DTP / TALENT 2024: Nuclear Theory For Astrophysics

Supernova Neutrinos

FRANCESCO CAPOZZI

Università degli Studi dell'Aquila

INTRODUCTION

Neutrino oscillation, production and detection

Neutral fermions. Only interact through weak interactions.

They come in three flavours: $\nu_{\alpha} = (\nu_{e}, \nu_{\mu}, \nu_{\tau})$

Neutral fermions. Only interact through weak interactions.

A 10 MeV neutrino has a mean free path of $6 \times 10^{11} \, \mathrm{km}$

Neutral fermions. Only interact through weak interactions.

$$\nu_{\alpha}$$

$$\sigma_{\bar{\nu}p,\nu n} \simeq 5 \times 10^{-44} \left(\frac{E_{\nu}}{\text{MeV}}\right)^2 \text{ cm}^2 \qquad \rho = 10^{11} \,\text{gr}\,\text{cm}^{-3}$$

A 10 MeV neutrino has a mean free path of O(10) km

Neutrino Mixing

A neutrino is produced in a flavour eigenstate.

Flavour eigenstates is a superposition of mass eigenstates $|\nu_{\alpha}\rangle = \sum U_{\alpha k}^* |\nu_k\rangle$

Each mass eigenstate has a different time evolution

Assuming two flavours oscillations have a simple expression

 $\theta = \text{``mixing angle''} \qquad \Delta m^2 = m_2^2 - m_1^2$ $P(\nu_\alpha \to \nu_\beta) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$

Assuming two flavours oscillations have a simple expression

 θ = "mixing angle" $\Delta m^2 = m_2^2 - m_1^2$

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

$$\frac{\Delta m^2 L}{4E} = 1.27 \left(\frac{\Delta m^2}{10^{-3} \,\mathrm{eV}^2}\right) \left(\frac{L}{10^3 \,\mathrm{km}}\right) \left(\frac{E}{\mathrm{GeV}}\right)^{-1}$$

Assuming two flavours oscillations have a simple expression

 $\theta =$ "mixing angle" $\Delta m^2 = m_2^2 - m_1^2$

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

$$\frac{\Delta m^2 L}{4E} = 1.27 \left(\frac{\Delta m^2}{10^{-3} \,\mathrm{eV}^2}\right) \left(\frac{L}{10^3 \,\mathrm{km}}\right) \left(\frac{E}{\mathrm{GeV}}\right)^{-1}$$

$\Delta m^2 = 2 \times 10^{-3} \,\mathrm{eV}^2 \implies L \sim 10 \,\mathrm{km} \,(E = 10 \,\mathrm{MeV})$

Assuming two flavours oscillations have a simple expression

 $\theta =$ "mixing angle" $\Delta m^2 = m_2^2 - m_1^2$

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

$$\frac{\Delta m^2 L}{4E} = 1.27 \left(\frac{\Delta m^2}{10^{-3} \,\mathrm{eV}^2}\right) \left(\frac{L}{10^3 \,\mathrm{km}}\right) \left(\frac{E}{\mathrm{GeV}}\right)^{-1}$$

$\Delta m^2 = 7 \times 10^{-5} \,\mathrm{eV}^2 \implies L \sim 300 \,\mathrm{km} \,(E = 10 \,\mathrm{MeV})$

Assuming two flavours oscillations have a simple expression

Assuming two flavours oscillations have a simple expression

 θ = "mixing angle" $\Delta m^2 = m_2^2 - m_1^2$ $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$ $P(\nu_{\alpha} \rightarrow \nu_{\beta})$ $\frac{L}{E} = \frac{2\pi}{\Delta m^2}$

L/E

In the standard three flavour scenario

 $\sin^2 \theta_{13} \simeq 0.02$ $\sin^2\theta_{23}\simeq 0.5$ $\sin^2\theta_{12}\simeq 0.3$ $|\Delta m_{31}^2| = |m_3^2 - m_1^2| \simeq 2 \times 10^{-3} \,\mathrm{eV}^2$ $\Delta m_{21}^2 = m_2^2 - m_1^2 \simeq 7 \times 10^{-5} \,\mathrm{eV}^2$

In the standard three flavour scenario

Propagation in matter is affected by a potential due to electrons

In terms of effective mixing angle in matter θ_M

$$\Delta m_M^2 = \sqrt{(\Delta m^2 \cos 2\theta - 2EV_e)^2 + (\Delta m^2 \sin 2\theta)^2}$$

$$\sin 2\theta_M = \frac{\Delta m^2 \sin 2\theta}{\Delta m_M^2}$$

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta_M \sin^2 \left(\frac{\Delta m_M^2 L}{4E}\right)$$

