Day 4: Supernova nucleosynthesis

Cassiopeia A Supernova Remnant (exploded in 1667 – the last Galactic "naked eye" supernova)

Original star was about 17 times more massive than the Sun

Credit: NASA Chandra X-ray Observatory

SILICON

Credit: NASA Chandra X-ray Observatory

IRON

SULFUR

CALCIUM

BLAST WAVE

Supernova nucleosynthesis

Explosive nucleosynthesis: O, Mg, Si, S, Ca, Ti, Fe shock wave heats falling matter

neutrino-driven ejecta

Nuclear statistical equilibrium (NSE)

charged particle reactions α -process

r-process weak r-process

Origin of heavy elements

1. S-process

2. R-process

3. P-nuclei

Solar system abundances

Solar photosphere and meteorites: chemical signature of gas cloud where the Sun formed

All nucleosynthesis processes

Solar system abundances

Solar photosphere and meteorites: chemical signature of gas cloud where the Sun formed

All nucleosynthesis processes

Neutron capture processes

Neutron capture processes

slow and rapid neutron capture compared to beta decay

neutron capture (n, γ): (Z,A) + n \rightarrow (Z,A+1) + γ

beta decay: $(Z,A) \rightarrow (Z+1,A)$

Horowitz et al. J. Phys. G 2019

closed neutron shell

Nucleosynthesis calculations

Evolve composition using full reaction network

r-process: required conditions

Seed nuclei capture neutrons faster than beta decay

- if seed nuclei were present: secondary process - if seed nuclei are first produced: primary process

 $\langle A_{\text{seed}} \rangle + Y_n / Y_{\text{seed}} = \langle A_r \rangle$

 $Y_{n}/Y_{\text{seed}} > 100$

r-process: required conditions

Primary r-process:

high entropy and $Y_e \sim 0.45$:

low entropy and $Y_e \sim 0.1$:

- fast expansion starting at high temperatures (NSE)

- neutrons + protons form α-particles which recombine into seed nuclei - α -rich freeze-out: 85% α -particles, 0.05% seeds, 0.1% neutrons - sites: high entropy neutrino-driven ejecta (?)

- fast expansion of high density neutron-rich matter

- neutron rich nuclei (drip line) in NSE and beta equilibrium, 99% neutrons - sites: neutron star mergers, jets, accretion disks

Heavy element: solar system

r-process: elemental abundances in the oldest stars

Sneden, Cowan, Gallino 2008

Atomic number

r-process in oldest stars and in Solar system same relative abundances: **Robust r-process**

r-process: elemental abundances in the oldest stars

HE 1523-0901: Frebel et al. (2007)

Sneden, Cowan, Gallino 2008

Abundances of r-process elements:

- ultra metal-poor stars and
- r-process solar system: N_{solar} N_s

Robust r-process for 56<Z<83

Scatter for lighter heavy elements, Z~40

Benoit Côté

(~13 Gyr ago)

Time (evolution of our Galaxy)

higher concentration of heavy element (metallicity)

(~13 Gyr ago)

Time (evolution of our Galaxy) Today

higher concentration of heavy element (metallicity)

(~13 Gyr ago)

Time (evolution of our Galaxy)

Today

higher concentration of heavy element (metallicity)

Today

How to « Observe » Chemical Evolution?

Trends with metallicity [Fe/H]

Fe and Mg produced in same site: core-collapse supernovae

Type Ia supernova: thermonuclear explosion of a white dwarf -> late Fe contribution

Eu: typical r-process element

Scatter at low metallicities: rare and early event

Origin of heavy elements?

