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General Relativity and Astrophysics

* Binary Black Hole Mergers

* Binary Neutron Star Mergers

* Neutron Star — Black Hole Mergers
* Supernovae

* Accretion Disks

* Cosmology

Kawamura et al 2016

In all these scenarios general relativity plays a fundamental role.
Almost all scenarios require numerical solutions -> numerical relativity



APPLICATIONS

GOLD eral.
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Solving Einstein's Equations
on the Computer

Thomas W. Baumgarte
Stuart L Shapiro

Useful Textbooks
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History of Numerical Relativity
(see also https://link.springer.com/article/10.1007/lrr-2015-1)

¢1962 Arnowitt, Deser and Misner (ADM) 3+1 formulation

1964 Hahn and Lindquist first attempt at head-on collision of wormholes

1966 May and White first 1D GR simulation of collapse to BH

¢1975 Smarr and Eppley first head-on collision of BH in axisymmetry

¢1985 Stark and Piran extract GWs from a simulation of rotating collapse to a BH in NR.
©1992 Bona and Masso “1+log” slicing (gauge) condition

¢1994 “Binary Black Hole Grand Challenge Project” is launched in the USA

©1995-1998 BSSN formulation

¢1996 Brigmann mesh refinement simulation of BHs

©1997 Cactus 1.0 is released



History of Numerical Relativity
(see also https://link.springer.com/article/10.1007/lrr-2015-1)

¢2000 Brandt et al. simulate the first grazing collisions of BHs using a revised version of
the Grand Challenge Alliance code

¢2000 Shibata and Uryu first NS-NS merger simulation in GR

¢2003 Schnetter et al “Carpet” AMR driver for Cactus

¢2005 Pretorius first simulation of BH-BH inspiral and merger

¢2006 Shibata and Uryu first NS-BH merger simulation

¢2008 Anderson et al first GRMHD simulation of an NS-NS merger

¢2010 Chawla et al first GRMHD simulation of an NS-BH merger

¢2010 The first release (code name "Bohr") of the Einstein Toolkit is announced



Einstein Equations

Notation:
We assume G=c=1, metric signature (-,+,+,+), u € [0,3]

G,y = 8mT),
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Einstein Equations

Notation:
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Einstein Equations

Notation:
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Einstein Equations

Notation:
We assume G=c=1, metric signature (-,+,+,+), u € [0,3]

1
GMV — R,LLI/ — §g,u’/R — 87TTIW/

R — Rﬁ Ricci scalar
R/’LV — RZPV Ricci tensor

o _ o o o 1T o T :
RMPV — 8PF,ul/ — ayl“up + FT,OF,uI/ — FTI/P,up Riemann tensor

[ =

g (augm + OpGur — Tgup)

- 1
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Types of PDEs

* A0Z P + 2B0:0,¢ + CO5dp = p(§,1, p,0:9, 0, )

* A, B, and C are real and do not vanish simultaneously
« AC — B? > 0 - Elliptic

* AC — B? = 0 - Parabolic

« AC — B* < 0 - Hyperbolic



Types of PDEs

Examples

* Elliptic: 0y ¢ + d5¢ = p (Poisson’s equation)

e Parabolic: d,¢p — kdZ¢ = 0 (Heat diffusion equation)
* Hyperbolic: 07¢ — c?0Z¢ = 0 (wave equation)

* Both parabolic and hyperbolic eqgs constitute Initial Value Problems (IVP)
e Elliptic egs constitute Boundary Value Problems (BVP)

A A
t Q space of relevant V4
\\ solution with initial data L/’
IVP ’ BVP
\ s dQ d()
dQn ’
\

¢ . .
L X X

1



General Solution
¢(x,t) = glx + ct) + h(x — ct)

Wave Equation

0fp —c?05¢p =0

k — _at¢
l=0,0
0=k

J 9,k +c%9,l=0
0.l + 0.k =0

——




Wave Equation

* In a more compact notation
Jeru+A-d,u=3S

where
*u = (¢, k, ) is the solution vector
*S = (—k,0,0) is the source vector

O 0 O
«A=[0 0 c? ]isthe velocity matrix
0O 1 O



Wave Equation

* A admits 3 eigenvalues (¢, —c, 0) and these correspond to the characteristic
speeds

0O 0 O
* A can be diagonalized into D = (O c 0 ) via a matrix A such that
0 0 -—c

A1AA=D

* Let’s apply A to our equation: d;u+A-d,u =S
A1ou+A14A- AN 1o, u=A"1sS

ow+D-0,w=A1Swherew=A"1u

e and these are essentially 3 advection equations, including one with a solution
propagating toward the right and one toward the left at speed c.



