

NEUTRON STAR ENVELOPES IN THE PRESENCE AND ABSENCE OF ACCRETION

MARTIN JAVIER NAVA CALLEJAS

DTP/TALENT NUCLEAR PHYSICS 2024

JULY 18TH, 2024

ENVELOPE...?

NEUTRON STAR ENVELOPE

NEUTRON STAR ENVELOPE

NEUTRON STAR ENVELOPE

THERMO-NUCLEAR? (BUT WEREN'T NEUTRON STARS...)

Crab Nebula. Credits: NASA, ESA, J. Hester and A. Loll (Arizona State University)

ENTER: LOW-MASS X-RAY BINARY SYSTEMS

BUT, THEN...?

BUT, THEN...?

BUT, THEN...?

... VIA THERMONUCLEAR EXPLOSIONS!

THEORY VS OBSERVATION

Figure: A typical X-ray burst over GS 1826-24 (black) against theoretical models employing **MESA**

- Observationally they occur at $\dot{M} < 0.3 \dot{M}_{\rm Edd}~(\approx 10^{-9} M_{\odot}~{
 m yr}^{-1})$
- Explosions start at $\sim 10^{5.75}$ g cm $^{-3} \equiv \text{ENVELOPE}$
- From H into Fe and beyond:
 rp-process

Time-dependent codes such as **MESA*** are required!

RP IN A NUTCRACKER

Figura: Créditos: Nutcracker Museum.

Synthesis of ⁵⁶Fe, ⁶⁰Ni, ⁶⁴Zn, ⁷⁰Ge
 via burning of ¹H.

• t_{burning} $(^{1}\text{H}) \sim 10^{3} \text{ s} \approx 16 \text{ min.}$

• **Extreme** conditions: $\rho \ge 10^5$ g cm⁻³, $T \ge 3 \times 10^8$ K. Sun's core: $\sim 10^2$ g cm⁻³ y $T \sim 10^7$ K.

MAXI J0556-332: Transient accretion of months

(YES, EVEN HERE!)

EXO 0748-676: Accretion and X-ray bursts

MAIN CHALLENGE: NUCLEAR NETWORK OF REACTIONS

Figura: Cables conectados como analogía.

- Interacting arrays of bounded protons and neutrons ${}^{12}C + p \rightarrow {}^{\overline{13}}N + \gamma$, $3\alpha \rightarrow {}^{12}C$.
- 1 array = 1 species
 ⁴⁸Fe, ⁴⁹Fe, ⁵⁰Fe,..., ⁵⁸Fe.
- 1 species = 1 partial differential equation for its mass fraction

How many species do we actually need?

Only the envelope!

 $\sim 10^8 \text{ g cm}^{-3}$

$$\Delta r, \Delta m : N_{\text{celdas}} \ge 300$$

 $N_{\rm celdas} \times N_{\rm eqs} \approx 300 \times 400 = 1.2 \times 10^5 \, {\rm eqs}$

Only the envelope! $\sim 10^{8} \text{ g cm}^{-3}$ e crust. Δt $\Delta r, \Delta m : N_{\text{celdas}} \ge 300$ $N_{\rm celdas} \times N_{\rm eqs} \approx 300 \times 400 = 1.2 \times 10^5 \text{ eqs}$

Only the envelope!

 $\sim 10^{8} \text{ g cm}^{-3}$

SURFACE VISIBLE AFTER ACCRETION!

XTE J1701-462: Transient accretion of months

Figure 2. Total unabsorbed luminosity in the 0.5–10 keV band around the end of the outburst. The two lines are best-fit exponential decay curves for the three *Swift* observations, and the first three *Chandra* and *XMM-Newton* observations. The intersection of these curves defines the end time of the outburst, t₀.

Fridriksson et al, 2010ApJ...714..270F

SURFACE VISIBLE AFTER ACCRETION!

XTE [1701-462: Transient accretion of months

The intersection of these curves defines the end time of the outburst, to.

Fridriksson et al, 2010ApJ...714..270F

The shallow heating paradigm

Is there something missing?

Do we need to check the envelope again?

A "Hyperburst" in the MAXI J0556–332 Neutron Star: Evidence for a New Type of Thermonuclear Explosion

Dany Page¹⁽⁰⁾, Jeroen Homan²⁽⁰⁾, Martin Nava-Callejas¹⁽⁰⁾, Yuri Cavecchi¹⁽⁰⁾, Mikhail V. Beznogov^{1,3}⁽⁰⁾, Nathalie Degenaar⁴⁽⁰⁾, Rudy Wijnands⁴⁽⁰⁾, and Aastha S. Parikh⁴ ¹ Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad de México, CDMX 04510, Mexico; page@astro.unam.mx, ycavecchi@astro.unam.mx,

mnava@astro.unam.mx

² Eureka Scientific, Inc., 2452 Delmer Street, Oakland, CA 94602, USA; jeroenhoman@icloud.com ³ National Institute for Physics and Nuclear Engineering (IFIN-HH), RO-077125 Bucharest, Romania; mikhail.beznogov@nipne.ro ⁴ Anton Pannekoek Institute for Astronomy, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam, The Netherlands; dogenaar@uva.nl, r.a.d.wijnands@uva.nl

Received 2022 February 8; revised 2022 May 4; accepted 2022 May 20; published 2022 July 15

MONTE-CARLO MARKOV CHAIN SIMULATIONS (MCMC): FIND THE "BEST" PARAMETERS TO ADJUST OBSERVATIONS

APPARENTLY, SHALLOW HEATING MIGHT COME FROM THE ENVELOPE

Figure 9. Histograms of the distribution of the shallow heating strength, Q_{sh} and lower density, ρ_{sh} in scenario "C."

