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Introduction



Microphysics

Physics on scales much smaller than the dynamical scales of the problem of interest.

Clouds span km in size. Water droplets and drops span µm to mm.
Figure from Houze, Cloud Microphysics (2014). 2



Core-collapse Supernovae

Macrophysics:
• Iron core of a massive star
RFe core ∼ 105 km

• Collapses onto a PNS
RPNS ≲ 102 km

Microphysics:
• Nuclear interactions (rn ∼ 1 fm);
• Neutrino physics (λν ∼ 100 fm);
• Turbulence (l ∼ 10m?);
• Photons;
• Electrons;
• . . .

Goal: constrain subatomic physics from astrophysical observations.
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Basic Interactions from Astrophysical Observations

No direct method to determine ba-
sic interactions from observations!

?

?

Figures by Orduña, Kamiokande/IMB/Baskan and NASA GSFC & Caltech/MIT/LIGO Lab.
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Effective Models

QCD not solved! Use an Effective Model

Figures by Orduña and LIGO/Virgo. 5



Equations of State

Can’t solve the effective model over entire domain of the system.
Instead, we use an Equation of State!

Figures by Orduña and LIGO/Virgo. 6



What is an Equation of State?

An EOS is any thermodynamic equation relating properties of matter (state variables).

F = f (ρ,T ,Xi) , P = f (ρ,T ,Xi) , s = f (ρ,T ,Xi) , . . .

Relates the microscopic description of matter to its macroscopic properties.
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Equations of State

EOS is known or well constrained in some cases.

• Ideal gas: Pi(ρi,T ) = ρiT ;

Ptot =
∑
i

Pi(ρ,T )

• Photon gas:

Pγ =
1
3
U =

4
3
σT 4

• High-T and/or low-µ QCD.

• Dense plasmas (WDs, NS crusts):
• P = Pe + Pions.
• Degenerate non-relativistic electrons:

Pe ∝ ρ
5/3
e , if Ee ≫ T .

• Degenerate relativistic electrons:

Pe ∝ ρ
4/3
e , if Ee ≫ T .
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Equations of State

For CCSNe and NS mergers after contact: EOS is NOT well-constrained!

• High density:

1014 ≲ ρ ≲ 1016 g cm−3

• Large isospin asymmetry:

δ =
nn − np
nn + np

≳ 0.5

• High temperatures:

T ≳ fewMeV

• Conditions cannot be repro-
duced in laboratories.

• Strongly interacting many-
body systems can be very dif-
ficult to model.
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How to constrain the EOS on Earth

EOS constraints come from many sources:

• Nuclear properties, nuclear reactions and decays
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How to constrain the EOS on Earth

EOS constraints come from many sources:

• Heavy ion collision experiments and simulations
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How to constrain the EOS on Earth

EOS constraints come from many sources:

• Many-body calculations
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How to constrain the EOS on Earth

EOS constraints come from many sources:

• Simulations of dense matter
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How to constrain the EOS on Earth

EOS constraints come from many sources:

• Simulations of even denser matter
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EOS Constraints far from Earth



Zero-temperature beta-equilibrated EOS

NS EOS by Nättilä & Kajava. EOS unconstrained for ρ ≳ 1014 g cm−3.
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Pressure of Dense Matter

Figure from Fraga et al. (2015).
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Tolmann-Oppenheimer-Volkov Equations

Hydrostatic equilibrium in GR:

dm
dr

= 4πr2ϵ ,
dP
dr

= −(ϵ+ P)
m+ 4πr3P
r(r − 2m)

,
dΦ
dr

= −
1

ϵ+ P
dP
dr

.

• Three equations and four unknowns: ϵ(r), P(r),m(r),Φ(r).
• EOS is the fourth equation P ≡ P(ϵ).