In terms of effective mixing angle in matter θ_M

$$\Delta m_M^2 = \sqrt{(\Delta m^2 \cos 2\theta - 2EV_e)^2 + (\Delta m^2 \sin 2\theta)^2}$$

$$\sin 2\theta_M = \frac{\Delta m^2 \sin 2\theta}{\Delta m_M^2}$$

MATTER DOMINATION

$$V_e \gg \frac{\Delta m^2}{2E} \cos 2\theta \implies \theta_M = \frac{\pi}{2}, \Delta m_M^2 = 2EV_e$$

In terms of effective mixing angle in matter θ_M

$$\Delta m_M^2 = \sqrt{(\Delta m^2 \cos 2\theta - 2EV_e)^2 + (\Delta m^2 \sin 2\theta)^2}$$

$$\sin 2\theta_M = \frac{\Delta m^2 \sin 2\theta}{\Delta m_M^2}$$

VACUUM

$$V_e \ll \frac{\Delta m^2}{2E} \cos 2\theta \implies \theta_M = \theta, \Delta m_M^2 = \Delta m^2$$

In terms of effective mixing angle in matter θ_M

$$\Delta m_M^2 = \sqrt{(\Delta m^2 \cos 2\theta - 2EV_e)^2 + (\Delta m^2 \sin 2\theta)^2}$$

$$\sin 2\theta_M = \frac{\Delta m^2 \sin 2\theta}{\Delta m_M^2}$$

RESONANCE

$$V_e = \frac{\Delta m^2}{2E} \cos 2\theta \implies \theta_M = \frac{\pi}{4}, \Delta m_M^2 = \Delta m^2 \sin 2\theta$$

Let us consider a 10 MeV ν_e produced in the core of the Sun

Let us consider a 10 MeV ν_e produced in the core of the Sun

 $\nu_{\rho} \simeq \nu_{\gamma}$

Let us consider a 10 MeV ν_e produced in the core of the Sun

Let us consider a 10 MeV ν_e produced in the core of the Sun

Let us consider a 10 MeV ν_e produced in the core of the Sun

$$|\nu_{2}\rangle = \sin\theta |\nu_{e}\rangle + \cos\theta |\nu_{\mu}\rangle$$
$$P(\nu_{e} \rightarrow \nu_{e}) = \left|\langle\nu_{e} |\nu_{2}\rangle\right|^{2} = \sin^{2}\theta$$

Let us consider a 10 MeV ν_e produced in a supernova

Normal Ordering

Let us consider a 10 MeV ν_e produced in a supernova

Inverted Ordering

Beta processes

 $e^{-} + (A, Z) \leftrightarrow (A, Z - 1) + \nu_{e}$ $(A, Z) \rightarrow (A, Z \pm 1) + e^{\mp} + \stackrel{(-)}{\nu_{e}}$ $e^{-} + p \leftrightarrow n + \nu_{e}$ $e^{+} + n \leftrightarrow p + \bar{\nu}_{e}$

Suppressed when matter is degenerate

Heavier leptons/hadron decays

$$\mu^{-} + p \leftrightarrow \nu_{\mu} + n$$

$$\mu^{+} + n \leftrightarrow \bar{\nu}_{\mu} + p$$
supernova core
$$\mu^{\pm} \rightarrow (\bar{\nu}_{\mu}) + e^{\pm} + (\bar{\nu}_{e})$$

$$\pi^{\pm} \rightarrow l_{\alpha}^{\pm} + \bar{\nu}_{\alpha}$$

$$K^{\pm} \rightarrow l_{\alpha}^{\pm} + \bar{\nu}_{\alpha}$$

"Thermal" pair production in a plasma (star / supernova)

 $N + N \leftrightarrow N + N + \nu + \overline{\nu}$ (nucleon bremsstrahlung)

 $e^{\pm} + (A, Z) \leftrightarrow e^{\pm} + (A, Z) + \nu + \overline{\nu} (e^{\pm} \text{ bremsstrahlung})$

 $\gamma + e^- \leftrightarrow e^- + \nu + \bar{\nu}$ (photoneutrinos)

 $e^- + e^+ \leftrightarrow \nu + \bar{\nu}$ (Pair annihilation)

