General Relativistic Simulations of NS-NS and NS-BH Mergers

Bruno Giacomazzo www.brunogiacomazzo.org

NS Binary Formation

- Several possible formation channels
- Requires two stars with masses between ~8 and ~20 M \odot
- System needs to survive both SN explosions and common

Similar evolution (different progenitors) will lead to NS-BH

envelope phase and BH-BH binaries

Belczynski et al 2018

 0.0

 0.0

0.96

<https://ui.adsabs.harvard.edu/abs/2018A%26A...615A..91B/abstract>

Binary Mergers Neutron Star Binary Mergers Neutron Star

STABLE NS + Torus

BH + TORUS

Kawamura et al 2016 Movie by W. Kastaun

$t = 0.0$ ms

BH-BH merger signal

Figure 1 from Frank Ohme 2012 Class. Quantum Grav. 29 124002

WWW Inspiral Merger post-Newtonian (PN) theory no analyt. model $Effective-one-body (EOB)$

in NS-NS we have a new phase between merger and ringdown

Numerical Relativity (NR)

GWs from Binary Neutron Stars

Matter Effects on BNS GW signals

7

Tidal Deformability

For a recent review, see Dietrich, Hinderer & Samajdar 2021 [https://ui.adsabs.harvard.edu/abs/2021GReGr..53...27D/abstract](https://ui.adsabs.harvard.edu/abs/2021GReGr..53...27D/abstract﻿)

non spinning NS in a binary

companion

Newtonian Theory:

- external quadrupolar tidal field $\varepsilon_{ij} =$ $\partial^2 \Phi_{ext}$ $\partial x^{\dot l}\partial x^{\dot j}$
- induced quadrupole moment $Q_{ij} = \int \delta \rho(x) (x_i x_j -$ 1 3
- the **dimensionless Love number** k_2 is then introduced by $Q_{ij} = -$
- in general, it needs to be computed numerically
- important to note that for a rigid body $k_2 = 0$

• In BNS systems one can more easily extract a combination of the tidal deformabilities of the two NSs:

General Relativity:

• An important quantity that can be measured is the **dimensionless tidal deformability**:

$$
\Lambda = \frac{2}{3} k_2 \left[\left(\frac{c^2}{G} \right) \left(\frac{R}{m} \right) \right]^5
$$

$$
\widetilde{\Lambda} = \frac{16(m_1 + 12m_2)m_1^4\Lambda_1 + (m_2 + 12m_1)m_2^4}{(m_1 + m_2)^5}
$$

 $r^2\delta_{ij}\Big)\,d^3x$ 2 3 $k_2 R^5 \mathcal{E}_{ij}$

 $\frac{4}{2}$ Λ₂

9

MATTER EFFECTS ON BNS GWS

(Read et al 2013, PRD 88, 044042)

GW frequency at merger is well correlated with tidal deformability and NS compactness (see also Bernuzzi et al 2014, Dietrich et al 2017).

GWs in the INSPIRAL (Recap)

- Dominant Parameters:
	- Masses and Mass Ratios
	- Equation of State (Tidal Deformability)
- Minor corrections (maybe):
	- Spin (only relevant if $\chi > 0.05$). Fastest spinning NS observed in an NS-NS system (PSR J0737-3039A) has $\chi \sim 0.02$ (P ~ 22.7 ms).
	- Eccentricity. This is relevant only for BNS systems formed via dynamical capture in star clusters and globular clusters.

POST-MERGER GW SIGNAL

Bauswein & Janka 2012, Hotokezaka et al 2013: frequency peak in GWs emitted after merger can constrain

EOS

High sensitivities at f>~1Khz required for post-merge signal!

For smaller NS masses, a longlived NS may be formed

Bauswein & Janka 2012

GW: EOS Effects on the Post-Merger Phase

EOS identical at "low" (inspiral) densities, but different at post-merger densities (phase transition effects).

Effects are more evident in post-merger luminosities and phase evolution (see also Bernuzzi et al 2016).

Same post-merger frequencies. Difficult to distinguish between the two, unless collapse to BH is detected. GW: EOS Effects on the Post-Merger Phase

Phase transitions in the post-merger

A phase transition to a deconfined-quark-matter core affects significantly the postmerger GW peak.