Pressure as a function of stellar radius is set by (ϵ = ρ+ ε):

dP
dr

= −
Gρ(r)m(r)

r2

(
1+

ε(r) + P(r)
ρ(r)c2

)(
1+

4πr3P(r)
m(r)c2

)(
1−

2Gm(r)
rc2

)−1

Newtonian version: dP/dr = −Gρm/r2.
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TOV solutions for NSs

Mass-radius relationships obtained from TOV equation solutions for different EOS models.
Figure by Nättilä & Kajava
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NS Mass Measurements

NS mass measurement using Shapiro delay.
Figure from Dermorest et al. (2010).
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NS mass-radius measurements

Spacetime curvature allows measurements of NS mass and radius simultaneously.
Figure from Neutron Star Interior Composition Explorer Mission (NICER). 16



TOV solutions for NSs

From Evan O’Connor.
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Typical CCSNe Conditions

Figures from Ott (left) and Kiuchi (right).
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CCSNe and NS merger Conditions

Figures from Rosswog (left) and Kiuchi (right).
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Microphysics in Astrophysical Enviroments

Check if EOS is consistent with observations.
If not consistent: discard EOS!

cons
isten

t?

consistent?

Figures by Orduña, Kamiokande/IMB/Baskan and NASA GSFC & Caltech/MIT/LIGO Lab.
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Microphysics of CCSNe



Core-collapse Supernovae Review

• Massive star Fe/Ni core collapses under its
own weight:

• Central density: ρc ∼ 109−10g cm−3

• Temperature: T ∼ 1MeV
• Proton fraction: ye ∼ 0.50
• Radius: ∼ 109 cm.
• Mass: ∼ M⊙

• Collapse:
• time-scale: a few 100ms.
• electron capture and neutrino emis-

sion changes composition;
• nuclei are photo-dissociated.

⇒ in ∼ 3× 1055 nuclei decay into a PNS.

• Core becomes a protoneutron star (PNS):
• Central density: ρc ∼ 1014−15g cm−3

• Temperature: T ∼ 10− 100MeV
• Proton fraction: ye ≲ 0.25
• Radius: ∼ 3× 106 cm
• Mass: ∼ M⊙

• Outer stellar shells in freefall bounce off
PNS surface ⇒ shock wave forms:

• shock propagates outwards
• loses energy and stalls!
• if shock wave revived

⇒ successful SN.
• if shock wave not revived

⇒ failed SN.
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Role of the EOS in CCSNe

EOS affects:

• When the collapse starts, p + e− → n+ νe;
• When core-bounce occurs;
• Heat is produced during collapse;
• PNS mass, size, temperature, composition;
• Energy is transferred to the shock;
• PNS cooling rate;
• Neutrino production rate and their spectra;
• Gravitational wave signal;
• If/when there is a second collapse to a quark star or BH;
• Final compact star mass, radius, and composition or BH mass.
• . . .
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EOS Composition

Evolve composition directly:
• No thermodynamic equilibrium!
• No chemical equilibrium!
• Set initial composition and initial
conditions.

• Evolve network of reactions.
• How stellar evolution fromZAMS
to core-collapse is simulated.

• Resources increase very fast with
increasing number of nuclei and
reactions.

• Not recommended for CCSNe.

Kippenhahn diagramby Thielemann et al. (2018) for the evo-
lution of a non-rotating 15M⊙ with solar metalicity using
the GENEC code. 23



EOS Composition

Evolve thermodynamic conditions:
• Assume chemical equilibrium.
• Assume ensemble of nuclei in
Nuclear Statistical Equilibrium
(NSE). Approximately correct for

ρ ≳ 107 g cm−3

T ≳ 0.5MeV .

• Does not assume β-equilibrium:

p + e− ⇌ n+ νe Composition of Symmetric Nuclear Matter (SNM) at
ρ = 109 g cm−3. Figure by F.X. Timmes.
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EOS Model for Astrophysical Applications

To evolve a CCSN, need composition
and thermodynamic properties at:

103 g cm−3 ≲ρ ≲ 1015 g cm−3

10−2MeV ≲T ≲ 102MeV

0 ≲y ≲ 0.60

Over this large range, matter may
• behave like a gas, a liquid, or a solid;
• be in its ground state or in a highly

excited state;
• be degenerate or non-degenerate;
• be uniform or non-uniform (nuclei or

“pasta phase”);
• be isospin symmetric, proton rich or

very neutron rich;

Computing the EOS may be time consuming and computationally
expensive ⇒ use pre-computed tables and interpolate them.
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EOS Model for Astrophysical Applications

Low density:
• Matter is made of nucleons;
• Immersed in lepton + photon gas;
• Nucleons may cluster to form nuclei:
• Single nucleus approximation plus
representative light nucleus (αs).