 $\tilde{\gamma} \leftrightarrow \nu + \bar{\nu}$ (Plasmon decay)

Depending on the density and temperature of the medium one of these processes may dominate over the others

"Thermal" pair production in a plasma (star / supernova)

"Thermal" pair production in a plasma (star / supernova)

PAIR: require high T for creating e^+ . At high ρ , positron creation suppressed by degeneracy

"Thermal" pair production in a plasma (star / supernova)

Neutrino Detection Processes

Inverse beta decay. Sensitive only to $\bar{\nu}_e$

Neutrino Detection Processes

Inverse beta decay. Sensitive only to $\bar{\nu}_e$

Super-K (50 kton water)

Positrons can be detected using the Cherenkov light emitted in pure water (Super-K) or in ice (Ice-CUBE)
Inverse beta decay. Sensitive only to $\bar{\nu}_e$

JUNO (20 kton liquid scintillator)

Positrons can be detected using scintillation light

Elastic scattering on electrons. Sensitive to all flavours, but mostly to ν_e

Elastic scattering on electrons. Sensitive to all flavours, but mostly to ν_e

Charged current interaction on Argon. Sensitive only to ν_e

Two detectable signals: electron and the gamma ray that follows de-excitation of ${}^{40}K^*$. Electrons emitted isotropically.

Charged current interaction on Argon. Sensitive only to ν_e

DUNE (40 kton liquid argon)

Two detectable signals: electron and the gamma ray that follows de-excitation of ${}^{40}K^*$. Electrons emitted isotropically.

Elastic scattering on protons. Sensitive to all flavours.

Elastic scattering on protons. Sensitive to all flavours.

JUNO (20 kton liquid scintillator)

Protons induce scintillation, but quenching makes the signal weak. Only sensitive to high energy ν

Coherent elastic scattering on nuclei (CE ν NS). Sensitive to all flavours.

Coherent elastic scattering on nuclei (CE ν NS). Sensitive to all flavours.

Target: Csl

Target: cryogenic detector

Target: Liquid Xe (dark matter)

One detectable signal: nuclear recoil. Cross section $\propto A^2$

Water: Dominance of $\bar{\nu}_e + p \rightarrow e^+ + n$.

Argon: Dominance of $\nu_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^*$.

Akimov et al. [COHERENT], Science 357 (2017) no.6356, 1123-1126

Argon: Dominance of CE ν NS

Angle of scattering for electrons in the final states

$$\begin{split} \bar{\nu}_e + {}^A_Z \mathbf{X} &\to e^+ + {}^A_{Z-1} \mathbf{Y} \\ \nu_e + {}^A_Z \mathbf{X} &\to e^- + {}^A_{Z+1} \mathbf{Y} \\ \bar{\nu}_e + p &\to e^+ + n \end{split}$$

$$\nu$$
 \sim 10 MeV

Isotropic

Mostly forward

CORE-COLLAPSE SUPERNOVE

Brief recap Neutrino Emission Phases

What are supernovae?

When nuclear fuel ends, massive stars (> 8 M_{\odot}) start collapsing

The density in the core rapidly increases

What are supernovae?

The density reaches nuclear saturation $\rho \sim 10^{14}$ g/cm³

A shock wave is produced blowing up the star (Supernova)

What is the role of neutrinos?

 ν / $\bar{\nu}$ of all flavor carry away 99% of E_g in ~10 seconds

Neutrinos are messengers from the interior of the exploding star

What is the role of neutrinos?

The shock wave stalls after ~ few 10 ms

 $\star \nu_e + n \rightarrow e^- + p$

 $\star \bar{\nu}_e + p \rightarrow e^+ + n$

Neutrinos **MIGHT REVIVE** the shock through energy deposition

What is the role of neutrinos?

 ν -interactions: change Y_e , influence of nature of heavy nuclei

$$\nu_e + n \rightarrow e^- + p$$

$$\bar{\nu}_e + p \to e^+ + n$$

$$\nu_e + (A, Z) \rightarrow (A, Z+1) + e^-$$

$$\bar{\nu}_e + (A,Z) \rightarrow (A,Z-1) + e^+$$

ν play a role in defining the conditions for r-PROCESS

Janka, "Neutrino emission from supernovae", arXiv:1702.08713

- Mainly ν_e from e^- capture
- ν_e trapped behind shock
- ν_e burst when density is low
- $\nu\bar{\nu}$ in shock heated matter

Janka, "Neutrino emission from supernovae", arXiv:1702.08713

Janka, "Neutrino emission from supernovae", arXiv:1702.08713

- cooling -> luminosity decreases

 $\nu_{e}^{(-)}$ have stronger interactions. They decouple later.

