Day 4: Supernova nucleosynthesis

Cassiopeia A Supernova Remnant (exploded in 1667 - the last Galactic "naked eye" supernova)

Original star was about 17 times more massive than the Sun

Credit: NASA Chandra X-ray Observatory

5 light years

SILICON

Credit: NASA Chandra X-ray Observatory

IRON

SULFUR

CALCIUM

BLAST WAVE

Explosive nucleosynthesis: O, Mg, Si, S, Ca, Ti, Fe shock wave heats falling matter

neutrino-driven ejecta

r-process weak r-process νp -process

Nuclear statistical equilibrium (NSE)

charged particle reactions -process *α*

Supernova nucleosynthesis

Origin of heavy elements

1. S-process

2. R-process

3. P-nuclei

Solar system abundances

Solar photosphere and meteorites: chemical signature of gas cloud where the Sun formed

All nucleosynthesis processes

Solar system abundances

Solar photosphere and meteorites: chemical signature of gas cloud where the Sun formed

All nucleosynthesis processes

Neutron capture processes

slow and rapid neutron capture compared to beta decay

neutron capture (n,γ): (Z,A) + n → (Z,A+1) + *γ*

beta decay: $(Z,A) \rightarrow (Z+1,A)$

Horowitz et al. J. Phys. G 2019

closed neutron shell

Neutron capture processes

Nucleosynthesis calculations

Evolve composition using full reaction network

r-process: required conditions

Seed nuclei capture neutrons faster than beta decay

- if seed nuclei were present: secondary process - if seed nuclei are first produced: primary process

 $\langle A_{\text{seed}} \rangle + Y_n / Y_{\text{seed}} = \langle A_r \rangle$

 $Y_n/Y_{\text{seed}} > 100$

r-process: required conditions

Primary r-process:

high entropy and $Y_e \sim 0.45$:

-
-
-
-

low entropy and $Y_e \sim 0.1$:

-
-
-

- fast expansion starting at high temperatures (NSE)

- neutrons + protons form α-particles which recombine into seed nuclei - α-rich freeze-out: 85% α-particles, 0.05% seeds, 0.1% neutrons - sites: high entropy neutrino-driven ejecta (?)

- fast expansion of high density neutron-rich matter

- neutron rich nuclei (drip line) in NSE and beta equilibrium, 99% neutrons - sites: neutron star mergers, jets, accretion disks

Heavy element: solar system

r-process: elemental abundances in the oldest stars

r-process in oldest stars and in Solar system same relative abundances:

Robust r-process

Sneden, Cowan, Gallino 2008

Atomic number

Sneden, Cowan, Gallino 2008

- ultra metal-poor stars and
- r-process solar system: Nsolar Ns

HE 1523-0901: Frebel et al. (2007)

Abundances of r-process elements:

Robust r-process for 56<Z<83

Scatter for lighter heavy elements, Z~40

r-process: elemental abundances in the oldest stars

The Basics of Chemical Evolution

Benoit Côté

 $(-13 Gyr ago)$

Time (evolution of our Galaxy)

The Basics of Chemical Evolution

Time (evolution of our Galaxy)

(~13 Gyr ago) Time Today

higher concentration of heavy element (metallicity)

Time (evolution of our Galaxy)

The Basics of Chemical Evolution

higher concentration of heavy element (metallicity)

The Basics of Chemical Evolution

higher concentration of heavy element (metallicity)

How to « Observe » Chemical Evolution?

Trends with metallicity [Fe/H]

Type Ia supernova: thermonuclear explosion of a white dwarf -> late Fe contribution

Fe and Mg produced in same site: core-collapse supernovae

Eu: typical r-process element

Scatter at low metallicities: rare and early event

Origin of heavy elements?

Supernova Neutron star mergers

Rapid neutron capture process Explosive and high neutron densities

Observations and galactic chemical evolution

-> r-process sites: mergers vs. supernovae

Nucleosynthesis in supernova: r-process

- Supernovae suggested by B2FH in 1957
- Prompt explosion (Hillebrandt 1978, Hillebrandt et al. 1984)
- Neutrino-driven wind (Meyer et al. 1992, Woosley et al. 1994)
- Magneto-rotational supernova (Winteler et al. 2012)

Neutrino-driven wind

$$
T = 10 - 8
$$
 GK
NSE \rightarrow charged particle reac

neutrons and protons form α-particles α-particles recombine into seed nuclei

- ctions / a-process → r-process 8 - 2 GK T < 3 GK
	- weak r-process νp-process

Neutrino-driven wind parameters

r-process \Rightarrow high neutron-to-seed ratio (Y_n/Y_{seed}~100)