• or ensemble of nuclei in NSE.
• Interactions:
• Coulomb;
• Surface;
• Excluded volume;
• Excitation energies;

High density:
• Uniform matter;
• Immersed in lepton + photon gas;
• Nucleons near saturation density;
• Interactions:
• ab initio models: χEFT
• phenomenological models: Skyrme
or Relativistic Mean Field.

• At higher densities, may include:
• heavy baryons (e.g. Λs, hyperons);
• pions, kaons, . . . ;
• quarks.
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EOS Model for Astrophysical Applications

In the transition from low density (nuclei) to high density (uniform nuclear matter) matter
may cluster in exotic shapes known as nuclear pasta.

Non-homogeneous nuclear pasta phases obtained by Semi-classical Molecular Dynamics simulations.
Adapted from Schneider et al. (2013, 2014), Caplan & Horowitz (2016), Lin et al. (2020). 27



EOS Model for Astrophysical Applications

Expected phases of nucleonic
matter for a range of density
(horizontal axis) and temperatu-
res (vertical axis). Figure from
Lattimer and Prakash (2016).
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General Purpose EOSs

How to compute a general-purpose EOS?

Decisions:

• Range in ρ, y , T .
• Relativistic vs Non-relativistic.
• Realistic vs Effective potentials.
• SNA vs NSE vs reaction networks.
• Particles to include: nucleons, muons,
pions, hyperons, quarks, ...

May combine different approaches:

• SNA over entire phase space;
• NSE over entire phase space;
• NSE with transition to SNA at high ρ;
• Reaction networks that transition to
NSE.
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General Purpose EOSs

Only a “few” finite temperature EOSs produced over the years.

Authors Year Model DoF Nuclei Tables
Lattimer & Swesty 1991 Skyrme npαA SNA 3+

H. Shen et al. 1998 RMF npαA SNA 1
Ishizuka et al. 2008 RMF npαAΛ(π) SNA 8
H. Shen et al. 2011 RMF npαA(Λ) SNA 2
Togashi et al. 2017 RMF npαA NSE 1
Furusawa et al. 2017 RMF npαA NSE 2
G. Shen et al. 2010 RMF npαA SNA+NSE 3
Hempel et al. 2013 RMF npαA NSE 6
Steiner et al. 2014 RMF npαA NSE 2
Banik et al. 2014 RMF npαAΛ(ϕ) NSE 2

Schneider et al. 2017 Skyrme npαA SNA(NSE) 12x2+
Schneider et al. 2019 Skyrme APR npαA SNA(NSE) 4+

Du et al. 2022 RMF npαA NSE 9+

Some of the general purpose EOSs publicly available.
See compose.obspm.fr and stellarcollapse.org 30

https://compose.obspm.fr/
stellarcollapse.org


Empirical Parameters

Specific energy density of nuclear matter:

ϵ(n,y) = ϵis(x) + δ2ϵiv(x) + O(δ4)

where δ = 1−2y , y =
np

np + nn
, and x =

n− nsat
3nsat

.

ϵis(x) = ϵsat +
1
2
Ksatx2 +

1
3!
Qsatx3 + . . . ,

ϵiv(x) = ϵsym + Lsymx

+
1
2
Ksymx2 +

1
3!
Qsymx3 + . . . .

Empirical parameters may be cons-
trained by experiments, theory, and
observations.

