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Compact objects of extreme interest 
in the multi messenger era of 
astrophysics 

≈ 1015G

ρ0

ρp ≪ ρn

✦Magnetic Fields up to                    on the surface,

✦Central densities up to several times        ,

✦ Strongly asymmetric matter (                 )

Their interior composition is still very poorly constrained !
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How compact?
SunNeutron Star

M ≈ 1.4 − 2.0M⊙ M = 1M⊙

R ≈ 11 − 14km R ≈ 700.000km

ρNS ≈ 100.000.000.000.000ρ⊙
Credit: Lukas Weih, Goethe University

Introduction

Roughly a hundred trillion times denser than the sun !
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good approximation at T=0, there 
are systems in which temperature 
can not be ignored

Proto-Neutron Stars and 
very young Neutron Stars

NS-NS mergers

In the study of the EoS of these 
systems people usually neglect the 
magnetic field, even though it 
reaches extremely high values

Is this a good 
approximation ?

DTP 07/24 5



L. Scurto6

Framework

DTP 07/24



L. Scurto

Relativistic Mean Field Approximation

7

Framework

DTP 07/24



L. Scurto

Relativistic Mean Field Approximation

7

In our work we use two different Relativistic Mean Field (RMF) models in order to describe stellar 
matter (npem). In this approximation, the interaction between nucleons is mediated by mesons.

DTP 07/24

Framework



L. Scurto

Relativistic Mean Field Approximation

7

In our work we use two different Relativistic Mean Field (RMF) models in order to describe stellar 
matter (npem). In this approximation, the interaction between nucleons is mediated by mesons.

ℒ = ∑
i=p,n

ℒi + ℒl + ℒσ + ℒω + ℒρ

DTP 07/24

Framework



L. Scurto

Relativistic Mean Field Approximation

7

In our work we use two different Relativistic Mean Field (RMF) models in order to describe stellar 
matter (npem). In this approximation, the interaction between nucleons is mediated by mesons.

ℒ = ∑
i=p,n

ℒi + ℒl + ℒσ + ℒω + ℒρ

Nucleons

ℒi = ψ̄i[γμ(i∂μ − gωVμ −
gρ

2
τ ⋅ bμ) − M*]ψi

M* = M − gσϕ

DTP 07/24

Framework



L. Scurto

Relativistic Mean Field Approximation

7

In our work we use two different Relativistic Mean Field (RMF) models in order to describe stellar 
matter (npem). In this approximation, the interaction between nucleons is mediated by mesons.

ℒ = ∑
i=p,n

ℒi + ℒl + ℒσ + ℒω + ℒρ

Nucleons

Leptons
ℒl = ∑

i=e,μ

ψ̄i[γμi∂μ − mi]ψi

M* = M − gσϕ

ℒi = ψ̄i[γμ(i∂μ − gωVμ −
gρ

2
τ ⋅ bμ) − M*]ψi

DTP 07/24

Framework



L. Scurto

Relativistic Mean Field Approximation

7

In our work we use two different Relativistic Mean Field (RMF) models in order to describe stellar 
matter (npem). In this approximation, the interaction between nucleons is mediated by mesons.

ℒ = ∑
i=p,n

ℒi + ℒl + ℒσ + ℒω + ℒρ

Nucleons

Leptons Mesons
ℒl = ∑

i=e,μ

ψ̄i[γμi∂μ − mi]ψi

ℒσ =
1
2 (∂μϕ∂μϕ − m2

σϕ2)

ℒω = −
1
4

ΩμνΩμν +
1
2

m2
ωVμVμ

ℒρ = −
1
4

Bμν ⋅ Bμν +
1
2

m2
ρbμ ⋅ bμ

M* = M − gσϕ The mesons are then replaced with 
their ground state expectation value

ℒi = ψ̄i[γμ(i∂μ − gωVμ −
gρ

2
τ ⋅ bμ) − M*]ψi
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ℒA = −
1
4

FμνFμν

+

The main effect of the field is the Landau 
Quantization for charged particles

We now introduce a magnetic field contribution in the Lagrangian density

ρi =
kF

i
3

3π2
ρi =

|q |B
2π2

νi
max

∑
ν=0

gνkF
i,ν
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Temperature does enters through the distribution function of all particles

ρi =
kF

i
3

3π2

fk = Θ(k − kF) fk,± =
1

1 + exp(
ϵi

k ± ηi

T )

This affects the all thermodynamical quantities

ρi = 2∫
d3k

(2π)3
( f i

k,− − f i
k,+)

Temperature directly affects 
the same quantities directly 
affected by the magnetic 
field

When both are present, we have both the integration 
over momenta and the sum of Landau Levels
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Effect on the EoS

The effect on the EoS of the magnetic 
field appears to be very small and 
decreases at higher densities

On the other hand, the effect of 
temperature appears to be opposite to 
the one of the magnetic field, but much 
stronger

The effect of 
temperature tends to 
wash away the effect 
of the magnetic field
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Effect on the composition
In the case of the proton fraction, we see that the 
magnetic field has the effect of increasing the quantity at 
low densities and of creating the typical step-like 
behaviour due to the Landau levels

The effect is more relevant at low densities and, for very 
strong magnetic fields, is relevant up to temperatures 
around 10 MeV

This is due to the fact that magnetic 
fields and finite temperatures both 
have the effect of increasing the 
proton fraction

DTP 07/24 13
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Conclusions

✦ In the case of the EoS, the effect of the magnetic field is orders of magnitude bigger than 
the one of the magnetic field and acts in the opposite sense

✦ In the case of the composition, magnetic field and temperature both tend to increase the 
proton fraction, so the joint effect should be taken into account in the case of strong 
magnetic field and intermediate temperatures        

Conclusions

Is this a good 
approximation ?

Yes for static 
properties

Partially for 
dynamical 
properties
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