xi}{1-\xi} \left[\mathcal{K}(k_{T},\xi,X(\xi)) - \mathcal{K}(k_{T},1,X(\xi))\right]$$
subtracted form

(Recall: dipoles evaluated at rapidity $X(\xi)$)

- These are strictly equivalent, perfectly positive at all k_T
- Subtracted form is a true perturbative series unsubtracted has α_s ln 1/x and α_s together

Origin of negativity in CXY

$$\frac{\mathrm{d}N^{\mathrm{LO}+N_{\mathrm{C}}}}{\mathrm{d}^{2}\mathbf{k}\,\mathrm{d}y} \sim \mathcal{S}(k_{\mathrm{T}}, X_{g}) + \alpha_{\mathrm{s}} \int_{0}^{1-\chi_{g}/\chi_{0}} \frac{\mathrm{d}\xi}{1-\xi} \left[\mathcal{K}(k_{\mathrm{T}}, \xi, X(\xi)) - \mathcal{K}(k_{\mathrm{T}}, 1, X(\xi))\right]$$

How do CXY get a negative cross section?

- $\mathcal{K}(k_T, \xi, X(\xi)) \mathcal{K}(k_T, 1, X(\xi))$ dominated by $\xi \ll 1$
- Replace $X(\xi) \rightarrow X(\xi = 0) = x_g$
- Change ξ integration limit to 1 (+ distribution!)

This gives CXY subtraction scheme

$$\frac{\mathrm{d}N^{\mathrm{LO}+N_{\mathrm{c}}}}{\mathrm{d}^{2}\mathbf{k}\,\mathrm{d}y}\sim\mathcal{S}(k_{\mathrm{T}},x_{g})+\alpha_{\mathrm{s}}\int_{0}^{1}\frac{\mathrm{d}\xi}{1-\xi}\Big[\underbrace{\overset{\sim\xi/k_{\mathrm{T}}^{4}\,\mathrm{for}\,k_{\mathrm{T}}\ggQ_{\mathrm{s}}}{\mathcal{K}(k_{\mathrm{T}},\xi,x_{g})}-\mathcal{K}(k_{\mathrm{T}},1,x_{g})\Big]$$

10/26

- Formally ok in α_s expansion
- Nice factorized form: only dipoles at x_g , like LO
- But subtraction no longer integral form of BK

Numerical implementation

Ducloué, Hänninen, T.L., Zhu 2017

$$\sigma_{L,T}^{qg,sub.} \sim \alpha_s C_F \int_{z_1, x_0, \mathbf{x}_1, \mathbf{x}_2} \int_{x_{BJ}/x_0}^1 \frac{\mathrm{d}z_2}{z_2} \left[\mathcal{K}_{L,T}^{\mathsf{NLO}} \left(z_2, \mathbf{X}(z_2) \right) - \mathcal{K}_{L,T}^{\mathsf{NLO}} \left(0, \mathbf{X}(z_2) \right) \right]$$

• Target fields at scale $X(z_2)$:

► $X(z_2) = x_{Bj}$: unstable

(like single inclusive)

 $X(z_2) = x_{Bj}$

Numerical implementation

Ducloué, Hänninen, T.L., Zhu 2017

$$\sigma_{L,T}^{qg,sub.} \sim \alpha_s C_F \int_{z_1, \mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2} \int_{x_{BJ}/X_0}^1 \frac{dz_2}{z_2} \left[\mathcal{K}_{L,T}^{NLO}(z_2, \mathbf{X}(z_2)) - \mathcal{K}_{L,T}^{NLO}(0, \mathbf{X}(z_2)) \right]$$

$$\blacktriangleright \text{ Target fields at scale } X(z_2):$$

• $X(z_2) = x_{Bj}$: unstable (like single inclusive)

$$\blacktriangleright X(z_2) = x_{Bj}/z_2 \text{ OK}$$

$$X(z_2) = x_{Bj}/z_2$$

Numerical implementation

Ducloué, Hänninen, T.L., Zhu 2017

$$\sigma_{L,T}^{qg,sub.} \sim \alpha_s C_F \int_{z_1, \mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2} \int_{\mathbf{x}_{B}/\mathbf{x}_0}^{1} \frac{\mathrm{d}z_2}{z_2} \left[\mathcal{K}_{L,T}^{\mathsf{NLO}}\left(z_2, X(z_2)\right) - \mathcal{K}_{L,T}^{\mathsf{NLO}}\left(0, X(z_2)\right) \right]$$

• Target fields at scale $X(z_2)$:

 $\blacktriangleright X(z_2) = x_{Bj}$: unstable

(like single inclusive)

$$\blacktriangleright X(z_2) = x_{Bj}/z_2 \text{ OK}$$

- Lower limit of z_2
 - ► $z_2 > \frac{x_{BJ}}{x_0}$ from target k^- (assuming $k_T^2 \sim Q^2$)
 - ► Strict k^+ factorization: $Z_2 > \frac{x_{BJ}}{x_0} \frac{M_D^2}{Q^2}$ ⇒ would require kinematical constraint

For "dipole" term integrate to $z_2 = 0$

$$X(z_2) = x_{Bj}/z_2$$

~ ~

Vertex corrections to non-flip vertex

- ▶ no flip vertex: $h_1 = h$, $h_2 = h_1$ and $h_2 \neq -h$ vertices as in massless theory \implies not new contribution
- ▶ 2 flip + 1 non-flip $h_1 = h$ or $h_2 = h_1$ or $h_2 = -h$ ⇒ again finite NLO contribution (2 ED's ~ k² each, 1 vertex ~ k, finite integral ~ $\int d^2 k \frac{k}{((k-...)^2+...)((k-...)^2+...)}$)

Large M_X

$$\begin{split} x_{\mathbb{P}} F_{I,q\bar{q}g}^{\mathrm{D}\,(\mathrm{MS})}(x_{\mathbb{P}},\beta=0,Q^2) &= \frac{\alpha_{\mathrm{s}} N_{\mathrm{c}} C_{\mathrm{F}} Q^2}{16\pi^5 \alpha_{\mathrm{em}}} \int \mathrm{d}^2 \mathbf{x}_0 \int \mathrm{d}^2 \mathbf{x}_1 \int \mathrm{d}^2 \mathbf{x}_2 \int_0^1 \frac{\mathrm{d}z}{z(1-z)} \Big| \widetilde{\psi}_{\gamma_{\lambda}^* \to q_{\bar{0}} \bar{q}_{\bar{1}}}^{\mathrm{LO}} \Big|^2 \\ &\times \frac{\mathbf{x}_{01}^2}{\mathbf{x}_{02}^2 \mathbf{x}_{12}^2} \Big[N_{02} + N_{12} - N_{01} - N_{02} N_{12} \Big]^2. \end{split}$$

- LO $\gamma \rightarrow q\bar{q}$ wavefunction
- BK kernel for $q\bar{q}
 ightarrow q\bar{q}g pprox q\bar{q}q\bar{q}$
- Squared BK Wilson line operator $(N_{ij} = 1 S_{ij})$ Obtained by:
 - Approximate gluon soft $z_2 \rightarrow 0$, $M_X^2 \sim 1/z_2$
 - Remove M_X by $\int dz_2 \delta(M_X^2 \mathbf{p}_2^2/z_2)$
 - Unconstrained final state integration introduced divergence:

cure by including final state emissions 13/26