Probing the CGC and QCD matter at hadron colliders

Institute of Particle Physics

Galilieo Galilei Institute, March 24-27, 2025

Two kinds of correlations

Xin-Nian Wang

Central China Normal University

In collaboration with Y. He, W. Ke, I. Moult and Z. Yang, W. Zhao

Probing the CGC and QCD matter at hadron colliders

Galilieo Galilei Institute, March 24-27, 2025

Modification of EEC in cold and hot QCD medium

Xin-Nian Wang

Central China Normal University

In collaboration with Y. He, W. Ke, I. Moult and Z. Yang, W. Zhao

Energy-energy correlator (EEC)

A new jet substructure observable:

$$\frac{d\Sigma^{(n)}}{d\theta} = \frac{1}{\sigma} \sum_{i \neq j} \int d\vec{n}_{i,j} \frac{d\sigma_{ij}}{d\vec{n}_{i,j}} \frac{E_i^n E_j^n}{Q^{2n}} \delta(\vec{n}_1 \cdot \vec{n}_2 - \cos\theta)$$

Jet EEC in Vacuum

Consequences of flavor dependence of EEC

p_T – dependence of single inclusive jet EEC

Institute of Particle Physics • <u>粒子物理</u>研究所

L. Apolinari, Z. Yang, et al, <u>2502.11406</u>

ΔR

 ΔR

Effects of hadronization: TMD Fragmentation

研究所

坹

圽 理 EEC should be sensitive to momentum broadening in medium

Resolving QGP scales with EEC

Andres, et al , PRL 130 (2023) 26, 262301 (2209.11236)

Resolving QGP scales with EEC

Institute of Particle Physics

• Can EEC resolve the induced gluon emission in EIC and heavy-ion collisions?

• Can EEC resolve momentum broadening of leading partons and recoil partons (medium response)?

• Can EEC resolve the angular scale of in-medium parton collisions in EIC and heavy-ion collisions

Gluon spectrum from single emission in GHT

Generalized HT induced emission in a QCD brick medium:

$$\frac{dN_{g}^{a(\text{GHT})}}{dzd\ell_{\perp}^{2}} = \frac{C_{A}C_{2}(R)}{N_{c}^{2}-1} \frac{\alpha_{s}}{2\pi} P_{ag}^{(0)}(z) \int dy \rho_{A}(y) \int_{0}^{Q^{2}} d^{2}\mathbf{k}_{\perp} \frac{\alpha_{s}\phi_{g}(x_{g},\mathbf{k}_{\perp}^{2})}{k_{\perp}^{2}} \frac{2\mathbf{k}_{\perp} \cdot \ell}{\ell_{\perp}^{2}(\ell_{\perp}-\mathbf{k}_{\perp})^{2}} \left[1 - \cos\frac{y}{\tau_{f}}\right]$$

$$q_{s}\phi_{g}(x_{g},\mathbf{k}^{2}) = K \frac{(1-x_{g})^{n}x_{g}^{\lambda}}{\mathbf{k}^{2}+Q_{s}^{2}}, \quad \theta_{12} \approx \frac{2|\ell_{\perp}-\mathbf{k}_{\perp}|}{z(1-z)E} \quad \tau_{f} = \frac{8}{z(1-z)E\theta_{12}^{2}}$$

$$q_{a}(1)$$

$$q_{R} = \int d^{2}k_{\perp} \frac{\alpha_{s}C_{2}(R)}{N_{c}^{2}-1} \rho_{A}\phi(x_{g},\vec{k}_{\perp}) = \frac{\pi C_{2}(R)}{N_{c}^{2}-1} \rho_{A}K \ln(1+\frac{Q^{2}}{x_{B}Q_{s}^{2}}),$$

$$\frac{d\Sigma^{\text{med}(\text{GHT})}}{d\theta} \approx \frac{C_{A}\alpha_{s}L^{-}\hat{q}_{R}}{\pi q^{+2}\theta^{3}} \frac{8}{\ln(1+\frac{Q^{2}}{x_{B}Q_{s}^{2}})} \int dz \frac{P_{q}^{(0)}(z)}{z(1-z)} \left[1 - \frac{\sin[z(1-z)q+L-\theta^{2}/8]}{z(1-z)q+L-\theta^{2}/8}\right].$$