Being in thermal equilibrium, neutrinos have ~ Fermi-Dirac energy spectrum

Janka, "Neutrino emission from supernovae", arXiv:1702.08713

NEUTRONIZATION BURST

What can we learn?

Robustness of models

Comparison between L_{ν} changing some simulation details

In the neutronization burst L_{ν} has little dependence on simulation details

Robustness of models

Comparison between L_{ν} changing some simulation details

Kachelriess, Tomas, Buras, Janka, Marek, Rampp, Phys. Rev. D 71 (2005), 063003

In the neutronization burst $\langle E_{\nu} \rangle$ has little dependence on simulation details

Neutrino Mass Ordering

DUNE will be sensitive to ν_e through $\nu_e + {}^{40}{\rm Ar} \rightarrow e^- + {}^{40}{\rm K}^*$

 $P(\nu_e \rightarrow \nu_e, IO) \simeq \sin^2 \theta_{12} \simeq 0.3$

DUNE can identify the mass ordering using ν_{e} during the neutronization burst

Neutrino Mass

Neutrino time propagation is affected by neutrino mass

$$\Delta t_{\rm mass} \simeq \frac{D}{2c} \left(\frac{m_{\nu}}{E_{\nu}}\right)^2 \simeq 0.026 \, s \left(\frac{D}{10 \,\rm kpc}\right) \left(\frac{m_{\nu}}{1 \,\rm eV}\right)^2 \left(\frac{10 \,\rm MeV}{E_{\nu}}\right)^2$$

Neutrino Mass

Neutrino time propagation is affected by neutrino mass

DUNE can constrain neutrino mass up to $\sim 1 \text{ eV}$

Supernova Distance

 ν_e in neutronization burst is independent on simulation details

$$\Phi_{\nu} = \frac{\# \text{neutrinos}}{\text{area}} = \frac{E_{\text{grav}}}{\langle E_{\nu} \rangle 4\pi D^2}$$

$$N_{\rm events} = \frac{\Phi_{\nu}}{6} \sigma_{\nu-{\rm Ar}} N_{40}{\rm Ar}$$

$$D = \sqrt{\frac{E_{\rm grav}\sigma_{\nu-{\rm Ar}}N_{^{40}{\rm Ar}}}{24\pi\langle E_{\nu}\rangle}}$$

DUNE measures the supernova distance without astrophysical observations

Neutrino Timing For GW

Apart from neutrinos also gravitational waves can be observed

$$t_{\rm GW} = t_{\rm 1st\,\nu-evt} - \Delta t_{\rm mass} \pm t_{\rm btw\,det} - t_{\rm resp}$$

 $t_{1 \text{st} \nu - \text{evt}}$ = time of first detected neutrino event

 $t_{\text{btw det}} = \vec{d} \cdot \hat{n}, \vec{d}$ distance ν -GW detector, \hat{n} SN position t_{resp} = delay between 1st ν reaches Earth and 1st event

Neutrino Timing For GW

Apart from neutrinos also gravitational waves can be observed

$$t_{\rm GW} = t_{\rm 1st\,\nu-evt} - \Delta t_{\rm mass} \pm t_{\rm btw\,det} - t_{\rm resp}$$

Neutrinos provide timing information for GW detectors

ACCRETION PHASE

Current issues. What can we learn?

Shock revival from ν : does it work?

Successful explosions for low mass progenitors (< 10 M_{\odot})

Faster explosions in multi-D compared to 1D
Multi-D simulations allows convective / turbulent instabilities

Convective instabilities "help" neutrino heating and explosions

Less consistent picture for heavy progenitor masses

Example: s-quark contribution ν -N scattering induces explosion

Less consistent picture for heavy progenitor masses

Example: muon production in the core affects explosion

Shock revival from ν : does it work? Excess of $\bar{\nu}_{\mu}$ over ν_{μ} . $\langle E_{\bar{\nu}_{\mu}} \rangle > \langle E_{\nu_{\mu}} \rangle$.

 e^- degeneracy converted to μ^{\pm} rest mass. Faster collapse, higher temperature, more efficient ν —heating.

