General Relativistic Simulations of NS-NS and NS-BH Mergers

Bruno Giacomazzo www.brunogiacomazzo.org

NS Binary Formation

Several possible formation channels

and BH-BH binaries

envelope phase

Belczynski et al 2018 https://ui.adsabs.harvard.edu/abs/2018A%26A...615A..91B/abstract

0.0

0.0

0.96

- Requires two stars with masses between \sim 8 and \sim 20 M $_{\odot}$
- System needs to survive both SN explosions and common

Similar evolution (different progenitors) will lead to NS-BH

Binary Mergers Neutron Star

STABLE NS + Torus

Kawamura et al 2016 Movie by W. Kastaun

$t = 0.0 \, \text{ms}$

BH-BH merger signal

Figure 1 from Frank Ohme 2012 Class. Quantum Grav. 29 124002

Inspiral Merger post-Newtonian (PN) theory no analyt. model Effective-one-body (EOB)

in NS-NS we have a new phase between merger and ringdown

Numerical Relativity (NR)

GWs from Binary Neutron Stars

Matter Effects on BNS GW signals

7

Tidal Deformability

For a recent review, see Dietrich, Hinderer & Samajdar 2021 https://ui.adsabs.harvard.edu/abs/2021GReGr..53...27D/abstract

non spinning NS in a binary

companion

Newtonian Theory:

- external quadrupolar tidal field $\mathcal{E}_{ij} = \frac{\partial^2 \Phi_{ext}}{\partial x^i \partial x^j}$
- induced quadrupole moment $Q_{ij} = \int \delta \rho(\mathbf{x}) \left(x_i x_j \frac{1}{3} r^2 \delta_{ij} \right) d^3 x$
- the **dimensionless Love number** k_2 is then introduced by $Q_{ij} = -\frac{2}{2C}k_2R^5\mathcal{E}_{ij}$ •
- in general, it needs to be computed numerically \bullet
- important to note that for a rigid body $k_2 = 0$

General Relativity:

An important quantity that can be measured is the dimensionless tidal • deformability:

$$\Lambda = \frac{2}{3}k_2 \left[\left(\frac{c^2}{G} \right) \left(\frac{R}{m} \right) \right]^5$$

In BNS systems one can more easily extract a combination of the tidal deformabilities ulletof the two NSs:

$$\widetilde{\Lambda} = \frac{16}{13} \frac{(m_1 + 12m_2)m_1^4 \Lambda_1 + (m_2 + 12m_2)m_1^4 \Lambda_1}{(m_1 + m_2)^5}$$

9

MATTER EFFECTS ON BNS GWS

(Read et al 2013, PRD 88, 044042)

(see also Bernuzzi et al 2014, Dietrich et al 2017).

GWs in the INSPIRAL (Recap)

- Dominant Parameters:
 - Masses and Mass Ratios
 - Equation of State (Tidal Deformability)
- Minor corrections (maybe):
 - Spin (only relevant if $\chi > 0.05$). Fastest spinning NS observed in an NS-NS system (PSR J0737-3039A) has $\chi \sim 0.02$ (P $\sim 22.7 ms$).
 - Eccentricity. This is relevant only for BNS systems formed via dynamical capture in star clusters and globular clusters.

POST-MERGER GW SIGNAL

GW: EOS Effects on the Post-Merger Phase

Bauswein & Janka 2012

For smaller NS masses, a longlived NS may be formed

EOS

High sensitivities at f>~1Khz required for post-merge signal!

Bauswein & Janka 2012, Hotokezaka et al 2013: frequency peak in GWs emitted after merger can constrain

EOS identical at "low" (inspiral) densities, but different at post-merger densities (phase transition effects).

GW: EOS Effects on the Post-Merger Phase Same post-merger frequencies. Difficult to distinguish between the two, unless collapse to BH is detected.

Effects are more evident in post-merger luminosities and phase evolution (see also Bernuzzi et al 2016).

Phase transitions in the post-merger

A phase transition to a deconfined-quark-matter core affects significantly the postmerger GW peak.