Do we need to check the envelope again?

A "Hyperburst" in the MAXI J0556–332 Neutron Star: Evidence for a New Type of Thermonuclear Explosion

Dany Page¹⁽⁰⁾, Jeroen Homan²⁽⁰⁾, Martin Nava-Callejas¹⁽⁰⁾, Yuri Cavecchi¹⁽⁰⁾, Mikhail V. Beznogov^{1,3}⁽⁰⁾, Nathalie Degenaar⁴⁽⁰⁾, Rudy Wijnands⁴⁽⁰⁾, and Aastha S. Parikh⁴

¹ Instituto de Astronomía, Universidad Nacional Autónoma de México, Ciudad de México, CDMX 04510, Mexico; page@astro.unam.mx, ycavecchi@astro.unam.mx,

mnava@astro.unam.mx

² Eureka Scientific, Inc., 2452 Delmer Street, Oakland, CA 94602, USA; jeroenhoman@icloud.com ³ National Institute for Physics and Nuclear Engineering (IFIN-HH), RO-077125 Bucharest, Romania; mikhail.beznogov@nipne.ro ⁴ Anton Pannekoek Institute for Astroromy, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam, The Netherlands; degenaar@uva.nl, r.a.d.wijnands@uva.nl

Received 2022 February 8; revised 2022 May 4; accepted 2022 May 20; published 2022 July 15

MAXI J0556-332: Transient accretion of months

NO BURSTS:

 $T_b(T_{\text{eff}}) \& L_b(T_{\text{eff}})$?

Work in progress

EXAMINE TIME-INDEPENDENT ENVELOPES AT HIGH ACCRETION RATES

- CONSTRUCTION OF A NUMERICAL CODE WITH
 380 SPECIES
- arXiv:2403.13994

UNDERSTAND AND MODEL THERMONUCLEAR EXPLOSIONS

- MESA STELLAR EVOLUTION CODE
- OWN'S CODE OUTPUT AS INITIAL CONDITIONS
- DO ENVELOPES WITH NEGATIVE LUMINOSITY AT BASE MAKE SENSE?

Figure 3. Envelope module at $M^{m} = M_{BM}$ (left parada) and $5M_{BM}$ (right parada) as intercline of μ and the upper part indicators the corresponding column depth μ and time specifi by the accreted matter since is started in formers the matrice start surface. Parada (ϕ) and (μ) temperature, parada (b) must location of solution light models parada (μ) and (μ)) more fraction of solution barries to the matrix of the matrix of the matrix of the solution of μ and (μ) more fraction of solution barries of solutions of solutions (b) and (μ)) more fraction of solution barries of solutions of solutions (b) and (μ)) more fraction of solutions of solutions of solutions (b) and (μ)) more fraction of solutions of solutions of solutions (b) and (μ) more fraction of solutions (b) and (b) more fraction (b) more fraction of solutions (b) and (μ) more fraction (b) more fraction (b) and (b) more fraction (b) more

Greek label at the top of panel (d) and (d') indicate specific positions of events discussed in the text.

 (p, γ) and $(\beta^+ \nu_e)$ contributions from $A \ge 10$ amounts for ~ 3.27 and ~ 3.74 MeV per nucleon respectively, i.e. the huminosity from nuclear reactions is ≈ 6 MeV per nucleon, similar to what is usually obtained via CNO burning at lower neutrino rates. The scenario is alightly different at Merger for the same individual contributions, we now have ~ 2.21 and ~ 4.02 respectively, i.e. weak decays are slightly more energitic since we have more metal abundances at $3\dot{M}_{\rm HeI}$ than at $M_{\rm BM}$ (e.g. Fig. 1). However, the not released energy is still ≈ 4 MeV per nucleon.

4.2 Variations on the accreted amount of H

The comparison of models at $\hat{M}_{0.04}$ excited out on Fig. 4 confirms that indicates and holizon abundances use the critical ingredients in the synthesis of A > 40 metals with the rypercess. In order to explore the actual ingract of the mass fractions of ⁴H and ⁴He in the accreted matter composition, we performed a series of simulations varying the individual mass fractions of H and ⁴He in the accreted matter composition, we performed a series of simulations varying the individual mass fractions of H and He, X₀ and X₁₀, respectively, while retaining their sum X₀+X₁₀, constant and equal to its value at Solar composition, i.e. to 0.98. For all models, we employed the same M, K as in Subsection 4.1 but, instead of fixing T₀, we required all our models to have the same T₀ in order to have a fair comparison on the thermoscience rescation ratios.

Stationary accreted neutron star envelopes 7

Work in progress

ENERGY TOWARDS THE INTERIOR OF THE STAR?

- THERE ARE STATIONARY STATES WITH THIS CONDITION
- MESA: THEY ARE VIABLE
- COULD THEY BE RELATED TO THE SHALLOW HEATING PARADIGM?

FINAL REFLECTIONS

Figura: "La libertad, Sancho, es uno de los más preciosos dones [...] con ella no pueden igualarse los tesoros que encierra la tierra[...]" - Miguel de Cervantes Saavedra

Figura: ardevaaS setnavreC ed leugiM -"arreit al arreicne euq soroset sol esralaugi nedeup on alle noc [...] senod sosoicerp sàm sol ed onu se, ohcnaS, datrebil aL"