Less consistent picture for heavy progenitor masses

Example: fast rotation induced explosion

SASI: sloshing / spiraling motion of the stalled shock

SASI induces modulation of neutrino luminosity

SASI induces modulation of neutrino luminosity

Imprints of SASI are visible with Ice-CUBE or Hyper-K

SASI induces modulation of neutrino luminosity

Tamborra, Hanke, Muller, Janka, Raffelt, Phys. Rev. Lett. 111 (2013) no.12, 121104

Imprints of SASI are visible with Ice-CUBE or Hyper-K

SASI induces signatures in gravitational waves

Multi-messenger information from ν + GW

Lepton number is emitted asymmetrically (LESA)

Tamborra, et al., Astrophys. J.792 (2014) no.2, 96,

confirmed by O'Connor and Couch, Astrophys. J. 865 (2018) no.2, 81 Vartanyan, Burrows and Radice, MNRAS 489 (2019) 2, 2227

Angular dependence must be taken into account in observation

Explosion is not spherically symmetric

Tamborra, et al., Astrophys. J.792 (2014) no.2, 96,

confirmed by O'Connor and Couch, Astrophys. J. 865 (2018) no.2, 81 Vartanyan, Burrows and Radice, MNRAS 489 (2019) 2, 2227

Non-spherical Y_e induced by asymmetric convection

Dense environments: unique conditions for flavour conversions

$$\nu_{\alpha}(\overrightarrow{p}) \rightarrow \nu_{\beta}(\overrightarrow{p})$$

STANDARD OSCILLATIONS

- Scale: $\Delta m^2/2E \simeq 0.5 \,\mathrm{km}^{-1}$
- Requirements: $\Delta m^2, \theta \neq 0$
 - Lepton number violation

Dense environments: unique conditions for flavour conversions

$$\nu_{\alpha}(\overrightarrow{p}) \to \nu_{\beta}(\overrightarrow{p})$$

STANDARD OSCILLATIONS Sector A = 2/2E = 0.51

- Scale: $\Delta m^2/2E \simeq 0.5 \,\mathrm{km}^{-1}$
- Requirements: $\Delta m^2, \theta \neq 0$
 - Lepton number violation

$$\begin{split} \nu_e(\overrightarrow{p}) + \overline{\nu}_e(\overrightarrow{k}) &\to \nu_\mu(\overrightarrow{p}) + \overline{\nu}_\mu(\overrightarrow{k}) \\ \nu_e(\overrightarrow{p}) + \nu_\mu(\overrightarrow{k}) &\to \nu_\mu(\overrightarrow{p}) + \nu_e(\overrightarrow{k}) \end{split} -$$

COLLECTIVE EFFECTS

- Lepton number conserved - Requirements: high ν -density - Occur even when Δm^2 , $\theta = 0$ - Coherent effects: $O(G_F)$ - collective: same for different E_{ν}

Useful to work with density matrices instead of wave functions

$$(\partial_{t} + \mathbf{v} \cdot \partial_{\mathbf{r}}) \varrho_{\mathbf{p}} = -i[H_{\mathbf{p}}, \varrho_{\mathbf{p}}] + \mathscr{C}(\varrho_{\mathbf{p}})$$

$$\varrho_{ee}(\overrightarrow{p}) \quad \varrho_{e\mu}(\overrightarrow{p}) \quad \varrho_{e\tau}(\overrightarrow{p})$$

$$\varrho_{e\mu}(\overrightarrow{p}) \quad \varrho_{\mu\mu}(\overrightarrow{p}) \quad \varrho_{\mu\tau}(\overrightarrow{p})$$

$$\varrho_{e\tau}^{*}(\overrightarrow{p}) \quad \varrho_{\mu\tau}(\overrightarrow{p}) \quad \varrho_{\tau\tau}(\overrightarrow{p})$$

Diagonal elements: number of neutrinos with a given flavour. Off-diagonal: flavour coherence information.

Neglect standard oscillation effects in the hamiltonian

$$(\partial_t + \mathbf{v} \cdot \partial_{\mathbf{r}}) \rho_{\mathbf{p}} = -i[H_{\mathbf{p}}, \rho_{\mathbf{p}}] + \mathscr{C}(\rho_{\mathbf{p}})$$

$$H_{\mathbf{p}} = \sqrt{2}G_F \int \frac{d^3 p'}{(2\pi)^3} (1 - \mathbf{v} \cdot \mathbf{v}')(\varrho_{\mathbf{p}'} - \bar{\varrho}_{\mathbf{p}'})$$

Non linear equation. Solvable only with approximations!!!