Quantity Exp./Theor. Units
nsat 0.155±0.005 fm3

ϵsat −15.8±0.3 MeV
ϵsym 32±2 MeV
Lsym 60±15 MeV
Ksat 230±20 MeV
Ksym −100±100 MeV
Qsat 300±400 MeV
Qsym 0±400 MeV

Constraints from Margueron et al. (2018). 31



Symmetry Energy

δ = 0 ⇒ nn = np: Symmetric nuclear matter (SNM)
δ = 1 ⇒ nn = n and np = 0: Pure neutron matter (PNM)
Symmetry energy: ϵsym = ϵiv = ϵPNM − ϵSNM

Meixner et al. (2013) and Guo et al. (2014) 32



Empirical Parameters

Burgio et al. (2021)

• Top: SNM (y = 0.5 or δ = 0)
• Middle: PNM (y = 0 or δ = 1)
• Bottom: Symmetry Energy
• Left: Microscopic Models
• Right: Phenomenological Models
Microscopic Models:
good at low-ρ & for PNM.
Phenomenological Models:
fit at n ∼ nsat and y ∼ 0.5
⇒ do not do well for PNM.
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Empirical Parameters

Burgio et al. (2021)

• Top: PNM (y = 0 or δ = 1)
Orange: PNM EOS from χEFT.

• Bottom: Symmetry Energy
Green: constraints from HIC.

• Left: Microscopic Models
• Right: Phenomenological Models
Microscopic Models:
good at low-ρ & for PNM.
Phenomenological Models:
fit at n ∼ nsat and y ∼ 0.5
⇒ do not do well for PNM.
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Skyrme Parametrization of Nuclear Forces

Used in the Lattimer & Swesty (1991) EOS:

• Nuclear matter is made of nucleons (protons and neutrons);
Non-relativistic & immersed in lepton + photon gas;

• Nuclear matter has surface tension⇒ nucleons cluster to form nu-
clei.

• The specific energy density of nucleons is:

ϵ(n,y,T ) = ϵkin(n,y,T ) + ϵpot(n,y) .

• Temperature dependence only in kinetic term ϵkin.
• Potential term ϵpot depends solely density n and composition y .

The SRO EOSa is based on the Lattimer & Swesty EOS.

aexercises this afternoon 35



Kinetic Energy Term

ϵkin(n,y,T ) =
1
n

(
 h2τn

2m⋆
n
+

 h2τp

2m⋆
p

)

• Nucleon kinetic energy density:

τt =
1
2π2

(
2m⋆

t T
 h2

) 5
2

F3/2(ηt)

where

lim
T→0

τt =
3
5

(
3π2nt

)2/3
nt .

• F3/2(ηt) is a Fermi integral of ηt .
• ηt is the nucleon degeneracy parameter.

• Simple density dependent nucleon effec-
tive mass m⋆

t (observable):

 h2

2m⋆
t
=

 h2

2mt
+ α1nt + α2n−t .

• αi are parameters of the model.
• If t = n ⇒ −t = p and vice-versa.
• Nucleon vacuum masses mn and mp. 36



Nucleon Effective Mass

The m⋆
t affect the temperature dependence of the EOS!

Possible complicated behavior not captured by simple Skyrme model.

Left: effective mass
model from Raithel et
al. (2023) and Schnei-
der et al. (2020).
Right: effective mass
model from Huth et
al. (2020) based on re-
sults from Carbone &
Schwenk (2019).
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The Potential Energy Term

ϵpot(n,y) =
1
n

N∑
i=0

[ai + 4biy(1− y)] nδi+1 .

N , ai , bi , and δi are parameters set by nuclear physics observables.

In the Lattimer & Swesty EOS:

• Set α1 = α2 = 0 ⇔ m⋆
t = mt .

• Set N = 1, δ0 = 1, b1 = 0.
• Compute a0, a1, b0, δ1 from

nsat = 0.155 fm3

ϵsat = −16MeV/baryon

ϵsym = 29.3MeV/baryon

Ksat = 180, 220, 375MeV/baryon
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Watershed Moment

The Lattimer & Swesty EOS (1991):
• Open-source Fortran code!
• First widely available tables for astrophysical applications.
• Before: each group had their EOS for their own usage.
• Phenomenological Skyrme parametrization of the nuclear forces.
• Contains:

• protons and neutrons;
• alpha particles;

• electrons and positrons;
• photons.