Rapid neutron capture process Explosive and high neutron densities

Supernova

Neutron star mergers

Observations and galactic chemical evolution

-> r-process sites: mergers vs. supernovae

Nucleosynthesis in supernova: r-process

- Supernovae suggested by B2FH in 1957 •
- Prompt explosion (Hillebrandt 1978, Hillebrandt et al. 1984) •
- Neutrino-driven wind (Meyer et al. 1992, Woosley et al. 1994)
- Magneto-rotational supernova (Winteler et al. 2012) •

Neutrino-driven wind

= 10 - 8 GK 8 - 2 GK T < 3 GK charged particle reactions / a-process NSE \rightarrow

neutrons and protons form *a*-particles a-particles recombine into seed nuclei

r-process weak r-process vp-process

Neutrino-driven wind parameters

r-process \Rightarrow high neutron-to-seed ratio (Y_n/Y_{seed}~100)

- Short expansion time scale to inhibit α -process and formation of seed nuclei
- Electron fraction: $Y_e < 0.5$

Photon-to-baryon ratio:

$$\Phi = n_{\gamma} / (\rho NA) \propto (kT^3) / (\rho NA)$$

Entropy per baryon in relativistic gas: $s \propto (kT^3) / (\rho N_A) \Rightarrow s = 10/\Phi$

- High entropy is equivalent to high photon-to-baryon ratio: photons dissociate seed nuclei into nucleons

Neutrino-driven wind and r-process

Meyer et al. 1992 and Woosley et al. 1994: r-process: high entropy and low Y_e

Witti et al., Takahasi et al. 1994 needed factor 5.5 increased in entropy

Qian & Woosley 1996: analytic model

 $\dot{M} \propto L$

 $s \propto L$

 $au \propto L$

Thompson, Otsuki, Wanajo, ... (2000-...) parametric steady state winds

$$L_{\nu}^{5/3} \epsilon_{\nu}^{10/3} R_{ns}^{5/3} M_{ns}^{-2},$$

$$L_{\nu}^{-1/6} \epsilon_{\nu}^{-1/3} R_{ns}^{-2/3} M_{ns},$$

$$L_{\nu}^{-1} \epsilon_{\nu}^{-2} R_{ns} M_{ns}.$$

$$Y_e \approx \left[1 + \frac{L_{\bar{\nu}_e}(\epsilon_{\bar{\nu}_e} - 2\Delta + 1.2\Delta^2/\epsilon_{\bar{\nu}_e})}{L_{\nu_e}(\epsilon_{\nu_e} + 2\Delta + 1.2\Delta^2/\epsilon_{\nu_e})}\right]^{-1}$$
$$(\Delta = m_n - m_p)$$

Neutrino-driven wind parameters and r-process

Necessary conditions identified by steady-state models (e.g., Otsuki et al. 2000, Thompson et al. 2001)

2.0M. **1.7M**_☉ **1.4M**_☉ **1.2M**o

L=10⁵⁰ergs/s

Otsuki et al. 2000

Neutrino-driven wind parameters and r-process

Necessary conditions identified by steady-state models (e.g., Otsuki et al. 2000, Thompson et al. 2001)

Conditions were not realized in simulations	
(Arcones et al. 2007, Fischer et al. 2010, Hudeponi et al. 2010, Roberts et al. 2010, Arcones & Janka 2011,)	0.4
	0.4
$S_{wind} = 50 - 120 \text{ k}_B/\text{nuc}$	0.4
$Y_{e} > 0.5?$	س 0.2
	≻ 0.3
Additional ingredients: wind	0.3
termination, extra energy source,	0.3
rotation and magnetic fields,	0.3
	0.3

Nucleosynthesis in supernova: r-process

- Supernovae suggested by B2FH in 1957 •
- Prompt explosion (Hillebrandt 1978, Hillebrandt et al. 1984) •
- Neutrino-driven wind (Meyer et al. 1992, Woosley et al. 1994)
- Magneto-rotational supernova

Magneto-rotational supernova (MR-SN)

Neutron-rich matter ejected by strong magnetic field (Cameron 2003, Nishimura et al. 2006) 2D and 3D + parametric neutrino treatment 100 (Nishimura et al. 2015, 2017, Winteler et al. 2012, Mösta et al. 2018)