Wave Equation

We could have obtained the diagonalized version directly by using these variables:
0fdp —c?0xp =0

wy = ¢
Wy = (0 — €0y
w3 = (0¢ + c0,)

dewy = (W, +ws)/2
dew, + cd,,w, =0
0tW3 — CaxW3 = O



Notion of Hyperbolicity

* Hyperbolic PDEs can be writtenasd;,u+A-d,u =S

* In more than 1 spatial dimension we have:
Jju+A'-ou=S=S

e if u has n components each A* has nxn components
* For simplicity we ignore the source vector (e.g., Einstein egs in vacuum)



Notion of Hyperbolicity

* Definition: We call a problem well-posed if we can define some norm
||... || so that the norm of the solution vector satisfies for all timest > 0

(e, 2)|| < ke [0, x")]

* Note: Not all hyperbolic systems guarantee this property.



Notion of Hyperbolicity

* Let’s consider an arbitrary unit vector n'

e P = Aini is the principal symbol or characteristic matrix of the system

We call the system:

« Strongly Hyperbolic if, for all unit vectors n!, P has real eigenvalues and
a complete set of eigenvectors

 Weakly Hyperbolic if P has real eigenvalues, but not a complete set of
eigenvectors



Notion of Hyperbolicity

* Theorem: Strongly hyperbolic systems are well-posed. Weakly
hyperbolic systems are not

(for the proof, see chapter 2 of Kreiss & Lorentz 1989, “Initial Boundary Value Problems and the Navier-Stokes Equations”)

* It is crucial to write hyperbolic PDEs in a strongly hyperbolic form.

* Note: from a numerical point of view, well-posedness is a necessary,
but not sufficient condition. Well-posed problems can indeed have
exponentially growing modes and these may crash a numerical
simulation.

22



Numerical Relativity:
3+1 Formulation

Bruno Giacomazzo
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https://arxiv.org/abs/gr-qc/0703035

Space-

ime Foliation

n, = —av,t =(—a,0,0,0)

e (58
a a

Yuv = Guv + n,n,

Yy = gtV + ntnV

th = an® + pH#

gt =(0,5)

24


https://arxiv.org/abs/gr-qc/0703035

Spatial and Time Projections

- Spatial Projection Operator: ! = g%y, = g**(ggy + Ngny) =

=g + n¥n, = 8 + n¥n,

* Time Projection Operator: N# = —nkn,,



Spatial and Time Projections

* The two projectors are orthogonal to each other, indeed
YEN, = (6% + nn,)(—n*n,) = —n%n, + n*n, = 0

* Therefore a generic 4-vector U can be decomposed as

=y, UV + N, U”
spatial part time part

* The same can be done with any tensor



he metric in the 3+1 form

[+061

https://arxiv.org/abs/gr-qc/0703035

< N o N
\ EERYE =
= — *\'- R BN
% N\ N
{

Xt = const.

ds? = g, dxtdx’ = —a?dt? + y;;(dx" + p*dt)(dx’ + B/ dt)



Choice of Foliation: geodesic slicing

The simplest choice could be to just
set the lapse to be constant (@ = 1)
and the shift to zero.




Choice of Foliation:

singularity-avoding slicing

Better choices use evolution
equations for lapse and shift such
that the singularity can be avoided.




Numerical Relativity:
ADM Formulation
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ADM formulation

1
G =Ry — Egm,R = 8mTy,
We assume to know T, (later we will see how to compute it).

We use the 3+1 formulation to get a set of PDEs following what done
by Arnowitt, Deser & Misner (1962).



ADM Equations

In the 3+1 formulation the metric is written as:

ds? = gy, dxtdx¥ = —a?dt? + y;;(dxt + Btdt)(dx’ + pldt)
And a and B! can be chosen freely.

So to get g, we “only” need y;;.

