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   Covariant Density Functional Theory
Empirical parameters calibrated to physical observables
Ground state properties emerge from functional minimization
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Neutron Stars meet Bayesian Inference 
Model Building for the understanding of atomic nuclei and neutron stars

Although the basic equations can be written in a coffee 
cup, their exact solution in the region of interest to 
atomic nuclei and neutron stars are unknown 
One must then resort to models that (hopefully!) 
embody the properties of QCD 
One such model is Density Functional Theory

Quantum Chromodynamics (QCD) IS 
the fundamental theory of the strong interactions
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A Brief Introduction to Machine Learning

… it has to be brief since I am just learning it myself …



The Tools of the Trade
Chiral Effective Field Theory

A theory of nucleons, pions, and unresolved  
contact interactions 
Systematic, Improvable, and quantifiable 
Breaks down at ~1.5 normal nuclear density

117/13/22

Chiral Effective Field Theory

Weinberg, van Kolck, Kaplan, Savage, Wise, 
Epelbaum, Kaiser, Machleidt, Meißner, Hammer ...

(2 LECs)

(7 LECs)

(12 LECs)

(2 LECs: 3N)

Holt et al., PPNP 73 (2013)
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Quantum chromodynamics,
familiarly called QCD, is

the modern theory of the
strong interaction.1 Historic-
ally its roots are in nuclear
physics and the description of
ordinary matter—understand-
ing what protons and neu-
trons are and how they inter-
act. Nowadays QCD is used to
describe most of what goes on at high-energy accelerators.

Twenty or even fifteen years ago, this activity was
commonly called “testing QCD.” Such is the success of the
theory, that we now speak instead of “calculating QCD
backgrounds” for the investigation of more speculative
phenomena. For example, discovery of the heavy W and Z
bosons that mediate the weak interaction, or of the top
quark, would have been a much more difficult and uncer-
tain affair if one did not have a precise, reliable under-
standing of the more common processes governed by
QCD. With regard to things still to be found, search
strategies for the Higgs particle and for manifestations of
supersymmetry depend on detailed understanding of pro-
duction mechanisms and backgrounds calculated by
means of QCD.

Quantum chromodynamics is a precise and beautiful
theory. One reflection of this elegance is that the essence
of QCD can be portrayed, without severe distortion, in the
few simple pictures at the bottom of the box on the next
page. But first, for comparison, let me remind you that the
essence of quantum electrodynamics (QED), which is a
generation older than QCD, can be portrayed by the sin-
gle picture at the top of the box, which represents the
interaction vertex at which a photon responds to the pres-
ence or motion of electric charge.2 This is not just a
metaphor. Quite definite and precise algorithms for calcu-
lating physical processes are attached to the Feynman
graphs of QED, constructed by connecting just such inter-
action vertices.

In the same pictorial language, QCD appears as an
expanded version of QED. Whereas in QED there is just
one kind of charge, QCD has three different kinds of
charge, labeled by “color.” Avoiding chauvinism, we might
choose red, green, and blue. But, of course, the color
charges of QCD have nothing to do with physical colors.
Rather, they have properties analogous to electric charge.
In particular, the color charges are conserved in all phys-
ical processes, and there are photon-like massless parti-
cles, called color gluons, that respond in appropriate ways

to the presence or motion of
color charge, very similar to
the way photons respond to
electric charge.

Quarks and gluons
One class of particles that
carry color charge are the
quarks. We know of six differ-
ent kinds, or “flavors,” of

quarks—denoted u, d, s, c, b, and t, for:  up, down,
strange, charmed, bottom, and top. Of these, only u and d
quarks play a significant role in the structure of ordinary
matter. The other, much heavier quarks are all unstable.
A quark of any one of the six flavors can also carry a unit
of any of the three color charges. Although the different
quark flavors all have different masses, the theory is per-
fectly symmetrical with respect to the three colors. This
color symmetry is described by the Lie group SU(3). 

Quarks are spin-1/2 point particles, very much like
electrons. But instead of electric charge, they carry color
charge. To be more precise, quarks carry fractional elec-
tric charge (+ 2e/3 for the u, c, and t quarks, and – e/3 for
the d, s, and b quarks) in addition to their color charge.

For all their similarities, however, there are a few
crucial differences between QCD and QED. First of all,
the response of gluons to color charge, as measured by the
QCD coupling constant, is much more vigorous than the
response of photons to electric charge. Second, as shown
in the box, in addition to just responding to color charge,
gluons can also change one color charge into another. All
possible changes of this kind are allowed, and yet color
charge is conserved. So the gluons themselves must be
able to carry unbalanced color charges. For example, if
absorption of a gluon changes a blue quark into a red
quark, then the gluon itself must have carried one unit of
red charge and minus one unit of blue charge.

All this would seem to require 3 × 3 = 9 different
color gluons. But one particular combination of gluons—
the color-SU(3) singlet—which responds equally to all
charges, is different from the rest. We must remove it if
we are to have a perfectly color-symmetric theory. Then
we are left with only 8 physical gluon states (forming a
color-SU(3) octet). Fortunately, this conclusion is vindicat-
ed by experiment!

The third difference between QCD and QED, which is
the most profound, follows from the second. Because glu-
ons respond to the presence and motion of color charge
and they carry unbalanced color charge, it follows that
gluons, quite unlike photons, respond directly to one
another. Photons, of course, are electrically neutral.
Therefore the laser sword fights you’ve seen in Star Wars
wouldn’t work. But it’s a movie about the future, so maybe
they’re using color gluon lasers.

