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Introduction
@00

Outline of this talk

@ Jet quenching in heavy-ion collisions.
See also talks by Xin-Nian just after and Yacine on Wednesday.

@ Formal point of view: essentially a talk on QCD evolution equations in the presence of a
saturation boundaries in phase space:

@ Final state jet evolution in dense QCD media.

@ System size dependence of the quenching parameter §.

@ Opportunity to celebrate Edmond’s contributions on these topics.
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Introduction
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Jet quenching in heavy-ion collisions

Jets as hard probes

@ A hard scattering produces a pair of highly energetic partons.

@ The subsequent evolution of the parton = jets.

PP ArA

@ In PbPb, interaction with the plasma during propagation. 3/31
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Jets in pp vs jets in heavy-ions collisions

parton shower

<—>Q> ~ qL parton shower

\
pr ~ 1GeV

log(Q) l N l log(Q)
—> N T —>
prR>>Qup  Qwp ~ 1GeV we ~ L prR >> w.

medium-induced emissions

A complicated physical system
Jets are sensitive to a broad range of scales and thus to many medium-induced mechanisms.
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pQCD jet fragmentation

pQCD picture of jet fragmentation in
dense QCD media
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pQCD jet fragmentation
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Key idea: use an approximation consistent with pQCD series

@ Rely on a suitable approximation under pQCD control.

@ Most simple approximation: double logarithmic limit!

@ A common limit to DGLAP and BFKL evolution.
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pQCD jet fragmentation
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How does a vacuum jet look like within the DLA?

@ Vacuum-like emissions (VLEs) = Bremsstrahlung triggered by the virtuality:

5 Qs Cg dw d6?
d“Pyie =~ r o 2
@ Duration of the process: tr ~ 1/(w6?).
@ Markovian process with angular ordering to (E,R)
account for quantum interferences. = VACUUM (w1, 01)
£ PHASE SPACE
(o]
= % \e (w3, 02),
i1 X
I ©) \ (ws, 03)
(U
E o '7)\
[N -
(@)
l 4
01> 6, > 03 oo
w1 Wy > ws +— w decreases (soft) .



pQCD jet fragmentation
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Parton propagation in dense media

(1) Transverse momentum broadening: (k?) = GAt

T E pr ki

A
Y
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pQCD jet fragmentation
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Parton propagation in dense media

(1) Transverse momentum broadening: (k3) = GAt

(2) Medium-induced emissions.

asCrdw dt
™ jtﬁmed

d3,Pmie ~ Pbroad(g)dev with tf,med =V (A)/é\]
—_————

Gaussian

= No collinear divergence when § — 0.
= Typical kf_ ~ /.
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pQCD jet fragmentation
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How does an in-medium jet look like at DLA?

Phase space constraint for vacuum-like emissions

1/(w6?)

=~
@ During tr = 1/(w6?), in-medium partons acquire k2 = § x  tr
@ For VLEs inside, lower bound on the k| ~ wé of emission:

k3 > gt : final state evolution with "saturation” boundary

(E,R) (E,R)

5 VACUUM (w1, 6) 5 INSIDE
£ PHASE SPACE £
L. % \& (2,0) g, %\
7] (o) 4] (o)
3 Z NS 9 %\
S O¢ ¢ (ws, 03) S O¢ X¢
g % ] 5
© Dy S T
SS %) SS D OUTSIDE
l 0.01 ¢ J/ 0.01

+— w decreases (soft) +— w decreases (soft)

@ No VLEs allowed for formation times \/w/§ < tr < L. 931



pQCD jet fragmentation
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How does an in-medium jet look like at DLA?

Decoherence

@ Color decoherence: after t, = (§6%)~1/3

gluons.

, = independent sources of soft large angle

_ 0>0

@ However, no consequences for VLEs in the medium

e Large angle in-medium VLEs occur very fast = tr < ty.

e Gluon cascades are angular ordered as in the vacuum.
10/31



pQCD jet fragmentation
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How does an in-medium jet look like at DLA?

Decoherence

@ Color decoherence: after t, = (§6%)~1/3

gluons.

, = independent sources of soft large angle

_ 0>0
@ But an important consequence for the first emission outside tr > L:
e Critical angle 0. such that t;(0.) = L.

e If > 0. =2/,/§L3, the first emission outside can have any angle.
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pQCD jet fragmentation
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Beyond DLA: including medium-induced emissions

@ MIEs satisfy kf_ ~ §tr <= tf med = VW/§.
@ Each VLE inside with 6 > 6. radiates MIEs.