EEC from single emission in e+Pb

Y. Ke, XNW and W. Zhao in preparation

eHIJING: electron Heavy Ion Jet Interaction Generator

- Pythia for $\gamma^* + N \rightarrow jet$ shower processes
- Simple model for saturation in gluon TMD distribution
- Elastic scattering with TMD distr.
- Induced gluon emission
- Multi-scale evolution for multiple gluon emission
 - $-Q^{2}, Q_{s}^{2}, \mu_{0}^{2}$

Institute of Particle Physics

String hadronization

研究所

Ke, Zhang, Xing and XNW, Phys. Rev. D 110, 034001 (2024)

 $\alpha_s \phi_g(x_g, k_{\perp}^2, Q^2) = \frac{(1 - x_g)^p x_g^{\lambda}}{q_{\perp}^2 + Q_s^2},$

Modification of single and dihadron spectra in EIC

Leading hadron spectra

di-hadron spectra

Ke, Zhang, Xing and XNW, Phys. Rev. D 110, 034001 (2024)

Leading hadron spectra

Medium modification of ECC in EIC

Modification mainly caused by momentum broadening

p + Pb

Y. Ke, XNW and W. Zhao in preparation

Nambrath for ALICE at HP2024

e+A

EEC from single emission in QGP

PP. Institute of Particle Physics 粒子物理研究所

Contributions from medium response

 $2 \rightarrow 3$ inelastic collisions:

Institute of Particle Physics

理研究所

物

ίv

2 \rightarrow 2 elastic collisions: $\frac{d\Sigma_a^{\text{med}}}{d\theta} = \int dx \sum_{b,(cd)} \int \prod_{i=b,c,d} d[p_i] \times \left[\int d\vec{n}_{c,d} \delta(\vec{n}_c \cdot \vec{n}_d - \cos \theta) E_d f_b (1 \pm f_c) (1 \pm f_d) \right]$ $\left| -\int dec{n}_{c,b} \delta(ec{n}_c \cdot ec{n}_b - \cos heta) E_b f_c (1\pm f_a) (1\pm f_b)
ight| \left| rac{E_c}{E_c^2}
ight|$ $\times \frac{\gamma_b}{2E_a} (2\pi)^4 \delta^4 (p_a + p_b - p_c - p_d) \left| \mathcal{M}_{ab \to cd} \right|^2,$ Both recoil and back-reaction ("negative partons")

Modification of jets and medium response

EEC of single parton in a QGP brick Single parton with multiple scattering in a brick in LBT

Debye mass:
$$\mu_D^2 = rac{3}{2}Kg^2$$

We vary only K in sampling the transverse momentum transfer of $2 \rightarrow 2$ and kinematic limit of gluon bremsstrahlung. We however keep qhat and $2 \rightarrow 2$ rate unchanged.

> Medium response (recoil + "negative" partons) Is (more) important

 \mathbf{T}^2

Institute of Particle Physics 粒子物理研究所

EEC of a jet shower in a QGP brick

Initial γ-jet configurations generated from Pythia8

Energy loss and momentum broadening lead to suppression at small angles

Radiated gluon and medium response dominate at large angles

究所

Institute of Particle Physics

A jet shower in a brick in LBT

EEC of γ -jets in Pb+Pb Collisions **CoLBT** simulations: 0.20 10^{1} (b) PbPb/pp $\eta_s = 0$ 0.15 θdΣ/dθ 0.10 10^{-2} 10^{-} **←**∕∕∕∕∕∕ 0.05 0.00

Enhancement at large angles by soft hadrons from radiated gluons and medium response, sensitive to pT

理研究所

cuts EEC by energetic hadrons from leading shower partons at small angles are suppressed, not affected by pT cuts

EEC of Single inclusive jets

p+p: PYTHIA 8

If 120 GeV jets come from vacuum fragmentation of jets with energy loss from initial 140 or 160 GeV

20

Enhancement due to jets with reduced energy?

Effect of hadronization dominates at small angle !