- -Short expansion time scale to inhibit α-process and formation of seed nuclei
-
- Electron fraction: Y_e<0.5

Entropy per baryon in relativistic gas: $s \propto (kT^3) / (pN_A) \Rightarrow s = 10/Φ$

s and formation of seed nuclei

-
A-harvon ratio: photons dissociate seed nuclei into nucle - High entropy is equivalent to high photon-to-baryon ratio: photons dissociate seed nuclei into nucleons

$$
\begin{aligned} \text{Photon-to-baryon ratio:} \\ \Phi &= n_{\gamma} \quad \text{(pNA)} \quad \text{K} \quad \text{(kT3)} \quad \text{(pNA)} \end{aligned}
$$

Neutrino-driven wind and r-process

Meyer et al. 1992 and Woosley et al. 1994: r-process: high entropy and low Ye Witti et al., Takahasi et al. 1994 needed factor 5.5 increased in entropy

Qian & Woosley 1996: analytic model

 $\dot{M} \propto L$ $s \propto L$ $\tau \propto L$

Thompson, Otsuki, Wanajo, ... (2000-...) parametric steady state winds

$$
L_{\nu}^{5/3} \epsilon_{\nu}^{10/3} R_{ns}^{5/3} M_{ns}^{-2},
$$

\n
$$
L_{\nu}^{-1/6} \epsilon_{\nu}^{-1/3} R_{ns}^{-2/3} M_{ns},
$$

\n
$$
L_{\nu}^{-1} \epsilon_{\nu}^{-2} R_{ns} M_{ns}.
$$

$$
Y_e \approx \left[1 + \frac{L_{\bar{\nu}_e}(\epsilon_{\bar{\nu}_e} - 2\Delta + 1.2\Delta^2/\epsilon_{\bar{\nu}_e})}{L_{\nu_e}(\epsilon_{\nu_e} + 2\Delta + 1.2\Delta^2/\epsilon_{\nu_e})}\right]^{-1}
$$

(Δ =m_n-m_p)

Neutrino-driven wind parameters and r-process

Necessary conditions identified by steady-state models (e.g., Otsuki et al. 2000, Thompson et al. 2001)

 $2.0M_o$ $1.7M_o$ **1.4M** $1.2M_o$

 $L = 10^{50}$ ergs/s

Otsuki et al. 2000

Neutrino-driven wind parameters and r-process

Necessary conditions identified by steady-state models (e.g., Otsuki et al. 2000, Thompson et al. 2001)

Nucleosynthesis in supernova: r-process (B2FH 1957)

- Supernovae suggested by B2FH in 1957
- Prompt explosion (Hillebrandt 1978, Hillebrandt et al. 1984)
- Neutrino-driven wind (Meyer et al. 1992, Woosley et al. 1994)
- Magneto-rotational supernova

600 400 200 z [km] -200 -400 wind -600

Magneto-rotational supernova (MR-SN)

Neutron-rich matter ejected by strong magnetic field (Cameron 2003, Nishimura et al. 2006) 2D and 3D + parametric neutrino treatment 10^0 (Nishimura et al. 2015, 2017, Winteler et al. 2012, Mösta et al. 2018)

Nucleosynthesis based on simulations with accurate neutrino transport (Obergaulinger & Aloy 2017) Weak r-process, vp-process, r-process (Reichert et al. 2021, 2023, 2024)

First 3D simulations with accurate neutrino transport (Obergaulinger et al. 2020, Kuroda et al. 2020)

Explosive nucleosynthesis: O, Mg, Si, S, Ca, Ti, Fe shock wave heats falling matter

neutrino-driven ejecta

Nuclear statistical equilibrium (NSE)

charged particle reactions -process *α*

 νp -process

Supernova nucleosynthesis

Lighter heavy elements (Sr to Ag)

Arcones & Montes, ApJ (2011), Arcones & Bliss, J.Phys. G (2014), Bliss, Arcones, Qian, ApJ (2018)

Overproduction at A=90 (N=50) \rightarrow only a fraction of neutron-rich ejecta (Hoffman et al. 1996)

Observation pattern reproduced Production of p-nuclei

Constraints from observations

Astrophysics uncertainties/variability Bliss, Witt, Arcones, Montes, Pereira (2018)