@ Energy transported at large angles via a turbulent cascade: typical scale wy,, = a2§L°.
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pQCD jet fragmentation
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Summary: jet evolution to leading-log accuracy

@ The evolution of a jet factorizes into three steps:

(1) one angular ordered vacuum-like shower inside the medium ,
(2) medium-induced emissions triggered by previous sources,
(3) finally, a vacuum-like shower outside the medium.

@ Re-opening of the phase space for the first emission outside the medium.

0%

outside
medium
|-
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pQCD jet fragmentation
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Phenomenology: jet fragmentation function

25 ,
@ Energy distribution of particles within jets. o | e ™ <21 aneh, R0 jts
<}
T Z i mon
D(X) = 1 ﬂ 4 & 316 < p < 398GeV
NJEtS dx 1.5

q :'%g!

with x ~ p7/pT jet

@ Simple LL estimate: xDpp(x) = @ Nuclear modification:

205 f,\R/(XpT) 01, (2075\/2 log(1/x) Iog(R/@)) R(x) = Dl};bpz)(;()
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pQCD jet fragmentation
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Enhancement at small-x: role of colour decoherence

Colour decoherence

=> no angular ordering for the first emission outside the medium,
= factorisation between parton cascades inside & outside the medium.

number of “in” sources outside DL cascade
Vs —_— - >
XDpppp(X) =~ YRle Nied x exp(as log(2xpr /A°L))
22 Nuclear modification factor at DLA e or
. T - - - -
\ exact asympt 1’@ .. R
\ = _——— ” inside
2'0‘ K1 min =100 MeV O& medium
\ K., min =200 MeV —— O«
\ 1 2>
)
J 2
= <D
J = %
B0
/ 2 S
i 1
JRd <o 0Oc
~ \ .
— 22 A\ outside
non perturbative \¥, medium
0.8r quark, pro =200 GeV, R =0.4 1 %
G=1.5GeV¥fm, L=4fm, @;=0.3
065005 001 0.02 005 01 0.2 0.5

X log(w) 14/31



Transverse momentum broadening in the
double logarithmic approximation
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TMB in DLA
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Transverse momentum broadening in QCD

@ Physical system: a highly energetic parton propagating through a dense QCD medium.

@ We compute the tranverse momentum distribution P (k) of the outgoing parton.

T pr + k1

Y

A

At

@ Dense QCD medium: multiple scatterings.
16 /31



TMB in DLA
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Why is TMB interesting?

@ "Hot QCD": Dijet azimuthal angular distributions in heavy-ion collisions: access to the

TMB and the medium properties.
@ Ex: studies by &

Dijet Angular Correlation at RHIC

6 — GL=0GeV?
--- gL =8GeV?

---- Gl = 20GeV?

30k

M.

O STAH pp
O STAR A4 U-10%

2.4 2.6 2.8 30

@ "Cold QCD": fast probe of gluon distribution in large nuclei L oc A3 >> 1 at small-x.
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TMB in DLA
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TMB at "tree level” (1/2)

@ Forward scattering amplitude of an effective dipole with size x|,

1 o A
S(x,) = ﬁmvT(XL)V(oL», with  V(x,)=Pe/ o #A (" x)

.
Ll

P

@ ([...]) denotes average of the medium background field ~ CGC average

@ Assuming independent multiple interactions,

(A7 (x T x AP (y T,y 1)) = n(xT)a%8(xt — yF) y(xL —y )
—_——

~ colision rate
18/31



TMB in DLA
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TMB at "tree level” (2/2)

@ Fourier transform of the dipole S-matrix

Pk,) = / d?x ) e Tkixs =AU/ g2 Can(y(0,) — v(x1)) &

1

@ LO § given by §(0(1/x%) = GoIn =2~ (Go oc a2n, pu oc mp)

xﬁ_u
tree level

101 L
T
>
& 101
= 10~
= _ e R/QAD)
=
& 100
=~ 107 §o = 0.5GeV?/fm, L = 6 fm

-5 L L L
103071 100 100 107 10°

kr [GeV] 19/31



TMB in DLA
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The saturation momentum Q:

@ Emergent scale in the dipole S-matrix S:

SO =1/QL)) = e M* & (L (L)L = Q(L)

@ Transition between the unitarity bound S ~ 1 and the dilute regime S < 1.
@ At tree-level, one finds

Q2(L) ~ GoLIn(GoL/u?)