Vacuum oscillation frequency $\omega = \Delta m^2 / (2E) \simeq 0.5 \text{ km}^{-1}$ $(E = 10 \text{ MeV}, \Delta m^2 = 2 \times 10^{-3} \text{ eV}^2)$ $\nu = \nu \text{ potential}$ $\mu = \sqrt{2}G_F N_\nu \simeq 1 \text{ cm}^{-1}$ $(N_\nu \simeq 10^{36} \text{ cm}^{-3})$

Vacuum oscillation frequency $\omega = \Delta m^2 / (2E) \simeq 0.5 \text{ km}^{-1}$ $(E = 10 \text{ MeV}, \Delta m^2 = 2 \times 10^{-3} \text{ eV}^2)$

$$\mu = \sqrt{2}G_F N_\nu \simeq 1 \text{ cm}^{-1}$$
$$(N_\nu \simeq 10^{36} \text{ cm}^{-3})$$

FAST CONVERSIONS

Time scale $\propto 1/\mu \simeq 10^{-9}$ s. Mixing independent!!!

SLOW CONVERSIONS

Time scale $\propto 1/\sqrt{\omega\mu} \gg 1/\mu$. Mixing dependent!!!

Well known MSW resonances happening in the outer layers

Dighe, Smirnov, 2000, Schirato, Fuller, 2002, Fogli, Lisi, Mirizzi, Montanino, 2002, ...

SLOW Collective effects may occur close the stalled shock

Hannestad, Raffelt, Sigl, Wong, 2006, Duan, Fuller, Carlson, Qian, 2006, many others, ...

Assume spherical symmetry, stationarity and homogeneity

Requirement: crossing in energy, inverted mass ordering

Relax homogeneity hypothesis.

Relax homogeneity hypothesis and temporal stationarity.

FAST conversions require an angular crossing

FAST conversions may occur in the post-shock region

Sawyer 2005, 2009, 2015, Chakraborty, Hansen, Izaguirre, Raffelt 2016, Dasgupta, Mirizzi, Sen 2017, ...

What is the outcome of fast flavour conversions?

Dependence on type of crossing. Flavour equilibration possible

Are supernovae simulations showing any sign of crossing?

Glas, Janka, Capozzi, Sen, Dasgupta, Mirizzi, Sigl, Phys. Rev. D 101 (2020) no.6, 063001

Generally, crossings are observed even beyond the decoupling region

Implementing FAST conversions in explosion simulations?

Very challenging numerically. Use an effective approach.

FAST conversions implemented with effective approach

Accelerated explosion for low progenitor masses. Further work is needed.

COOLING PHASE

Current issues. What can we learn?

Supernova direction

 $\nu - e^-$ scattering can be used to reconstruct SN direction

Dependence on Eos

Neutrino signal in the cooling phase strongly depends on EoS

Roberts, Shen, Cirigliano, Pons, Reddy, Woosley, Phys. Rev. Lett. 108 (2012), 061103

Experiments are capable of distinguishing between EoS

Impact on Nucleo-Synthesis

FAST conversions might affect nucleo-synthesis

FAST conversions have a mild influence

Impact on Nucleo-Synthesis

FAST conversions might affect nucleo-synthesis

Fujimoto, Nagakura, Mon. Not. Roy. Astron. Soc. 519 (2022) no.2, 2623-2629

FAST conversions have a mild influence

Black Hole Formation

Black hole formation suddenly stops neutrino emission

Depending on the formation time, a BH can be identified by u
Extra Cooling

Whatever exotic X particle coupled to SM ($m_X < 100$ MeV) can be produced in a supernova core

Emission of X particles represent an extra source of cooling apart from that coming from standard neutrino emission

Extra Cooling

Whatever exotic X particle coupled to SM ($m_X < 100$ MeV) can be produced in a supernova core

STANDARD THEORY: $E_{\text{tot},\nu} \simeq E_{\text{tot},\text{grav}} \simeq 3 \cdot 10^{53} \text{ erg in 10 s.}$ To not spoil expectations, X particles must carry less energy

Extra Cooling

Whatever exotic X particle coupled to SM ($m_X < 100$ MeV) can be produced in a supernova core

Analytical Criterion

 $M_{\rm PNS} = 1.5 M_{\odot}, t_{\rm cool} = 10 \, {\rm s} \implies \epsilon_X \simeq 10^{19} \, {\rm erg} \, {\rm g}^{-1} \, {\rm s}^{-1}$ (ϵ_X should be calculated for $\rho \simeq 10^{14} \, {\rm g} \, {\rm cm}^{-3}, T \simeq 30 \, {\rm MeV}$)

SN1987a

What have we learnt so far?