Nucleosynthesis based on simulations with accurate neutrino transport (Obergaulinger & Aloy 2017) Weak r-process, vp-process, r-process (Reichert et al. 2021, 2023, 2024)

First 3D simulations with accurate neutrino transport (Obergaulinger et al. 2020, Kuroda et al. 2020)

Supernova nucleosynthesis

Explosive nucleosynthesis: O, Mg, Si, S, Ca, Ti, Fe shock wave heats falling matter

neutrino-driven ejecta

Nuclear statistical equilibrium (NSE)

charged particle reactions α -process

Lighter heavy elements (Sr to Ag)

Observation pattern reproduced Production of p-nuclei

Arcones & Montes, ApJ (2011), Arcones & Bliss, J.Phys. G (2014), Bliss, Arcones, Qian, ApJ (2018)

Overproduction at A=90 (N=50) \rightarrow only a fraction of neutron-rich ejecta (Hoffman et al. 1996)

Constraints from observations

Astrophysics uncertainties/variability

Steady-state model: all possible conditions and nucleosynthesis pattern in neutrino-driven ejecta 10^{8} Based on Otsuki et al. 2000: study of 3 000 trajectories 10^{7}

Four characteristic patterns 10^{6} Density $[0^{10} \text{ Density}]$ 10 10^{-3} 10 \succ 10^{1} Abundance 10^{-5} 10^{-5} 10^{0} 10⁻³ 10^{0} 10^{-4} 10^{-2} 10^{-1} 10^{-} Time [s] 10^{-8} 10^{-9} 10 15 20 25 10^{1} 5 10^{-2} Temperature [GK] 10^{-3} 10^{0} 10_ \succ 10⁻⁵ 10⁻⁶ 10^{-7} 10^{-1} 10^{-6} 10^{-9} 10⁻³ 10^{-1} 10^{-4} 10^{-2} 10^{0} 10 15 20 5

Time [s]

Nuclear physics uncertainty

Path close to stability:

- masses and beta decays known •
- beta decays slow •
- (α, n) reactions move matter to higher Z

time : 9.936e-03 s, T : 4.193e+00 GK, ρ : 2.481e+05 g/cm³

Independently vary each (α ,n) reaction rate between Fe and Rh by a random factor

Include theoretical and experimental uncertainties \rightarrow log-normal distributed rates ($\mu = 0, \sigma = 2.3$)

36 representative trajectories of group CPR2, 10 000 Monte Carlo runs

Bliss et al., PRC (2020)

Sensitivity study: key reactions

Spearman rank order correlation

Bliss et al., PRC (2020)

$$\left(R(p_i) - \overline{R(p)}\right)^2 \sqrt{\sum_{i=1}^n \left(R(y_i) - \overline{R(y)}\right)^2}$$

 \rightarrow -1 $\leq \rho_{\rm corr} \leq$ +1

Sensitivity study: key reactions

Key reactions \Rightarrow large correlation + significant impact on abundance for several astro conditions