Steady-state model: all possible conditions and nucleosynthesis pattern in neutrino-driven ejecta 10^8 Based on Otsuki et al. 2000: study of 3 000 trajectories 10^7

Four characteristic patterns 10^6 $\frac{1}{2}$

Density $\frac{1}{2}$ $\frac{1}{2}$
 $\frac{1$ $10⁷$ 10^{-3} $10⁷$ \rightarrow 10^1 $\frac{1}{4}$ 10⁻⁵
 $\frac{1}{4}$ 10⁻⁶ 10^0 10^{-3} 10^0 10^{-4} 10^{-2} 10^{-1} 10^{-} Time [s] 10^{-8} 10^{-9} $5¹$ 10 15 20 25 10^1 10^{-2} Temperature [GK] 10^{-3} 10^0 10^{-4} \times
 $\frac{10^{-5}}{4}$
 $\frac{10^{-6}}{4}$ 10^{-7} 10^{-1} 10^{-6} 10^{-9} 10^{-3} 10^{-2} 10^{-1} 10^0 10^{-4} 10 15 20 5

Time [s]

Nuclear physics uncertainty

Path close to stability:

- masses and beta decays known
- beta decays slow
- (*α*,n) reactions move matter to higher Z

time: 9.936e-03 s, T: 4.193e+00 GK, ρ : 2.481e+05 g/cm³

Independently vary each (α, n) reaction rate between Fe and Rh by a random factor

Include theoretical and experimental uncertainties \rightarrow log-normal distributed rates ($\mu = 0$, $\sigma = 2.3$)

36 representative trajectories of group CPR2, 10 000 Monte Carlo runs

Sensitivity study: key reactions Bliss et al., PRC (2020)

Spearman rank order correlation

$$
\frac{\sum_{i=1}^{n} (R(p_i) - R(p)) (R(y_i) - R(y))}{\sum_{i=1}^{n} (R(p_i) - \overline{R(p)})^2} \sqrt{\sum_{i=1}^{n} (R(y_i) - \overline{R(y)})^2}
$$

→ Monotonic changes

 \rightarrow -1 $\leq \rho_{\text{corr}} \leq +1$

Sensitivity study: key reactions Bliss et al., PRC (2020)

Key reactions \Rightarrow large correlation + significant impact on abundance for several astro conditions

Comparison to observations

Comparison to observations

Abundance with uncertainties for several astro conditions \longrightarrow compare abundance ratios

What has been measured so far?

- ${}^{86}\text{Kr}(\alpha, n), {}^{96}\text{Zr}(\alpha, n)$ and ${}^{100}\text{Mo}(\alpha, n)$ at ATOMKI G.G. Kiss et al., Astrophys. J 908, 202 (2021) • T.N. Szegedi et al., Phys. Rev. C 104, 035804 (2021)
- ${}^{75}Ga(\alpha, n), {}^{85,86}Kr(\alpha, xn), {}^{85}Br(\alpha, xn)$ at NSCL/FRIB (HabaNERO/SECAR) F. Montes, J. Pereira et al.
- ${}^{86}\text{Kr}(\alpha, \text{xn})$, ${}^{87}\text{Rb}(\alpha, \text{xn})$, ${}^{88}\text{Sr}(\alpha, \text{xn})$, ${}^{100}\text{Mo}(\alpha, \text{xn})$ at Argonne (MUSIC) M. L. Avila, C. Fougères et al. W. J. Ong et al., Phys. Rev. C 105, 055803 (2022)
- ${}^{86}\text{Kr}(\alpha, n)$ and ${}^{94}\text{Sr}(\alpha, n)$ at TRIUMF (EMMA) C. Aa. Diget, A. M. Laird, M. Williams et al. C. Angus et al., EPJ Web of Conferences, NPA-X (2023)

Thanassis Psaltis

Explosive nucleosynthesis: O, Mg, Si, S, Ca, Ti, Fe shock wave heats falling matter

neutrino-driven ejecta

r-process weak r-process νp -process

Nuclear statistical equilibrium (NSE)