SN1987a: *ν***-data**

24 February 1987 in the Large Magellanic Cloud (51 kpc)

Fiorillo, Heinlein, Janka, Raffelt, Vitagliano, Bollig, Phys. Rev. D 108 (2023) no.8, 8

First and only neutrinos observed from a supernova

SN1987a: *ν***-data**

Observed e^{\pm} : either $\bar{\nu}_e + p \rightarrow e^+ + n \text{ or } \nu + e^- \rightarrow \nu + e^-$

Fiorillo, Heinlein, Janka, Raffelt, Vitagliano, Bollig, Phys. Rev. D 108 (2023) no.8, 8

Few (forward) events can be due to $\nu + e^- \rightarrow \nu + e^-$

SN1987a: analysis of \mathcal{V}-data We expect $\bar{\nu}_e$ to carry $E_{\text{tot},\bar{\nu}_e} = \frac{E_{\text{tot grav}}}{6 \text{ flavours}} \simeq \frac{3 \times 10^{53} \text{ erg}}{6} = 5 \times 10^{52} \text{ erg}$

Fiorillo, Heinlein, Janka, Raffelt, Vitagliano, Bollig, Phys. Rev. D 108 (2023) no.8, 8

Fit done assuming thermal spectrum with free $E_{\text{tot},\bar{\nu}_e}, \langle E_{\bar{\nu}_e} \rangle$. Consistent with expectation. Small tension among experiments

What if we do a fit using outputs from numerical simulations?

Kam-II SN 1987A data IMB SN 1987A data Kam-II SN 1987A data IMB SN 1987A data 14 1.0 IDSA 1-d GR1D 2-d Agile-Boltztran VERTEX 12 $t_{\rm cutoff} = 0.5 \ {\rm s}$ 3-d CHIMERA Zelmani 0.8 FLASH ALCAR Fornax Cumulative counts 10 0.6 8 6 0.4 4 0.2 2 0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0 0.2 0 10 20 30 50 60 10 20 30 40 50 60 40 $t_{\text{post-bounce}}$ [s] Neutrino energy [MeV] Neutrino energy [MeV] $t_{\text{post-bounce}}$ [s]

Li, Beacom, Roberts, Capozzi, Phys. Rev. D 109 (2024) no.8, 083025

Not all models provide a good fit, using $t_{\rm cutoff} \simeq 1 \, {\rm s}$

What if we do a fit using outputs from numerical simulations?

Li, Beacom, Roberts, Capozzi, Phys. Rev. D 109 (2024) no.8, 083025

Not all models provide a good fit, using $t_{\rm cutoff} \simeq 1 \, {\rm s}$

What if we do a fit using outputs from numerical simulations?

Better agreement for models with low remnant mass

What if we do a fit using outputs from numerical simulations?

Fiorillo, Heinlein, Janka, Raffelt, Vitagliano, Bollig, Phys. Rev. D 108 (2023) no.8, 8

Better agreement increasing $t_{\rm cutoff}$. Possible early time background events

SN1987a: new physics

Axion coupling to nucleons modifies neutrino signal

Excluded coupling $10^{-9} < g_a < 3 \times 10^{-7}$, for $m_a < 100 \,\mathrm{MeV}$

SN1987a: new physics Strong coupling could have induced events in Kamiokande II $a + {}^{16}O \rightarrow {}^{16}O^* \rightarrow {}^{16}O + \gamma$

Constraints from cooling compatible with old ones. Extension of constraints in the strong coupling regime

SN1987a: new physics

Heavy neutrinos can be produced inside a supernova

Constraint on mass-mixing obtained from usual criterium $\epsilon_{\rm v} \lesssim 10^{19} \, {\rm erg g}^{-1} \, {\rm s}^{-1}$

SN1987a: new physics

Heavy neutrinos can be produced inside a supernova

Carenza, Lucente, Mastrototaro, Mirizzi, Serpico, Phys. Rev. D 109 (2024) no.6, 063010

Heavy neutrinos can decay contributing to explosion energy. $E_{X,\text{decay}} \lesssim 10^{50} \text{ erg}$ Francesco Capozzi - Università degli Studi dell'Aquila 123

DIFFUSE SN- ν **BACKGROUND**

What is DSNB?