• Leptons and photons form a background gas.
• Three tables available: LS180, LS220, and LS375.
• LS220 still widely used in simulations of CCSNe and NS mergers.
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The SROEOS code

The SRO EOS code
• by Schneider, Roberts, and Ott (2017).
• Based on the Lattimer & Swesty EOS.
• Open-source and (somewhat) modular.
• See also APR EOS by Schneider et al. (2019).

Working on v2 with
Finia Jost and
Almudena Arcones.

Improvements over other works:
• “Easy” to produce new tables.
• Allows studies with systematic
variations in the EOS.

• Transitions from SNA to NSE.

Limitations:
• Limited to nucleons;
• Non-relativistic interactions;
• Crude SNA to NSE transition.
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The SROEOS code

By setting m⋆
t in two different places of parameter space we can obtain αi .

• Effective mass for SNM (y = 1/2 or δ = 0) at nsat:

m⋆ = m⋆
n(n = nsat,y = 1/2) ≃ m⋆

p(n = nsat,y = 1/2) = 0.75(10)mn

• Effective mass splitting for PNM (y = 0 or δ = 1) at nsat:

∆m⋆ = mn(n = nsat,y = 0) −mp(n = nsat,y = 0) = 0.10(10)
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The SROEOS code

Set Empirical Parameters⇒ obtain Skyrme Parametrization

• Set N = 3 in the potential energy summation.
• Fix exponents: δ0 = 1, δ1 = 4/3, δ2 = 2, and δ3 = 7/3.
• Obtain ai , bi from 8 nuclear physics constraints.

Constraints:

• Nuclear Saturation Density: nsat = 0.155(5) fm3

• Binding energy at nsat ϵsat = −15.8(3)MeV/baryon
• Symmetry energy at nsat: ϵsym = 32(2)MeV/baryon
• Slope of the symmetry energy ϵsym = 32(2)MeV/baryon
• Isoscalar incompressibility: Ksat = 230(20)MeV/baryon
• Isovector incompressibility: Ksym = −100(100)MeV/baryon
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The SRO EOS tables

Higher order parameters from ϵ(n,y) are not well determined
Use other constraints that limit the EOS at high density!

Pressure of
SNM (left) and
of PNM (right)
obtained from a
heavy ion colli-
sion analysis of
Danielewicz et
al. (2002).
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SRO EOSs

Schneider et al. (2019). See also Yasin et al. (2020).
Study EOS effects in 4 sets of 25 EOSs:

Analyze ±1σ and ±2σ changes in two quantities at a time.

Set Quantity x Exp/Theory Schneider+2019 Units
sM m⋆

n(nsat,1/2) 0 0.75±0.10 0.75±0.10 mn

∆m⋆(nsat,0) 0 0.10±0.10 0.10±0.10 mn

- nsat 0 0.155±0.005 0.155 fm−3

ϵsat 0 −15.8±0.3 −15.8 MeV baryon−1

sS ϵsym 0 32±2 32±2 MeV baryon−1

Lsym 0 60±15 45±7.5 MeV baryon−1

sK Ksat 0 230±20 230±15 MeV baryon−1

Ksym 0 −100±100 −100±100 MeV baryon−1

sP P(4)
SNM 1 100±50 125±12.5 MeV fm−3

P(4)
PNM 1 160±80 200±20 MeV fm−3

EOS constraints from Margueron et al. (2018) and Danielewicz et al. (2002). 44



Helmholtz Free Energy

Once parametrization has ben chosen:
⇒ Minimize Helmholtz Free Energy

F (n,y,T ) = Fo + Fh + Fα + Fe + Fγ

• o: nucleon gas (outside)
• h: nucleons in heavy nuclei
• α: alpha particles
• e: leptons (e− & e+)
• γ: photons

Heavy nuclei free energy:

Fh = Fi + FS + FC + FT

• Fi ≡ nucleons inside heavy nuclei
• FS ≡ surface free energy
• FC ≡ coulomb free energy
• FT ≡ translational free energy
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Heavy Nuclei Free Energy

Model of each component:
• Electrons, positrons and photons:

• background uniform gas;
• solve exactly

• Nucleons:
• Skyrme-type interaction.
• Free gas and/or heavy nuclei.