@ Approximate linear scaling with L at tree-level.

20/31



TMB in DLA
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Double logarithmic enhancement of g at NLO

] % @ % @ NLO correction to §:
40 _ash, dT 12X k2
") ,2 qO

k?

!

@ Double logarithmic phase space, with

non-linear saturation bound: Qsz(T) ~ GoT
2 o
(L)

2 S
@ Constrains the emission to be triggered by @ =

a single scattering. +




TMB in DLA
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Resummation of the leading radiative corrections

@ Resummation to all orders via the evolution equation

oq(r, ki_) /ki' dk/f — L2\ A 2 2 ~ 2
= S k )k I S = ) s
D) = o, g CoKD A KD Q2 = 4l G

@ Exponentiation of the double logarithmic corrections.
; 1
P(ky) = /d2xl e ki xs exp —74(L, 1/x3)Lx%

0L TLL
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TMB in DLA
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Reminder: extended geometric scaling for gluon distribution

@ Inclusive DIS cross-section at small-x (large 7 = In(1/x))
o(r=1In(1/x), @ o<2/ dz/derW) z,r, @)P(1—S.(ry))

@ Energy (7) dependence of S;(r, ) determined from the BK equation.

@ For @*~1/r3 < Q4//\QCD, the dipole S-matrix satisfies extended geometric scaling
Si(ri)~f ( : )
crl)~fl 55—
ri Q3(7)

@ A similar property holds when S(L, x ) satisfies our non-linear DLA evolution equation
with saturation boundary.
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TMB in DLA
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Asymptotic limit of TMB at fixed coupling

@ Large system size limit of (L, ki)

qLRL 25'“(022@)) if k7 < Q2(L)
I )[HBM d)| else

with 8 =(c —1)/(2¢) and ¢ = 1+ 2+/as + a2 + 2as ~ 1 + 2/a@.

—> extended geometric scaling for ki < Q4/p.
@ TMB in this region given by Fourier transform

P(kj_) _ /dQXJ_e_ikLXLe_%é(l/xi)in

24 /31



TMB in DLA
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Superdiffusion in momentum space

— tree level

dIn(Q(L 2
e d(ln(lf) ) =c - QS(L) ~Le — resummed - numeric
-= resummed - analytic

a1
(=]
T

N
(=}
T

@ The median of the distribution scales like

median k1 [GeV]
o o

M ~ L1/2+\/i

r i = 02, §o = 0.1 GeV3, 1 = 034 fm
5 10 20 50 100
L [fm]

@ = super-diffusive behaviour.
NLO corrections yields super-diffusion in >
momentum space.
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TMB in DLA
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Heavy-tailed distribution

Broadening distribution - scaling property
: T : .

1
@ § ~ eP* at large kr. 10

@ Fourier transform of the "stretched” 10%F

exponential exp(—[...]x7 ) with

¥ ~242y/as > 2 <101}
@ Heavy tailed distribution 1072F — scaling limit
1 --- Levy distrib. 28
P(k.L) o =N 107% . heavy-tail
T i i . W
107! 10° 10! 10
x=kr/Qs
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TMB in DLA
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Beyond the asymptotic limit

@ We have determined the limit Y — oo of the TMB distribution.

@ What about the sub-asymptotic corrections?

@ Are they universal?

@ Can they be used to realistic values of Y = In(L/7)?

27/31



TMB in DLA
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Wave front propagation into unstable state

. . 1.50
@ We borrow techniques from front propagation ot e
. ront interior
into unstable sate. 1.251 p~ps(Y) ~ Y
1001
S
@ Similar to the traveling wave interpretation of > 0.751
. wn
the solutions to BK. 050 v leading edge
p—ps() ~ Y0
0.254
. . . . 0.00 1
@ Typical example reaction-diffusion process: ; ; ; ; ;
. . -10 0 10 20 30 40 50
Fisher-Kolmogoroff-Petrovsky-Piscounoff eq. P
8t¢ — 82¢ + ¢ — d)k If tnitially a spatially extended system is in an unstable state everywhere
X

except in some spatially localized region. what will be the large-time dy-
namical properties and speed of the nonlinear front which will propagate
into the unstable state? Are there classes of initial conditions for which
the front dynamics converges to some unique asymptotic front state? If
so, what characterizes these initial conditions, and what ean we say about
the asymptotic front properties and the convergence to them?