 Parton EEC at small angle due to random correlation

 Hadron EEC sensitive to hadronization

Effects of hadronization

JETSCAPE: increase of the hadronization scale Q_0

Single jet EEC from CoLBT

- Increased virtuality scale in medium leads to enhancement of EEC at small angle
- Medium response leads to enhancement at large angle R_L>0.3

Institute of Particle Physics

子

粒

物理研究所

23

Summary

- Medium modification of EEC in EIC by pt broadening
- Medium-response dominates enhancement of EEC at large angles in heavy-ion collisions which is sensitive to interaction scale in medium
- Increased parton scale in medium leads to enhancement of EEC at small anglee

My correlation with Edmond

XXXI International Symposium on Multiparticle Dynamics, Datong, China, September 2001

2022, Berkeley

Happy Birthday, Edmond!

Seeing Mach-cone through 3p Azimuthal Correlation

p+p (γ+jet) p_T>40 GeV/c

3.0

2.5

2.0

1.0

0.5

0.0 -

0.0

0.1

r = (r1 + r2)/2

Back-to-back correlation due to momentum conservation of parton splitting

Azimuthal uniform correlation due to medium-response: Mach-cone – sound velocity?

LBT & CoLBT: Jet-induced medium response

V

Time: 0.4 fm

S

Energy transverse distribution of medium response in a static medium

研究所

Institute of Particle Physics

理

钫 7

Linear Boltzmann Transport model

LBT: Linear Boltzmann Transport

$$p_1 \cdot \partial f_1 = -\int dp_2 dp_3 dp_4 (f_1 f_2 - f_3 f_4) |M_{12 \to 34}|^2 (2\pi)^4 \delta^4 (\sum_i p_i) + \text{inelastic}$$

Induced radiation

$$\frac{dN_g}{dzd^2k_{\perp}dt} \approx \frac{2C_A\alpha_s}{\pi k_{\perp}^4} P(z)\hat{q}(\hat{p}\cdot u)\sin^2\frac{k_{\perp}^2(t-t_0)}{4z(1-z)E}$$

- pQCD elastic and radiative processes (high-twist)
- Transport of medium recoil partons (and back-reaction)

Institute of Particle Physics

研究所

CLVisc 3+1D hydro bulk evolution

CoLBT-hydro (Coupled Linear Boltzmann Transport hydro)

Concurrent and coupled evolution of bulk medium and jet showers

$$p \cdot \partial f(p) = -C(p) \quad (p \cdot u > p_{cut}^{0})$$
$$\partial_{\mu} T^{\mu\nu}(x) = j^{\nu}(x)$$
$$j^{\nu}(x) = \sum_{i} p_{i}^{\nu} \delta^{(4)}(x - x_{i}) \theta(p_{cut}^{0} - p \cdot u)$$

- LBT for energetic partons (jet shower and recoil)
- Hydrodynamic model for bulk and soft partons: CLVisc
- Parton coalescence (thermal-shower)+ jet fragmentation
- Hadron cascade using UrQMD

Chen, Cao, Luo, Pang & XNW, PLB777(2018)86

EEC of dijets

EEC_{leading} - EEC_{subleading}: robust measure of medium modification free of background Institute of Particle Physics 粒子物理研究所

pT dependence of EEC

γ energy dependence

Jet energy dependence

MPI subtraction in Z-hadron correlation

物理研究所

粒子

Medium modification of MPI: low pT enhancement and high pT suppression

No correlation with Z/γ -jet

Sensitivity to EoS and shear viscosity

0.00

eosq: first order s95p: rapid crossover from LQCD

Larger effective c_s in eosq \rightarrow : larger Mach cone angle \rightarrow shallower DF valley Stronger radial flow \rightarrow smaller soft MPI

Competition of:

鈫

 η /s increase transverse flow \rightarrow suppression of soft MPI and DF valley Negative shear correction of longitudinal pressure \rightarrow impede longitudinal expansion \rightarrow increase MPI and DF valley

研究所

Institute of Particle Physics

理

(b)

Jet suppression and medium response at LHC

Gluon spectrum from single emission in GHT

Generalized HT induced emission in a QGP brick:

 $\tau_f = \frac{2z(1-z)E}{(\ell_\perp - \mathbf{k}_\perp)^2}$

$$\frac{dN_g^{a(\text{GHT})}}{dzd\ell_{\perp}^2} = \frac{C_A C_2(R)}{N_c^2 - 1} \frac{\alpha_s}{2\pi} P_{ag}^{(0)}(z) \int dy \rho_A(y) \int_0^{Q^2} d^2 \mathbf{k}_{\perp} \frac{\alpha_s \phi_g(x_g, \mathbf{k}_{\perp}^2)}{k_{\perp}^2} \frac{2\mathbf{k}_{\perp} \cdot \ell}{\ell_{\perp}^2 (\ell_{\perp} - \mathbf{k}_{\perp})^2} \left[1 - \cos \frac{y}{\tau_f} \right]$$

$$g(2)$$
For small angle emission: $\ell_{\perp} \ll zE, |\mathbf{k}_{\perp} - \ell_{\perp}| \ll (1 - \mathbf{z})E$

$$a(1)$$

$$\theta_{12}^2 \approx 4 \frac{(\ell_{\perp} - \mathbf{z}\mathbf{k}_{\perp})^2}{z^2(1 - z)^2 E^2} \approx 4 \frac{(\ell_{\perp} - \mathbf{k}_{\perp})^2}{z^2(1 - z)^2 E^2}$$
Change of variable $\ell_{\perp} - \mathbf{k}_{\perp} \rightarrow \ell_{\perp}$

$$\theta_{12} \approx \frac{2\ell_{\perp}}{z(1 - z)E} \quad \tau_f = \frac{2z(1 - z)E}{\ell_{\perp}^2} = \frac{8}{z(1 - z)E\theta_{12}^2}$$

Jet EEC in Vacuum

LO emission in vacuum:

$$\frac{d\Sigma_q^{\text{vac}}}{d\theta} \approx \frac{\alpha_s}{2\pi} C_F \int_0^1 dz \ z(1-z) P_{qg}(z) \int_{\mu_0^2}^{Q^2} \frac{d\ell_\perp^2}{\ell_\perp^2} \delta\left(\theta - \frac{\ell_\perp}{z(1-z)E}\right) \\ \approx \frac{\alpha_s}{2\pi} \frac{C_F}{2\theta} \left(3 - \frac{2\mu_0}{E\theta}\right) \sqrt{1 - \frac{4\mu_0}{E\theta}}$$

EEC in generalized high-twist

With a (GW) static potential model

$$\frac{\phi(0,\vec{k}_{\perp})}{k_{\perp}^2} = C_2(T) \frac{4\alpha_s}{(k_{\perp}^2 + \mu_D^2)^2}, \qquad \hat{q} = \int dk_{\perp}^2 \phi(0,k_{\perp}) \approx \rho \frac{C_2(R)C_2(T)}{N_c^2 - 1} 4\pi \alpha_s^2 \ln \frac{s^*}{4\mu_D^2}$$

$$\frac{d\Sigma_q^{\text{med}}}{d\theta} = \frac{L^{5/2}}{\pi\sqrt{E}} \frac{\hat{q}}{\ln\frac{s^*}{4\mu_D^2}} \frac{8\alpha_{\text{s}}C_A}{\theta\sqrt{EL}} \int dz \frac{z(1-z)P_{qg}(z)}{z^2(1-z)^2\theta^2 EL + 4\mu_D^2} \left[1 - \frac{\sin ELz(1-z)\theta^2/8}{ELz(1-z)\theta^2/8}\right]$$

For large angles $z^2(1-z)^2\theta^2 EL \gg 4\mu_D^2$

Recover HT results:

$${}_{HT} = \frac{\hat{q}}{\ln \frac{s^*}{4\mu_D^2}} \qquad \frac{d\Sigma_q^{\text{med}}}{d\theta} = \frac{L^{5/2}\hat{q}_{HT}}{\pi\sqrt{E}} \frac{8\alpha_{\text{s}}C_A}{(\sqrt{EL}\theta)^3} \int dz \frac{P_{qg}(z)}{z(1-z)} \left[1 - \frac{\sin ELz(1-z)\theta^2/8}{ELz(1-z)\theta^2/8}\right]$$