• Alpha particles⇒ hard spheres.
Figure from Lattimer and Prakash (2016).

Solve system of equations for uniform (I and III) and non-uniform (II)
phases and either use the one with lowest free energy or, if both

solutions exist, combine the two (Maxwell construction).
46



Helmholtz Free Energy

Uniform System

Minimize F (n,y,T ) w.r.t.
• free proton density npo;
• free neutron density nno;
• α particle density nα.

Solve one equilibrium equation:
• Equilibrium between µα, µn, & µp.

Eq. bound by two constraints:
• Total density (n) is sum of all densities;
• Total charge density (ny) is sum of all charges.

Solve for Phase I⇒ Phase III recovered when nα → 0.
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Helmholtz Free Energy

Non-Uniform System

Minimize F (n,y,T ) w.r.t.
• free proton density npo;
• free neutron density nno;
• α particle density nα;
• neutrons in heavy nuclei nni ;
• protons in heavy nuclei npi ;
• heavy nucleus size r ;
• unit cell size R or occupied

volume by heavy nuclei u.

Solve three equilibrium equations relating
• Pressure,
• chemical potential of protons, and
• chemical potential of neutrons,

inside and outside heavy nuclei.

Eqs. bound by four constraints:
• Equilibrium between µα, µn, & µp.
• Total density (n) is sum of all densities;
• Total charge density (ny) is sum of all charges.
• Nuclei size r and u set by virial theorem.
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Surface Tension

For nuclei in the SNA, we need to know surface tension of nuclear matter.

Two semi-infinite slabs of nuclear mat-
ter separated by a surface:

High density:
• nni
• npi

Low density:
• nno
• npo

Set T and yi and solve equilibrium equations:

Pi = Po ,

µni = µno ,

µpi = µpo ,

yi =
npi

nni + npi

This only determines equilibrium between two different densities!
We still need to determine the shape of the nuclear surface.
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Surface Tension

Assume density has the form

nt(z) = nto +
nti − nto

1+ exp ((z − zt)/at)

(Woods-Saxon form for
Nuclear potential!)

Set zp = 0 and solve for zn, an, ap
that minimize the surface tension:

0.0

0.2

0.4

0.6

0.8

-3 -2 -1 0 1 2 3 4

nni

nno

npi

npo

∆R

n
/n

0

z (fm)

np
nn

0.0

0.2

0.4

0.6

0.8

-3 -2 -1 0 1 2 3 4

1
σ(yi,T ) =

∫+∞
−∞

[
FB(z) + ES(z) + Po − µnonn(z) − µponp(z)

]
dz .

ES(z) =
1
2

[
qnn (∇nn)

2 + qnp∇nn ·∇np + qpn∇np ·∇nn + qpp
(
∇np

)2 ]
50



Surface Tension

Surface tension can be fit by

σ(yi,T ) = σsh (yi,T )
2 · 2λ + q

y−λ
i + q + (1− yi)−λ

,

where σs ≡ σ(0.5,0) and

h (yi,T ) =


[
1−

[
T

Tc(yi)

]2]p
, T ⩽ Tc(yi) ;

0 , otherwise .

Could use observables (e.g. neutron skin
thickness) to compute surface tension.
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Pasta Phases

Figura 1: PTP 71 320 (1984): dimensionality of nuclei depends on density.
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Pasta Phases

Including the shape of nuclei:

FS =
3s(u)
r

σ(yi,T )

FC =
4πα
5

(yinir)2c(u).

• s(u): surface shape function
• c(u): Coulomb shape function
• r : generalized nuclear size
• σ(yi,T ): surface tension per unit area

Shape function depend on topology of matter!