As in the wave equation, to reduce the time derivative to first order we

introduce a new variable, the “extrinsic curvature”
1

1
Kl] = _ELn]/l] _z(at o Lﬁ)yij



ADM Equations

6‘tyij — —ZCZKij + Dlﬁ] + D],Bl
atKij = _DiDja + (,BkaKij + Kiij:Bk T Kiji'Bk) T

C(( (B)RU + KKU — ZKikI(jk) + 47Ta[yl](5 — E) — ZSU]

3R + K2 — K;;KY = 16nE

Dj(Kij — yin) = 871S!

Suwv = Vi Volos S, = —vun'Tey S= S[f E=n°n"T,;

plus a (free) choice for the lapse function a and the shift vector 8

ds? = —a?dt? + y;;(dxt + g'dt)(dx’ + p/dt)



Numerical Relativity:
BSSN Formulation
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Conformal Traceless Formulation
(Nakamura et al 1987, Shibata & Nakamura 1995, Baumgarte & Shapiro 1999)

—4¢

* Conformal transformation: y;; = e *®y;;

P = %ln (%) so that y = n =1 (in cartesian coordinates)

1
* Trace-Free Extrinsic Curvature 4;; = K;; — —yl-jK

» Conformal transformation: 4;; = e‘4¢A Al = 4P Alj

* Note: Al] Al = AijAl]

l]'



BSSN Equations Ky = ™04+ 3vk

vij = %7,

fi

0tYij j j

0:K;j

. o e . 2, . ..
atF‘ = —2A”6ja + 20(( jlkAk] — §V”61K — 871')7”5]' + 6A”6]¢)

C e .2 .. 1. : , _
+,316jF‘ — F]ajﬁl + §Flaj’81 + 51711616],'3] + Vl]ajal,gl
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Numerical Relativity:
Gauge Conditions
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Choosing the right slicing condition

. If singularities are present, these should be avoided
(“singularity-avoiding slicing conditions”)

If coordinate distortions take place, these should be counteracted

. The gauge conditions should not be computationally expensive



Hyperbolic K-Driver Slicing Condition

(8. — B'0;)a = —f(@)a® (K — Ko)

* f(a) =1 — harmonic slicing condition

* f(a) = % — “1+log” slicing condition

* Most used choice f(a) = 2



Gamma-Driver Shift Condition

. . .3 .
08— BI0;B =2 B’

0.B' — B/0;B' = 9, ' — p19,I" — nB"

typical choice isn = ﬁ



Computing GWSs in Simulations



Spin-Weighted Spherical Harmonics

* GWs are usually decomposed in their different “modes”

o0 l
h(E2) = hy —ihe= ) > him(67) CYim (0, )

[=2 m=—1

* Where . Y;,,,(8, @) are the spin-weighted spherical harmonics (s=0
corresponds to the “standard” spherical harmonics)

* h,q is for example the dominant mode for an axisymmetric collapse

* h,, is the dominant one for a typical inspiral signal



Moncrief Formalism

* Gauge invariant wavefunctions Q;;, and Q. are computed on
spherical surfaces (see thorn Extract in the Einstein Toolkit,
https://ui.adsabs.harvard.edu/abs/2012CQGra..29k5001L)

* It assumes the background metric to be Schwarzschild

* One can then compute the GW signal:
h=h, —ihy

o l
_1Z
ﬁr:z:

l

t
(Qﬁn - if Qim(t) dt') (-2)Yim (0, @)

m=-—1
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https://ui.adsabs.harvard.edu/abs/2012CQGra..29k5001L

Weyl Scalar

* A more accurate and general method uses the Weyl scalar W, (see thorn

Weyl|Scal4 in the Einstein Toolkit):

o K

L114_ = Rijklnlﬁlfnkﬁll + ZROjkl (non_l]n l

m! — mn/nkm!)

+Rgjor (n°mI n®m! + mOn/mon! — 2nm/ mOnt)

where [# = 5 (u“ + 7)), nH = (u“ — ), mt = — (0% + ip*), ut is the

i
NG
unit normal to the Ilypersurface, and

7 =1{0,x'}, * = {0,—y, x, 0}, 0% = {0,\/¥ y *erimp'r™}



Weyl Scalar

* One can then compute the GW signal:

t t’!
h=h+—ihx=—f dt’f Y, dt"

* This integration is usually done in Fourier space for more accurate results

(see Reisswig & Pollney 2011, https://ui.adsabs.harvard.edu/abs/2011CQGra..28s5015R)

* The Python Kuibit library already implements the necessary tools

45
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