Thermal Effects

Fields et al 2023

- GRHD simulations of 3 different EOSs with different specific heat capacity and including neutrino emission.
- Used the WhiskyTHC code (based on the Einstein

Toolkit infrastructure).

- Increasing the specific heat appears to soften the equation of state and to produce a more rapidly rotating and compact remnant with lower temperatures.
- This effect could be measured by next generation GW
- (see also Raithel et al 2021, Raithel & Paschalidis 2023)

detectors.

Thermal Effects

Villa-Ortega et al 2023, arXiv:2310.20378

1.3-1.3 M_{\odot} Fully tabulated EOS vs Cold EOS + γ law ($\Gamma_{th} = 1.8$) Simulations done with the Einstein Toolkit (IllinoisGRMHD)

Thermal Effects

HShen DD2

Villa-Ortega et al 2023, arXiv:2310.20378

the turbulent fluid ($B \sim 10^{16}$ G).

Magnetic field effects on GWs

Ciolfi et al 2017

Evolved "low-mass" BNS with high magnetic fields. Difference in the post-merger peak of less than ~100 Hz.

GWs in the POST-MERGER (Recap)

- Dominant Parameters:
	- Equation of State (high density, high temperature, possible phase transition)
- Minor corrections (maybe):
	- Magnetic field. Even if amplified up to $\sim 10^{16}$ G it does not seem to affect post-merger GW frequency. It may dump down the amplitude of the signal though making it more difficult to detect.

NS-BH MERGERS

BH-NS: Classification of GWs

type I: NS disrupted outside ISCO. Only inspiral.

type II: no disruption. **type III:** mass transfer GWs very similar to BBH and composed inspiral, merger and ringdown. near ISCO. Both by inspiral and merger are present in the GWs.

Classification depends on mass-ratio, BH spin, and NS compactness

<http://research.physics.illinois.edu/cta/movies/cbm/bhns.html> 28

 $Q=1$ \equiv 3 D: Q=5

Difficult to detect difference with BBH if low spin and high Q. Note how when increasing Q the frequency cutoff gets close to the one for BBH.

GW FROM BH-NS (NO SPIN)

GW from BH-NS: role of BH spin

C: Q=3, a=-0.5 A: Q=3, a=0 B: Q=3, a=0.75

Ringdown signal gets smaller with higher BH spin because of larger disk formation.

NS-BH: matter effects

- Lackey et al 2013 performed 134 simulations of NS-BH mergers with different
- Higher Q and small spin reduce difference

EOS, BH masses and spins

with BBH GWs

NS-BH: EOS effects

 $a=0.75$

NS compactness influence the GW frequency cutoff.

Some Review Articles

- Shibata & Taniguchi 2011 <https://link.springer.com/article/10.12942/lrr-2011-6>
- Faber & Rasio 2012 <https://link.springer.com/article/10.12942/lrr-2012-8>
- Paschalidis 2017 <https://ui.adsabs.harvard.edu/abs/2017CQGra..34h4002P/abstract>
- The Physics and Astrophysics of Neutron Stars (2018) <https://link.springer.com/book/10.1007/978-3-319-97616-7>
- Dietrich, Hinderer & Samajdar 2021 <https://ui.adsabs.harvard.edu/abs/2021GReGr..53...27D/abstract>
- Foucart 2020 <https://www.frontiersin.org/articles/10.3389/fspas.2020.00046/full>
- Ciolfi 2020 <https://www.frontiersin.org/articles/10.3389/fspas.2020.00027/full> 33

Waveform Catalogues

- CoRe database: <http://www.computational-relativity.org/gwdb/>
- SACRA Gravitational Waveform Data Bank: https://www2.yukawa.kyoto-u.ac.jp/~nr_kyoto/SACRA_PUB/catalog.html
- Riccardo Ciolfi's BNS GW database: <https://bitbucket.org/ciolfir/bns-waveforms/src/master/>
- SXS Gravitational Waveform Database: <https://data.black-holes.org/waveforms/index.html>