Reaction	Ζ	MC tracers		
59 Fe(α , n) 62 Ni	39 - 42, 45	34, 36		
68 Fe(α , <i>n</i>) 71 Ni	36, 37	3		
63 Co(α , n) 66 Cu	39-42, 45	20, 34, 36		
71 Co(α , n) 74 Cu	36, 37	3		
74 Ni(α , n) 77 Zn	36–42	2, 3, 17, 18, 32		
76 Ni(α , n) 79 Zn	36–42	2, 3, 18, 32		
67 Cu(α , n) 70 Ga	47	35		
77 Cu(α , n) 80 Ga	37	3		
72 Zn(α , n) 75 Ge	39–42	36		
76 Zn(α , n) 79 Ge	36, 37–42	2, 3, 17, 18, 32		
78 Zn(α , n) 81 Ge	36, 37–42	2, 3, 17, 18, 32		
79 Zn(α , n) 82 Ge	36, 37–42	2, 3, 18, 32		
80 Zn(α , n) 83 Ge	36, 37, 39–42	2, 3, 18, 32		
81 Ga(α , n) 84 As	36, 38, 39, 41	17, 32		
78 Ge $(\alpha, n)^{81}$ Se	39–42	36		
80 Ge (α, n) 83 Se	36–39, 42	28, 33, 36		
${}^{82}\text{Ge}(\alpha, n) {}^{85}\text{Se}$	36–39, 41	11, 17, 19, 27, 28, 33		
83 As(α , n) 86 Br	36, 37, 41	11, 26, 27, 28, 33		
84 Se (α, n) 87 Kr	36-42, 44, 45	2, 6, 7, 8, 9, 10, 11, 18, 19, 20, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 36		
85 Se(α , n) 88 Kr	36-42, 44, 45	2, 6, 7, 8, 9, 10, 11, 18, 19, 22, 23, 24, 26, 27, 28, 29, 30, 31		
85 Br(α , n) 88 Rb	37–39	6, 7, 8, 9, 10, 22, 23, 24, 26, 28, 29, 30, 31		
${}^{87}\mathrm{Br}(\alpha,n){}^{90}\mathrm{Rb}$	37, 39	6, 9, 10, 29, 31		
${}^{88}\mathrm{Br}(\alpha,n){}^{91}\mathrm{Rb}$	39	26		
${}^{86}\mathrm{Kr}(\alpha,n){}^{89}\mathrm{Sr}$	38-42, 44, 45, 47	4, 5, 7, 8, 13, 14, 15, 16, 20, 24, 25, 33, 34, 35		

Comparison to observations

Comparison to observations

Abundance with uncertainties for several astro conditions \longrightarrow compare abundance ratios

What has been measured so far?

- 86 Kr(α , n), 96 Zr(α , n) and 100 Mo(α , n) at ATOMKI G.G. Kiss et al., Astrophys. J 908, 202 (2021) • T.N. Szegedi et al., Phys. Rev. C 104, 035804 (2021)
- 75 Ga(α , n), 85,86 Kr(α , xn), 85 Br(α , xn) at NSCL/FRIB (HabaNERO/SECAR) F. Montes, J. Pereira et al.
- 86 Kr(α , xn), 87 Rb(α , xn), 88 Sr(α , xn), 100 Mo(α , xn) at Argonne (MUSIC) M. L. Avila, C. Fougères et al. W. J. Ong et al., Phys. Rev. C 105, 055803 (2022)
- 86 Kr(α , n) and 94 Sr(α , n) at TRIUMF (EMMA) C. Aa. Diget, A. M. Laird, M. Williams et al. C. Angus et al., EPJ Web of Conferences, NPA-X (2023)

Thanassis Psaltis

Supernova nucleosynthesis

Explosive nucleosynthesis: O, Mg, Si, S, Ca, Ti, Fe shock wave heats falling matter

neutrino-driven ejecta

Nuclear statistical equilibrium (NSE)