Using the nuclear virial Theorem: FS = 2FC

r =
9σ
2β

[
s(u)
c(u)

]1/3
where β = 9

[πα
15

]1/3
(yiniσ)

2/3

we can combine surface and coulomb terms:

FS + FC = β
[
c(u)s(u)2

]1/3 ≡ βD(u).

where D(u) depends on the topology of nuclei.
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Pasta Phases6

TABLE III: The core-crust transition densities in units of
fm−3 from various nuclear model combinations. References
are for the finite nuclei calculations.

Model Skχ414 Skχ450 Skχ500 Ref.

SLy4 0.03562 0.03556 0.03481 [70]

HFB-24 0.04256 0.04291 0.04025 [71]

FRDM 0.05140 0.05196 0.04612 [72]

DZ 0.04471 0.04512 0.04172 [73]

D1S 0.03505 0.03524 0.03436 [74]

tron matter equations of state described in Section II.
Note that the Gogny D1S mass model consistently gives
the lowest transition density, which is related to the rela-
tively fast approach to neutron drip in the model. We ob-
serve that the uncertainty in the transition density com-
ing from the choice of nuclear mass model is much larger
than that from the choice of the bulk matter equation of
state. This is due to the fact that at these relatively low
values for the transition density, the chiral effective field
theory expansion of the nuclear equation of state is well
converged [58].

Overall, the use of a nuclear mass table together with
the bulk matter equation of state is a rather crude
method to obtain the neutron star crust-core phase
boundary. We will show in more detail below that the
model predicts a transition density that is too small,
since each mass table only accounts for the possibility
of neutron-rich nuclei in the Wigner-Seitz cell for which
the neutron chemical potential is less than zero. In the
inner crust of neutron stars, the neutron chemical poten-
tial is greater than zero as neutrons drip out of heavy
nuclei to form the free gas of neutrons. Thus, the mass
information of finite nuclei is only useful to describe the
neutron star outer crust [69].

B. Compressible Liquid Drop Model

A more realistic approach to study the neutron star
inner crust equation of state is to utilize the liquid drop
model (LDM) in the Wigner-Seitz cell approximation.
The energy density used to obtain the ground state of
inhomogeneous nuclear matter in the crust of a neutron
star can be written as

ε = unifi +
σ(xi)ud

rN
+ 2π(nixierN )2ufd(u)

+ (1− u)nnofno ,

(10)

where u is the filling factor (the fraction of space taken
up by a heavy nucleus in the Wigner-Seitz cell), ni is
the number density of heavy nuclei, xi is the proton frac-
tion, fi represents the volume contribution to the energy
per baryon in the heavy nucleus obtained from the new
Skyrme parametrizations, σ(xi) is the surface tension as
a function of the proton fraction, rN is the heavy nu-
cleus radius, nno is the density of the unbound neutron
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u
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f d 9
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Spherical bubble
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FIG. 5: (Color online) Shape function D(u) for discrete di-
mension and continuous dimension. The continuous dimen-
sion curve always lies below those of the discrete geometries.

gas, fno is the energy density of the neutron gas, and fd
is a geometric function describing the Coulomb interac-
tion [43] for different dimensions d. The surface tension
is given explicitly by

σ(x) = σ0
2α+1 + q

(1− x)−α + q + x−α
, (11)

where q parametrizes how quickly the surface tension de-
creases as a function of the proton fraction x. Larger
values of q correspond to more gradual decreases in the
surface tension for neutron-rich nuclei. The parame-
terization of the surface tension in Eq. (11) avoids the
problem of negative values that can occur for highly
neutron-rich nuclei when a simple quadratic formula for
the surface tension is used [75]. The numerical values
of σ0 and q are fitted to give the lowest root-mean-
square deviation to known nuclear masses. For the
three chiral interactions n3lo414, n3lo450 and n3lo500,
we find σ0 = {1.311, 1.186, 1.233}MeV-fm−2 and q =
{40.362, 46.748, 69.413}, respectively. In all cases α =
3.4 is used since it is adequate in describing both iso-
lated nuclei and nuclei in dense matter.

