GWs from CCSNe

Martin Obergaulinger

te Astronomia i Astrofísica, Universitat de Valen Valencia Virgo Group

DTP/TALENT ECT*, 2024/07/24

Miguel Ángel Aloy, Marco Cusinato, Adam Griffiths, Moritz Reichert, Pablo Cerdá-Durán, Alejandro Torres, Toni Font (UV) Almudena Arcones (TU Darmstadt) Matteo Bugli, Jérôme Guilet (CEA Saclay)

Introduction

- ► GW are wave-like perturbations of relativistic gravity
- two polarisation modes, + and \times
- emitted by rapid, non-spherical accelerations of masses
- $\rightarrow~\text{CCSNe}$ are potential sources
 - current detectors are most sensitive at $\mathcal{O}(10^{2-3})$ Hz
 - ▶ no CCSN detected so far, but the waves of the first one are already on their way
 - prepare for the first detection:
 - ► ¿Can GWs be used to detect CCSNe?
 - ¿Can we infer parameters of the explosion or its compact remnant from the GW?
- \rightarrow simulate CCSNe and their GW signals

イロト イ団ト イヨト イヨト

progenitor

- collapse and engine
- later phases

- hydrostatic 1d spherical stellar evolution, potentially with approximate treatment of convection, mixing, mass loss, rotation, and magnetic fields
- detailed nuclear physics
- multi-d (magneto-)hydrodynamic simulations of brief phases before collapse

< ロ > < 同 > < 三 > < 三 >

- progenitor
- collapse and engine
- later phases

GW-emitting phase

- ► 1/2/3-d (M)HD
- GR or (pseudo-GR) gravitational potential beware impact on GW frequencies!
- EOS including nuclear regime
- various approaches to v-physics: leakage, IDSA, M0/M1, Boltzmann transport, ...; more or less up-to-date interaction rates, usually without flavour transitions; in 1d: artificial trigger for explosions
- composition and energy generation: NSE, nuclear reaction networks or approximate approaches

• • • • • • • • • • • • •

- progenitor
- collapse and engine
- later phases

- ► 1/2/3-d (M)HD
- gradually turn off ν
- ionisation
- nuclear reactions, in particular β -processes
- particle acceleration
- various processes for thermal and non-thermal photon emission, transport

GW emission

• quadrupole formula for the GW strain at distance D

$$h = \frac{2G}{Dc^4} \frac{\mathrm{d}^2 Q}{\mathrm{d}t^2} \tag{1}$$

in terms of the mass (energy) quadrupole moment Q

- estimate $h \sim \epsilon r_{S} \frac{v^{2}}{c^{2}}$, with ϵ quantifying deviation from sphericity
- GW emission power:

$$\frac{\mathrm{d}E_{\mathrm{GW}}}{\mathrm{d}t} \sim \epsilon \frac{c^5}{G} \left(\frac{r_{\mathrm{S}}}{R}\right)^2 \left(\frac{v}{c}\right)^6 \tag{2}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 \rightarrow dynamically insignificant in CCSNe, backreaction not necessary in simulations

Overview: GW emmission mechanisms

Without rotation

- prompt convection
- hot-bubble convection, SASI
- PNS oscillations
- PNS transitions
- shock runaway
- asymmetric ν emission

Rapid rotation

- bounce signal
- m = 1 instabilities
- jet signatures

no prominent signal right at bounce

Early post-bounce signal

- shock propagates out of the nascent PNS
- neutrino emission generates a convectively unstable Y_e-gradient
- alternative interpretation: *p*-modes (propagating waves rather than stationary eddies; Müller et al., 2013)
- moderately strong GW emission for a few 10 ms only at $f \sim 100 \,\text{Hz}$

CCSNe. D = 10 kpc. Radice et al. (2)

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

PNS convection

- continues to operate on longer times
- direct contribution to GW emission found in some, though not in all, simulations

Signals and spectra for 3d models of CCSNe. D = 10 kpc. Radice et al. (2

• • • • • • • • • • • • •

Hot bubble flows

- ν-driven convection behind the shock wave with intermediate to large eddies; minor contribution
- ► SASI: global, large-scale shock deformations; can produce a signal at low f < 100 Hz</p>

Signals and spectra for 3d models of CCSNe. D = 10 kpc. Radice et al. (2

• • • • • • • • • • • • •

PNS oscillations

- PNS, close to hydrostatic structure, admits a large spectrum of oscillations with pressure (*p*-modes) or gravity (*g*-modes) as restoring forces
- ▶ frequencies can be determined by WKB and can be expressed as functions of *M*, *R*, (...) of the PNS
- start at few 100 Hz and increase as PNS accretes mass and contracts
- not all possible modes are actually excited
- excitation mechanism: downflows or PNS convection? 2d-3d dichotomy?

Explosion

- more or less aspherical shock expansion with a shape that varies only slowly
- low-f signal (memory effect)
- weaker signals than before explosion

Signals and spectra for 3d models of CCSNe. D = 10 kpc. Radice et al. (2

• • • • • • • • • • • • •

- ► LF band coming from SASI
- HF ridge from PNS oscillation modes

Radice et al. (2019)

э

Bounce signal

- fast rotation deforms the PNS at bounce oblately
- \rightarrow axisymmetric oscillation with varying quadrupole moment
- bounce signal stronger for faster rotation
- ▶ but rapid rotation may stabilise via ∂_rj > 0 PNS convection
- could be used to constrain core rotation

Abdikamalov et al. (2014)

PNS oscillations

- stabilisation by positive angular-momentum gradient
- additionally, rotation can puff up the PNS
- \rightarrow lower frequencies (Jardine et al., 2022)
- but: differential rotation in the progenitor can counteract this effect (Powell & Müller, 2020)

Powell & Müller (2020). Top model rotates rapidly, bottom two non-rotating

• • • • • • • • • • • • •

Hydro instabilities

- (too) extreme rotation: non-axisymmetric bar-mode instability. Not tremendously relevant in CCSNe.
- low-T/|W| instability at more moderate rotational energy
- corotation point
- formation of m = 1, 2 modes
- reflected in the GW emsision

Shibagaki et al. (2020). GW emission of a rotating core.

