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e Light nuclei might be present in both Core-Collapse Supernova and
Binary Neutron Star Mergers

e Their presence influences the dynamics of these astrophysical events

e Accounting for in-medium modifications to the light clusters is
essential to determine their correct abundances
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e In Relativistic Mean-Field Theory, the interactions are mediated via
the exchange of virtual mesons:
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Relativistic Nuclear Field Theory

e In Relativistic Mean-Field Theory, the interactions are mediated via
the exchange of virtual mesons:

o, w, p (1)
e The Lagrangian density for matter made of protons, neutrons and
light clusters is:

L= L+ > Lm+ > L (2)

b=n,p m=o,w,p i=2H,3H,
3He,*He

e The Lagrangian density for the nucleons is:

Ly = Wy(x) [in. Dy —my] Uy(x) (3)
ZDg = 0" — gwbwu - gpbfl; : p_ﬂ (4)
mz = Mp — GJob0o (5)

e Calibrated to experimental nuclear parameters (e.g. FSU)
3/15



e Light clusters can be included as point-like independent
quasi-particles, in the same way as nucleons, taking into account their
corresponding spins

L; = V;[y,iD!'— M]¥;, i =°*H,*He (6)
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e Light clusters (i = 2H, 3H, *He, *He) will have their own
cluster-meson couplings:

Joi = TsAigoN (9)
Juwi = Aigun (10)
9pi = JpN (1 1)
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e Light clusters (i = 2H, 3H, *He, *He) will have their own
cluster-meson couplings:

Joi = TsAigoN (9)
Juwi = Aigun (10)
9pi = JpN (1 1)

o 25(p,T) is a way of accounting for in-medium modification of the
clusters self-energies
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INDRA Heavy-Ion Collisions

Projectile-target central collision

I 136,124 X 01 124,112Gpy (32MeV /nucleon) I

e Only central collisions selected (most ! I ' I‘

violent)

Projectile-target central collision

Angular selection : mid-velocity products
Credits: Alex Rebillard-Soulié
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INDRA Heavy-Ion Collisions

Projectile-target central collision

I 136,124 X 01 124,112Gpy (32MeV /nucleon) I

i

e Only central collisions selected (most
violent)

e Particles emitted from three main Projectile-target central collision

sources: ‘ "® P
— Target remnant @ <9 P
— Projectile remnant ". e

s
— Mid-velocity products ,. ‘.,. .. Q .\
®

e Angular selection to reduce secondary

decays from other sources Angular selection : mid-velocity products

Credits: Alex Rebillard-Soulié
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INDRA Heavy-Ion Collisions

e Data sorted in bins of the average
Coulomb-corrected particle velocities vgyt
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INDRA Heavy-Ion Collisions

e Data sorted in bins of the average
Coulomb-corrected particle velocities vgyt

® Vgt 1S the velocity of the emerging
particle at the nuclear surface, prior to
Coulomb acceleration

® vgf correlated to the dynamics of the
expansion, and therefore to the effective

temperature of the source
[Qin et al. (2012)]

e Associate a statistical ensemble to each
Vsurf With corresponding particle mass
fractions (nucleons and light clusters)
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e T and p estimated considering an ideal
gas of clusters in the grand canonical en-
semble

[Bougault et al. (2020)]
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e With these estimated values for particle
densities, chemical equilibrium constants
(Kc) were calculated:
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e For p an in-medium correction to the
ideal gas was considered
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e With these estimated values for particle
densities, chemical equilibrium constants
(Kc) were calculated:

Pi

K C; 71\71‘ Z
Pn Pp

e 1 has been calibrated by roughly con-
sidering the values that best fit the data
visually
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e If in-medium effects are important, considering an ideal gas should
be a bad approximation
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Calibrating T,p,x; with mass fractions from HIC

e If in-medium effects are important, considering an ideal gas should
be a bad approximation

e Reanalysis of T', p, x5 avoiding the ideal gas assumption, and without
considering any a-priori values

e The statistical ensembles will be described using RMF theory

e For each system and vgy,s bin, we carry out an independent Bayesian
inference on the measured mass fractions (4N, = 52)

pi (Ol{waz}) = %ﬁg (waz}ild), 0=AT,p,zs(p,T)}  (12)
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Present Study
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e Temperature evolution similar to the ideal gas estimation

e Results compatible with a single density ~0.015 fm~3: chemical
freeze-out density at the surface of the emitting source (?)
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e 1 is temperature dependent
e Interaction weakens with T'

e 2,(T) compatible for all four
entrance channels

e Limited p range cannot provide
information on possible
dependence on p

Parameter  Unit Median lo 20
a MeV~2  —0.00203 +0.00003 =0.00006
b MeV~1  0.01477  £0.00047 +0.00093
c 0.90560  +0.0018  +0.00355

Table: Parameter estimates a, b, c with
1, 20 uncertainties for the quadratic fit
zs=al?4+bT +c¢
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e Above T' ~ 8 MeV abundances
are systematically lower than the
predictions of modified ideal gas

e Smaller x4 corresponds to weaker
cluster-o coupling, resulting in less
bound clusters and, consequently,
smaller abundances
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e Previously, T" and p were estimated considering an ideal gas of
clusters
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e Previously, T" and p were estimated considering an ideal gas of
clusters

e 2, was then estimated through chemical equilibrium constants

e In this work, a Bayesian inference was performed with a RMF model
using mass fractions to determine temperature, density and cluster
couplings

e T shows same increasing behaviour as before but the density turned
out to be constant: chemical freeze-out (?)

e 1, shows a dependence on T, weakening the clusters binding and
abundances
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e Repeat the analysis for different RMF nuclear models
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e Repeat the analysis for different RMF nuclear models

e Study different Heavy-Ion reaction mechanisms and entrance
channels to explore a wider range of temperatures and densities

e Employ this z; parameterization for general purpose EoS

Thank you!
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