charged particle reactions α -process

r-process weak r-process

P nuclei

P-process and ν p-process

Table 1 List of the species commonly classified as p-nuclides, with their solar system abundances relative to 10 ⁶ Si atoms proposed by two compilations [13,15]							
Nucleus	Anders and Grevesse [13]	Error (%)	Palme and Beer [15]	Error (%)			
⁷⁴ Se	0.55	6.4	0.6	5			
⁷⁸ Kr	0.153	18	0.19				
⁸⁴ Sr	0.132	8.1	0.12	5			
⁹² Mo	0.378	5.5	0.38	5			
⁹⁴ Mo	0.236	5.5	0.23	5			
⁹⁶ Ru	0.103	5.4	0.1	10			
⁹⁸ Ru	0.035	5.4	0.03	10			
102 Pd	0.0142	6.6	0.014	10			
¹⁰⁶ Cd	0.0201	6.5	0.02	10			
¹⁰⁸ Cd	0.0143	6.5	0.014	10			
¹¹³ In	0.0079	6.4	0.008	10			
¹¹² Sn	0.0372	9.4	0.036	10			
¹¹⁴ Sn	0.0252	9.4	0.024	10			
¹¹⁵ Sn	0.0129	9.4	0.013	10			
¹²⁰ Te	0.0043	10	0.0045	10			
124 Xe	0.00571	20	0.005				
¹²⁶ Xe	0.00509	20	0.004				
130 Ba	0.00476	6.3	0.005	5			
132 Ba	0.00453	6.3	0.005	5			
¹³⁸ La	0.000409	2	0.0004	5			
¹³⁶ Ce	0.00216	1.7	0.002	5			
¹³⁸ Ce	0.00284	1.7	0.003	5			
144 Sm	0.008	1.3	0.008	5			
¹⁵² Gd	0.00066	1.4	0.001	5			
¹⁵⁶ Dy	0.000221	1.4	0.0002	5			
¹⁵⁸ Dy	0.000378	1.4	0.0004	5			
162 Er	0.000351	1.3	0.0004	5			
¹⁶⁴ Er	0.00404	1.3	0.0042	5			
¹⁶⁸ Yb	0.000322	1.6	0.0003	5			
174 Hf	0.000249	1.9	0.0003	5			
¹⁸⁰ Ta	2.48e-06	1.8	2.00e-06	10			
^{180}W	0.000173	5.1	0.0002	7			
¹⁸⁴ Os	0.000122	6.3	0.0001	5			
¹⁹⁰ Pt	0.00017	7.4	0.0001	10			
¹⁹⁶ Hg	0.00048	12	0.001	20			

P-process

Transformation of pre-existing s- or r-nuclei by photodisintegrations when T increases complemented by neutron and proton captures

- supernova shock - type la supernovae

Photodisintegrations depend on temperature: $T \ge 1.5 \times 10^9 \,\mathrm{K}$ required for photodisintegration, but not exceed $3.5 \times 10^9 \,\mathrm{K}$ to prevent reaching NSE and produce Fe group nuclei

Constraints:

- abundant enough seed nuclei,
- high enough temperatures,
- short enough time scales for the hot phases,
- protons if (p, γ) contribute

Possible astrophysical sites:

- core-collapse supernova shock
- Type la supernovae

P-process

core-collapse supernova

5.2 r-process: nuclear physics input

nuclear masses, beta decay, reaction rates (neutron capture), fission

Neutron number, N

5.2 r-process: nuclear masses

Neutron Number (N)

5.2 r-process: nuclear masses

Y(A)

M.R. Mumpower et al. / Progress in Particle and Nuclear Physics 86 (2016) 86–126

А

5.2 r-process: nuclear masses

Uncertainty band depends on A, in contrast to homogeneous band for all A

Martin, Arcones, Nazarewicz, Olsen (2016)

Abundances based on density functional theory - six sets of different parametrisation (Erler et al. 2012) - two realistic astrophysical scenarios

First systematic uncertainty band for r-process abundances

Two neutron separation energy

Martin, Arcones, Nazarewicz, Olsen (2016)

Two neutron separation energy -> abundances

Neutron capture are critical during decay to stability!

5.2 r-process: beta decay

M.R. Mumpower et al. / Progress in Particle and Nuclear Physics 86 (2016) 86–126

Abundances at freeze-out ($Y_n/Y_{seed}=1$): odd-even effects Final abundances are smoother like solar abundances. Why does the abundance pattern change?

Classical r-process (waiting point approximation): beta-delayed neutron emission

Dynamical r-process:

neutron capture and beta-delayed neutron emission

5.2 r-process: decay to stability

5.2 r-process: neutron captures

5.2 r-process: neutron captures

Compare neutron capture calculations

Fission: barriers and yield distributions

2nd peak (A~130): fission yield distribution 3rd peak (A~195): mass model, neutron captures

Eichler et al. (2015), Eichler et al. (2019)