Local rate of supernovae is relatively low

A supernova is a relatively rare event locally

What is DSNB?

What if we look at all supernovae exploded so far?

DSNB: combination of neutrinos from past supernovae

How do we calculate the expected flux of DSNB on Earth?

$$\Phi_{\nu_{\beta}}(E) = \frac{c}{H_{0}} \int_{8M_{0}}^{125M_{0}} dM \int_{0}^{z_{\text{max}}} dz \frac{R_{\text{SN}}(z, M)}{\sqrt{\Omega_{M}(1+z)^{3} + \Omega_{\Lambda}}} f_{\text{CC-SN}} F_{\nu_{\beta},\text{CC-SN}}(E', M) + f_{\text{BH-SN}} F_{\nu_{\beta},\text{BH-SN}}(E', M) \Big]$$
fraction of supernovae
successfully exploding
time-integrated ν_{β} -energy
spectrum from a SN explosion

How do we calculate the expected flux of DSNB on Earth?

$$\Phi_{\nu_{\beta}}(E) = \frac{c}{H_0} \int_{8M_0}^{125M_0} dM \int_0^{z_{\text{max}}} dz \frac{R_{\text{SN}}(z, M)}{\sqrt{\Omega_M (1+z)^3 + \Omega_\Lambda}} \begin{bmatrix} f_{\text{CC-SN}} F_{\nu_{\beta}, \text{CC-SN}}(E', M) + f_{\text{BH-SN}} F_{\nu_{\beta}, \text{BH-SN}}(E', M) \end{bmatrix}$$
fraction of supernovae
going into black-hole
time-integrated ν_{β} -energy
spectrum from a failed SN

How do we calculate the expected flux of DSNB on Earth?

$$\Phi_{\nu_{\beta}}(E) = \frac{c}{H_{0}} \int_{8M_{0}}^{125M_{0}} dM \int_{0}^{z_{\text{max}}} dz \frac{R_{\text{SN}}(z,M)}{\sqrt{\Omega_{M}(1+z)^{3} + \Omega_{\Lambda}}} \left[f_{\text{CC-SN}}F_{\nu_{\beta},\text{CC-SN}}(E',M) + f_{\text{BH-SN}}F_{\nu_{\beta},\text{BH-SN}}(E',M) \right]$$
rate of supernovae as a function of redshift and progenitor mass

How do we calculate the expected flux of DSNB on Earth?

$$\begin{split} \Phi_{\nu_{\beta}}(E) &= \frac{c}{H_0} \int_{8M_0}^{125M_0} dM \int_0^{z_{\text{max}}} dz \frac{R_{\text{SN}}(z,M)}{\sqrt{\Omega_M(1+z)^3 + \Omega_\Lambda}} \left[f_{\text{CC-SN}} F_{\nu_{\beta},\text{CC-SN}}(E',M) + f_{\text{BH-SN}} F_{\nu_{\beta},\text{BH-SN}}(E',M) \right] \\ &= \exp(1 - \frac{1}{2} \sum_{k=1}^{N} \frac$$

Background is important for detecting DSNB

Region of observation ~ 10 - 25 MeV

Main uncertainties: supernova rate, fraction of failed supernova

Kresse, Ertl, Janka, Astrophys. J. 909 (2021) no.2, 169

Main contribution: z < 1. High energy: Failed SN. Low energy: Successful SN

Main uncertainties: supernova rate, fraction of failed supernova

Kresse, Ertl, Janka, Astrophys. J. 909 (2021) no.2, 169

Significant dependence on star formation rate model

Main uncertainties: supernova rate, fraction of failed supernova

Kresse, Ertl, Janka, Astrophys. J. 909 (2021) no.2, 169

Significant dependence on simulation details

DSNB: measurements

Super-K with the addition of Gd is the most sensitive

Masayuki Harada, "Review of Diffuse SN Neutrino Background", Talk at Neutrino 2024

Small excess in the region 10 - 20 MeV

DSNB: measurements

Super-K with the addition of Gd is the most sensitive

Best fit for non-zero DSNB flux. 2.3 σ evidence!!!!

DSNB: future measurements

What about the future?

Future experiments can shed light on main uncertainties

The supernova neutrinos chain

The supernova neutrinos chain

Each aspect of the chain to MUST be well understood