charged particle reactions -process *α*

Supernova nucleosynthesis

P nuclei

P-process and *ν*p-process

		M. Arnould, S. Goriely Physics Reports 384 (2003) $1-84$		9
Table 1 List of the species commonly classified as p-nuclides, with their solar system abundances relative to 10^6 Si atoms proposed by two compilations $[13, 15]$				
Nucleus	Anders and Grevesse [13]	Error $(\%)$	Palme and Beer [15]	Error $(\%)$
74 Se	0.55	6.4	0.6	5
$^{78}\mathrm{Kr}$	0.153	18	0.19	
84 Sr	0.132	8.1	0.12	5
92 Mo	0.378	5.5	0.38	5
94 Mo	0.236	5.5	0.23	5
96 Ru	0.103	5.4	0.1	10
98 Ru	0.035	5.4	0.03	10
102Pd	0.0142	6.6	0.014	10
106 Cd	0.0201	6.5	0.02	10
108 Cd	0.0143	6.5	0.014	10
113 In	0.0079	6.4	0.008	10
112 Sn	0.0372	9.4	0.036	10
114 Sn	0.0252	9.4	0.024	10
$^{115}{\rm Sn}$	0.0129	9.4	0.013	10
120 Te	0.0043	10	0.0045	10
$^{124}\mathrm{Xe}$	0.00571	20	0.005	
126 Xe	0.00509	20	0.004	
^{130}Ba	0.00476	6.3	0.005	5
$^{132}\mathrm{Ba}$	0.00453	6.3	0.005	5
138 La	0.000409	$\overline{2}$	0.0004	5
136 Ce	0.00216	1.7	0.002	5
138 Ce	0.00284	1.7	0.003	5
144 Sm	0.008	1.3	0.008	5
152 Gd	0.00066	1.4	0.001	5
156 Dy	0.000221	1.4	0.0002	5
$^{158}\mathrm{Dy}$	0.000378	1.4	0.0004	5
^{162}Er	0.000351	1.3	0.0004	5
$^{164}\mathrm{Er}$	0.00404	1.3	0.0042	5
168 Yb	0.000322	1.6	0.0003	5
174 Hf	0.000249	1.9	0.0003	5
$^{180}\mathrm{Ta}$	2.48e-06	1.8	2.00e-06	10
$^{180}\rm{W}$	0.000173	5.1	0.0002	$\overline{7}$
$^{184}\mathrm{Os}$	0.000122	6.3	0.0001	5
190 Pt	0.00017	7.4	0.0001	10
$^{196}\mathrm{Hg}$	0.00048	12	0.001	20

Arnould & Goriely 2003

- supernova shock
- type Ia supernovae

P-process

Transformation of pre-existing s- or r-nuclei by photodisintegrations when T increases complemented by neutron and proton captures

Photodisintegrations depend on temperature: $T \geq 1.5 \times 10^9$ K required for photodisintegration, but not exceed $3.5 \times 10^9 \, {\rm K}$ to prevent reaching NSE and produce Fe group nuclei

- abundant enough seed nuclei,
- high enough temperatures,
- short enough time scales for the hot phases,
- protons if (p, γ) contribute

Constraints:

Possible astrophysical sites:

- core-collapse supernova shock
- Type la supernovae

P-process

5.2 r-process: nuclear physics input

nuclear masses, beta decay, reaction rates (neutron capture), fission

Neutron number, N

5.2 r-process: nuclear masses

Neutron Number (N)

5.2 r-process: nuclear masses

 $Y(A)$

M.R. Mumpower et al. / Progress in Particle and Nuclear Physics 86 (2016) 86-126

Α

5.2 r-process: nuclear masses

Abundances based on density functional theory - six sets of different parametrisation (Erler et al. 2012) - two realistic astrophysical scenarios

First systematic uncertainty band for r-process abundances

Uncertainty band depends on A, in contrast to homogeneous band for all A

Martin, Arcones, Nazarewicz, Olsen (2016)

Two neutron separation energy

Martin, Arcones, Nazarewicz, Olsen (2016)

Two neutron separation energy -> abundances

Neutron capture are critical during decay to stability!

5.2 r-process: beta decay

M.R. Mumpower et al. / Progress in Particle and Nuclear Physics 86 (2016) 86-126

Abundances at freeze-out $(Y_n/Y_{\text{seed}}=1)$: odd-even effects Final abundances are smoother like solar abundances. Why does the abundance pattern change?

Classical r-process (waiting point approximation): beta-delayed neutron emission

Dynamical r-process:

neutron capture and beta-delayed neutron emission

5.2 r-process: decay to stability

5.2 r-process: neutron captures

Compare neutron capture calculations

5.2 r-process: neutron captures

Fission: barriers and yield distributions

2nd peak (A~130): fission yield distribution 3rd peak (A~195): mass model, neutron captures Eichler et al. (2015), Eichler et al. (2019)