The Coulomb energies for different nuclear geometries
(e.g., cylindrical or planar) are encoded in the function

fd(u) =
1

d+ 2

[
2

d− 2

(
1− 1

2
du1−2/d

)
+ u

]
. (12)

The case d = 3 corresponds to spherical shape, d = 2 to
cylindrical shape, and d = 1 to slab shape. The equation
for spherical bubble geometry can be obtained with the
replacement uσ → (1− u)σ and ufd(u)→ (1− u)fd(1−
u). For a given baryon number density n and proton
fraction Yp, we solve the following equations for the four
unknowns {u, ni, xi, nno}:

µni −
xiσ
′(xi)d

rNni
= µno , (13a)

Total energy as a function of volume occupied by dense matter for different
topologies.

Figure by Lim and Holt (2017).
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Pasta Phases

Lattimer & Swesty interpolate D(u) with

D(u) = u(1− u)
(1− u)D(u)1/3 + uD(1− u)1/3

u2 + (1− u)2 + 0.6u2(1− u)2

where D(u) = 1− 3
2u

1/3 + 1
2u.

• u → 0 reproduces free energy of spherical nuclei
• u → 1 reproduces free energy of “bubble nuclei”
• intermediate u reproduces free energy of other phases:
cylinders, slabs, and cylindrical holes.
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Nuclear Statistical Equilibrium

As u → nuclei are so far apart that they may be consider point particles.

Consider ensemble of nuclei i immersed in a dilute gas of nucleons.
Chemical equilibrium results in:

µi = mi + Ec,i + T log

[
ni
gi

(
2π
miT

)3/2
]
= Ziµp + (Ai − Zi)µn .

Solve for µn and µp to obtain total (1) density n and (2) charge density ny .

Just two equations to solve, but need to compute µi for all nuclei.
Partition functions of nuclei gi difficult to obtain.
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NSE or SNA

Why NSE?

• SNA properties can differ from actual properties of nuclei;
• No pairing nor shell closure;
• Neglects many-body effects;
• . . .

Why SNA?

• NSE breaks down close to nuclear saturation density;
• Very large and/or very neutron rich nuclei not determined.
• No nuclear inversion (pasta phase).
• . . .
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Combining NSE and SNA

Use ad-hoc procedure to mix NSE and SNA free energies:

fMIX = χ(n)fSNA + [1− χ(n)]fNSE.

Chose χ(n) such that:

χ(n) →0, if n ≪ n0

χ(n) →1, if n ≳ n0/10

Corrections to thermodynamic quantities, e.g.

PMIX = n2
∂(fMIX)

∂n

∣∣∣∣
T ,y

= χ(n)PSNA + [1− χ(n)]PNSE + n2
∂χ(n)
∂n

(fSNA − fNSE) .

EOS is self consistent!
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Final Nuclear Equation of State

-8 -7 -6 -5 -4 -3 -2 -1 0 1

log10[n (fm−3)]

NSE EoS

NSE

+

SNA

SNA EoS

High-ρ

EoS

1Components of Nuclear EOS combining NSE and SNA.

Once the Nuclear EOS has
been obtained:
• Add lepton EOS;
• Add photon EOS;
• Write desired quantities
to a table;

• Compute neutrino scatte-
ring table for EOS;

• Use tables in simulations!
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Limitations

Limitations of our approach:

• Non-relativistic Skyrme model;
• Hadron sector only considers nucleons;
• Lepton sector only considers electrons;
• Simple effective mass behavior;
• “Pasta” has no shell and no pairing effects;
• “Pasta” depend on interpolation function;
• Only alphas as representative light nucleus;
• Alphas in a hard sphere approximation;

• Some properties of NSE nuclei unknown;
• Partition functions difficult to obtain;
• Free nucleons do not interact in NSE;
• SNA transition toNSE not entirely consistent;
• . . .
• Code comments and documentation limited;
• Replacing modules not straightforward.

Next version of the code will (hopefully) fix some of these issues.
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