Thermal Effects

Toolkit infrastructure).

detectors.

Fields et al 2023

- GRHD simulations of 3 different EOSs with different specific heat capacity and including neutrino emission.
- Used the WhiskyTHC code (based on the Einstein

- Increasing the specific heat appears to soften the equation of state and to produce a more rapidly rotating and compact remnant with lower temperatures.
- This effect could be measured by next generation GW
- (see also Raithel et al 2021, Raithel & Paschalidis 2023)

Thermal Effects

1.3-1.3 *M*_☉ Fully tabulated EOS VS Cold EOS + γ law ($\Gamma_{th} = 1.8$) Simulations done with the

Einstein Toolkit (IllinoisGRMHD)

Villa-Ortega et al 2023, arXiv:2310.20378

Thermal Effects

HShen

DD2

Villa-Ortega et al 2023, arXiv:2310.20378

instability which produces a series of vortices.

the turbulent fluid ($B \sim 10^{16}$ G).

Magnetic field effects on GWs

Evolved "low-mass" BNS with high magnetic fields. Difference in the post-merger peak of less than ~100 Hz.

Ciolfi et al 2017

GWs in the POST-MERGER (Recap)

- Dominant Parameters:
 - Equation of State (high density, high temperature, possible phase transition)
- Minor corrections (maybe):
 - Magnetic field. Even if amplified up to $\sim 10^{16}$ G it does not seem to affect post-merger GW frequency. It may dump down the amplitude of the signal though making it more difficult to detect.

NS-BH MERGERS

BH-NS: Classification of GWs

type I: NS disrupted outside ISCO. Only inspiral.

type II: no disruption. **type III:** mass transfer GWs very similar to BBH ISCO. Both near composed by inspiral and and merger inspiral, merger and are present in the ringdown. GWs.

Classification depends on mass-ratio, BH spin, and NS compactness

http://research.physics.illinois.edu/cta/movies/cbm/bhns.html

GW FROM BH-NS (NO SPIN)

Q=1)=3

Difficult to detect difference with BBH if low spin and high Q. Note how when increasing Q the frequency cutoff gets close to the one for BBH.

GW from BH-NS: role of BH spin

C: Q=3, a=-0.5 A: Q=3, a=0 B: Q=3, a=0.75

Ringdown signal gets smaller with higher BH spin because of larger disk formation.

Lackey EOS, BH masses and spins

with **BBH** GWs

NS-BH: matter effects

- performed et al 2013 134 simulations of NS-BH mergers with different
- Higher Q and small spin reduce difference

NS-BH: EOS effects

a=0.75

NS compactness influence the GW frequency cutoff.

a=0.5

Some Review Articles

- Shibata & Taniguchi 2011 https://link.springer.com/article/10.12942/lrr-2011-6
- Faber & Rasio 2012 https://link.springer.com/article/10.12942/lrr-2012-8
- Paschalidis 2017 https://ui.adsabs.harvard.edu/abs/2017CQGra..34h4002P/abstract
- The Physics and Astrophysics of Neutron Stars (2018) https://link.springer.com/book/10.1007/978-3-319-97616-7
- Dietrich, Hinderer & Samajdar 2021 https://ui.adsabs.harvard.edu/abs/2021GReGr..53...27D/abstract
- Foucart 2020 https://www.frontiersin.org/articles/10.3389/fspas.2020.00046/full
- Ciolfi 2020 https://www.frontiersin.org/articles/10.3389/fspas.2020.00027/full

Waveform Catalogues

- CoRe database: http://www.computational-relativity.org/gwdb/
- SACRA Gravitational Waveform Data Bank: https://www2.yukawa.kyoto-u.ac.jp/~nr kyoto/SACRA PUB/catalog.html
- Riccardo Ciolfi's BNS GW database: https://bitbucket.org/ciolfir/bns-waveforms/src/master/
- SXS Gravitational Waveform Database: https://data.black-holes.org/waveforms/index.html