@ Universality of the wave-front velocity ps:

_dm(@) _ b d
ps—T(L)—C—Fv"‘W-F
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TMB in DLA
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Running as: proof of the lancu & Triantafyllopoulos conjecture

o - /p 0 G ay. ) = A /” dp’ as(p")g(Y, o)
oy — Jy Y Jov

@ The large Y development of ps(Y) = In(Q2(Y)) for the rc-evolution has been found
numerically in

@ With the TW technique, we can prove their results and go beyond the p(Y) = Y
approximation

1 7€2 1
(YY) =Y +24b Y 4bgY)Y/® + [ =—2by | In(Y S
ps(Y) +2y4boY + 38 (4boY) " + <4 o) n(Y)+r+ 150 (4bo Y)1/6
5 In(Y) .
—418hy | ————— + by (1 — 8b o(y~1/?
+a (108+ 0) (@b Y)13 J 0) ARy ( )
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TMB in DLA
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Initial conditions for BK evolution

102.
@ Analytic formulas for the TMB or the dipole
S-matrix S that resum to all orders gluon - 10' 5
fluctuations enhanced by a, In?(A1/3). &
& 10%
~
@ Down to Y ~ 2, the shape of S is driven by the /E\ 101+ '
universal behaviour of the traveling front. - \
xQ — tree level \
10724 — numeric-Y; =4 \'\,
@ Physically motivated new initial condition for the -- analytic- Y, = 4
BK-JIMWLK evolution equations. 03 - : : ;
103 102 107! 10° 10!
kT/Qs(L)
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Conclusion
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Conclusion

@ Final state evolution of jets in dense weakly coupled QCD plasma,
@ and quantum evolution of diffusion transport coefficient g,

@ share formal similarities with non-linear evolution of initial state gluon distribution at
small-x.
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Back-up
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Antenna radiation pattern

@ In the soft limit,

p d3N _osCr p" By
dkt+d2k 272 (prk,)(ptk,)

@ After averaging over the azimuthal angle of the gluon,

d’N asCr sin(6,)
+ _ s q _ _
K, ~ 7 1= cos(dy) O Paa —0a) + (a0 )
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TMB at "tree level” (2/3)

@ S(x) exponentiates:
S(x1) = exp (—g?CrnL(v(01) — v(x1)))

@ "Leading-twist” approximation in the perturbative regime 1/x, > mp:

—

g°Crn(y(01) — v(x1)) = £4(1/x7)x7% + O(mpx7)

4
@ We take this formula as our definition of §.
@ For a collision rate with typical Coulomb tail C(q,) = [ d?x e 9-*+y(x ) ~ g?/q%:

. . 1
q(o)(l/xi) = qunxTMz—FO(Xi/l,z), do ocoén, Mn X mp
1

31/31



Back-up
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TMB at one loop in a dense QCD medium (1/2)

@ Computation at one-loop in as(p7r) < 1, but to all-orders in agn.

£ T A T

@ Schematically one finds
Pk, L) =POky, L)+ aPW(ky, L)+ 0O(a?)
with the NLO distribution given by
dw [t f2
asPD (kL) zzachme/F/ dtz/ dtl/ PO(ky — gy, L—t)
0 0 q

110921

x K(qa, —qy,to, tl)P(O)(Chp t1)
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TMB at one loop in a dense QCD medium (2/2)

@ The kernel K(/, ta, t1) involves the medium 3-point function SG)

’C(’L,fz»tl)f/ (g - qJ_)[ g, g0 +q1 0, t) -5 (g4, 1t tr)

q,..9',

falblcl faoboCo

()<2|S(3)(t'27 t1)|X]_) = m

<( " gamo(tz7 t1)|xl// )(X gb1b0|x )(X11_|QT coC1|X2L)>

P

@ In the "harmonic approximation” with §(®) ~ go:
16m Al — (g —4q\)/2F 2ri
3GoT P 34oT wQ sinh(Qr)

wopd i ety (4 -4q\)
4wQ coth(Qr/2) 4thanh(QT/2)

$q. ¢ liir=t—t)=

with Q% = igo/(2w) and 7 = t, — t1.
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Lévy flights