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Hydro instabilities

- (too) extreme rotation: non-axisymmetric bar-mode instability. Not tremendously relevant in CCSNe.
- low-T/|W| instability at more moderate rotational energy
- corotation point
- formation of m = 1, 2 modes
- reflected in the GW emsision

Shibagaki et al. (2020). Equatorial density distribution of a rotating core.

Rotation and magnetic fields

Early signal

- impact on dynamics and GW signal only for extreme field strength
- reduction of PNS rotation speed
- ► early jet formation → memory signal

Takiwaki & Kotake (2011)

Rotation and magnetic fields

Long-time emission

- basically similar features as in (rotational) core collapse
- wide-band component around/above PNS oscillation modes
- ► jet tails more common than without magnetic fields
- ¿jittering jets? Several slowly varying tails? But have to wait for them to be found in simulations...

• • • • • • • • • • • • •

Jardine et al. (2022)

Rotation and magnetic fields

PNS dynamo

- ► convection in PNS + rotation → (large-scale) dynamo
- small-scale/large-scale dynamos produce different GW signals
- ► feature with rising *f* as large-scale dipole field is generated

Raynaud et al. (2022)

Cerdá-Durán et al. (2013): GW signal and spectrogram for an axisymmetric star with $35 M_{\odot}$ collapsing to a BH.

Martin Obergaulinger (DAA, UV)

• • • • • • • • • •

GWs from neutrinos

Asymmetric ν emission

- ► anisotropic propagation of neutrinos $\rightarrow \ddot{Q} \neq 0$
- $h(t_1) \propto \int_{-\infty}^{t_1} dt \alpha_{\nu}(t) L_{\nu}(t)$, where α_{ν} quantifies the deviation from spherical emission
- $\int dt \rightarrow \text{memory effect}$
- an LF component of potentially very high amplitude

< ロ > < (回 > < 回 > < 回 > < 回

Müller et al. (2012)

Commemorating Immanuel Kant's 300th birthday

Experience without theory is blind, but theory without experience is mere intellectual play.

LVK SN searches: what can I know?

- Detection
- Parameter inference
- use GW signal as an early warning trigger
- detectors are trying to work as continuously as possible (though duty cycle is < 100&)
- send alerts to neutrino, em observers
- merger events: poor sky localisation is a problem for follow-up. SNe: probably less so due to their high brightness.

LVK SN searches: what can I know?

Detection

Parameter inference

イロト イポト イヨト イヨト

LVK SN searches: what can I know?

- Detection
- Parameter inference

Image: A matrix and a matrix

э

What can I know?

- Build a detector (network)
- write analysis pipelines

イロト イポト イヨト イヨト

What can I know?

Bruel et al. (2023)

Build a detector
(network)

 write analysis pipelines

Waveform	HL	HLV	HLVK	HLVA	HLVKA
s15-3De	0.63	0.77	0.77	0.90	0.98
s15-3Dp	0.67	0.85	0.77	0.92	0.94
s11	0.52	0.65	0.65	0.81	0.81
s15	1.0	1.0	1.0	1.0	1.0
s15S	0.96	0.98	0.98	1.0	1.0
s15G	0.96	0.98	1.0	1.0	1.0
s20	0.88	0.94	0.98	0.98	1.0
s20S	0.60	0.73	0.75	0.90	0.90
s25	1.0	1.0	1.0	1.0	1.0
s40	1.0	1.0	1.0	1.0	1.0

TABLE IV. Fraction of the coverage greater than 0.8 for arrival times of the GWs spanning a 24-hour period with different network configurations. For each arrival time and each network configuration the CCSN is simulated at the center of the Milky Way (RA= $17^{h}45^{m}$, dec= $-29^{\circ}00'$, d=8.2 kpc).

< ロ > < 同 > < 三 > < 三 >

What can I know?

- Build a detector (network)
- write analysis pipelines

<ロ><日><日><日><日<</td>

What can I know?

- Build a detector (network)
- write analysis pipelines

• □ > • @ > • E > •

 Distance range for PE

Results of O3 search

イロン イボン イヨン イヨン

- Distance range for PE
- Results of O3 search

FIG. 1. Sky locations of CCSNe analyzed in this paper. All were recorded within 30 Mpc during the third observing run of LIGO, Virgo, and KAGRA.

<ロ><日><日><日><日<</td>

- Distance range for PE
- Results of O3 search

イロン イボン イヨン イヨン

Szczepańczyk et al. (2024)

3

- Distance range for PE
- Results of O3 search

SN 2019ei

イロト イ団ト イヨト イヨト

- Distance range for PE
- Results of O3 search

Szczepańczyk et al. (2024)

< ロ > < 回 > < 回 > < 回 > < 回</p>

Kant

Space and time are the framework within which the mind is constrained to construct its experience of reality.

(日) (同) (日) (日) (日)

- ► GW detection should be possible for galactic SN, with rotation beyond the MW
- features such as PNS oscillations in the right frequency range
- interpretation of signal, in particular with rotation and magnetic fields, more difficult than merger chirps due to stochasticity
- Iong-term simulations can show features, production of templates limited
- ► detection and parameter analysis techniques are maturing → a nearby event would be very much appreciated to go beyond the current upper limits