@ At large time L > 79, near the peak

S(xu1,L) ~exp (f%

(|xl|os<L))2*‘”3) R PO

@ — the TMB distribution satisfies a fractional Fokker-Planck equation

OP(L k)  &P(L ky)
= —2_4
oL Yok 7 p

Brownian motion Levy flight

@ Equation for the prob. density of a Lévy walker, e.g.
o v=—pv+n7(t)

o 77(t) Lévy stable noise (4 = 2 is the standard white Gaussian noise). s1/31
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Asymptotic limit of TMB at fixed coupling

o Define Y = In(L/70), p = In(k> /1i2), ps = In(Q2/1i?),
W =an [ dvar
@ Let's look for scaling solution §(Y,p) = f(x = p — ps(Y)):
—psf"(x) + [ps — 1] £'(x) — @sf(x) = 0
@ For physical initial conditions, the unique solution to this problem is ps = ¢ and
f(x) = ™ (1 + Bx)
with B = (c —1)/(2¢) and ¢ = 1 +2,/as + a2 + 2a,.
— extended geometric scaling for x < ps(Y) or k3 < Q*/u2.
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Leading edge domain p — ps ~ Y©

@ Diffusive deviation from the asymptotic limit, with we consider.

~ ~ — X v« X
4(Y,p) = QOeps(Y) Ve yeg (W)
ps(Y)=c+s(Y)

@ Diffusion power characteristics of the universality class of the evolution equation.

@ Homogeneity conditions fix the power «.

@ a = 1/2 for fixed coupling, & = 1/6 for running coupling

31/31



Back-up
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Front interior vs leading edge expansion

1.50
@ We then write two types of expansion: front front interior
interior and leading edge. 1.251 P~ ps(Y) ~ cY
oy 1 _1.001
q(Y,p) = qOePS( : L Z Y na f”(X) ::075.
n>0 =
~ ~_psl Bx ‘L 0.50 4 leading edge
q(Y’p) = Qo€ Ve Z Ynoc (Ya) p—ps(Y) ~Y"
n>—1 0.25 4
0.00 A
10 0 10 20 30 40 50
0

@ Matching of the front interior and leading edge

fix all the constants and the development of the
31/31
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Results for fixed coupling

@ For fixed coupling, we find the pre-asymptotic behaviour

a(vooL  few (x—29) [1+0x— 2y (14 252) 10 ()] x>0

Q3(L) B exp 25X*m$+0(W)) if x<0.
(1)
with
_ 3¢ _ 6cy/2m(c—1) 1 )
ps(Y)=cY ) In(Y) Taror \/V+O(Y )

@ For the linearized equation:

pe(Y) = (14 Vas)Y — g In(Y) + O(y™)
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Some plots

Back-up
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3.0

2.5+

5201

1.51

1.0

T

pmerh
— analytic - full

— numeric

10

20 30
Y

40

1074

Qe1071 4

1-S(k

1072_

1073

— Y =5, analytic

Y = 5, numeric

Y — oo, analytic

10-2 10
K3/Q?

@ Sub-asymptotic corrections enable one to have a good agreement with the numeric.

@ Analytic results can be systematically improved.
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Analytic formulas at small Y

@ Solution: drop the terms which make the series divergent.

60 T
| — numeric - non-linear
50 i — numeric - linear
i -- analytic - non-linear
'} -- analytic - linear

401

Z 301!

<

2094

10

%0 5 10 15 20 2 30
Y
@ Use this analytic form for ps(Y) to compute §(Y, p) as a Taylor series around ps:

. . 2 . _
1+ ps-— 1X—|—1 <(PS-—1> +&_ as(ﬂs)>X2+O(X2)

Ps 2 Ps pg Ps

a(Y,x) = do ers(Y)=Y
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Front velocity of the rc equation

w g =1+ 2v/BY"1/2
—_— ps - +2\/%Y71/2+‘51Y75/6

== ps=1+2boY V2 + 6, Y756 4 g,y
— analytic - full

15{ 4%

1.4+

numeric

1.34

g>=
SIo
1.2 S e

1.1

1.0

0.9

50 100 150 200 250 300
Y

@ Excellent agreement at large Y. J

@ At small Y, the asymptotic development fails to converge.
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pr-broadening in heavy-ion collisions

— numeric /

-- analytic

@ (k?) responsible for the dijet azimuthal
decorrelation related to the "renormalized” value
of ps.

—~

@ For realistic values of Y, enhancement factor of
order 2 — 6 compared to a tree-level estimation!

Qs(¥)/Q0 (v

@ Need to include single log corrections to reach
greater precision. 0 T : .
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