We can display QCD even more compactly, in terms of
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QCD MADE SIMPLE
Quantum chromodynamics is

conceptually simple. Its realization
in nature, however, is usually
very complex. But not always.

Frank Wilczek
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are compared with their measured values. The agreement
is encouraging.

Such calculations clearly demonstrate that confine-
ment and chiral-symmetry breaking are consequences of
solving the equations of QCD. The calculations show us no
massless gluons, nor any fractionally charged particles,
nor the enlarged multiplets that would indicate unbroken
chiral symmetry. Just the observed particles, with the
right properties—neither more nor less.

While these and other massive numerical calcula-
tions give impressive and useful results, they are not the
end of all desire. There are many physically interesting
questions about QCD for which the known numerical
techniques become impractical. Also, it is not entirely sat-
isfying to have our computers acting as oracles, delivering
answers without explanations.
! The second approach is to give up on solving QCD
itself, and to focus instead on models that are simpler to
deal with, but still bear some significant resemblance to
the real thing. Theorists have studied, for example, QCD-
like models in fewer dimensions, or models incorporating
supersymmetry or different gauge groups, and several
other simplified variants. Many edifying insights have
been obtained in this way. By their nature, however, such
modelistic insights are not suited to hard-nosed con-
frontation with physical reality.
! The third approach, which is the subject of the rest of
this article, is to consider physical circumstances in which
the equations somehow become simpler.

Extreme virtuality
The most fundamental simplification of QCD is illustrat-
ed in figure 3. There we see, on the left, the jet-like
appearance of  collision events in which strongly interact-
ing particles (hadrons) are produced in electron–positron
annihilations at high energy. One finds many particles in
the final state, but most of them are clearly organized into
a few collimated “jets” of particles that share a common

direction.6 In about 90% of these hardron-producing
events, there are just two jets, emerging in opposite direc-
tions. Occasionally—in about 9% of the hadronic final
states—one sees three jets.

Compare those multiparticle hadronic events to colli-
sions in which leptons, say muons, are produced. In that
case, about 99% of the time one observes simply a muon
and an antimuon, emerging in opposite directions. But
occasionally—in about 1% of the muonic final states—a
photon is emitted as well.

If history had happened in a different order, the
observation of jet-like hadronic final states would surely
have led physicists to propose that they manifest under-
lying phenomena like those displayed on the right-hand
side of figure 3. Their resemblance to leptonic scattering
and QED would be too striking to ignore.

Eventually, by studying the details of how energy was
apportioned among the jets, and the relative probabilities
of different angles between them, the physicists would
have deduced directly from experimental data that there
are light spin-1/2 and massless spin-1 objects lurking
beneath the appearances, and how these covert objects
couple to one another. By studying the rare 4-jet events,
they could even have learned about the coupling of the
spin-1 particles to each other. So all the basic couplings we
know in QCD might have been inferred, more or less
directly, from experiment. But there would still be one big
puzzle: Why are there jets, rather than simply particles?

The answer is profound, and rich in consequences. It
is that the strength with which gluons couple depends
radically on their energy and momentum. “Hard’’ gluons,
which carry a lot of energy and momentum, couple weak-
ly; whereas the less energetic “soft’’ gluons, couple strong-
ly. Thus, only rarely will a fast-moving colored quark or
gluon emit “radiation” (a gluon) that significantly redi-
rects the flow of energy and momentum. That explains the
collimated flows one sees in jets. On the other hand, there
can be a great deal of soft radiation, which explains the

.

FIGURE 1. THE QCD LAGRANGIAN ⇒ displayed here is, in principle, a complete description of the strong interaction. But, in
practice, it leads to equations that are notoriously hard to solve. Here m

j
and q

j
are the mass and quantum field of the quark of jth

flavor, and A is the gluon field, with spacetime indices m and n and color indices a, b, c. The numerical coefficients f and t guaran-
tee SU(3) color symmetry. Aside from the quark masses, the one coupling constant g is the only free parameter of the theory.
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The equation of state

Credit: N. Wex

Large number of neutron-star equations of state 
available in the literature, but which ones are “good”?

• They do not provide any theoretical uncertainty 
estimates.

• They are not constructed based on some 
fundamental guiding principle; hence, it is not 
clear how to improve them systematically.

?
Sketch! Constraints:

• At low densities from nuclear theory and 
experiment.

• At very high density from pQCD.

• No robust constraints at intermediate densities 
from nuclear physics!

see, e.g., Kurkela, Vuorinen et al.
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A Desert!

    How to link cEFT to pQCD  
 
Lattice QCD at finite density (               )  
Covariant Density Functional Theory 
(Relativistic MFT with a slight twist) 

<latexit sha1_base64="Xb/kwlBXaq6ntZOLrIFBr8a8GJA=">AAAB+HicdVDLSsNAFJ34rPXRqEs3U4vgKiYxtnVXdOOyQl/QhDKZTtqhkwczE6GGfokbF4q49VPc+TdO2goqei4XDufcy9w5fsKokKb5oa2srq1vbBa2its7u3slff+gI+KUY9LGMYt5z0eCMBqRtqSSkV7CCQp9Rrr+5Dr3u3eECxpHLTlNiBeiUUQDipFU0kAvuWF61nLLqhhzy9ZAr5jGZb1qO1VoGqZZs2wrJ3bNOXegpZQcFbBEc6C/u8MYpyGJJGZIiL5lJtLLEJcUMzIruqkgCcITNCJ9RSMUEuFl88Nn8EQpQxjEXHUk4Vz9vpGhUIhp6KvJEMmx+O3l4l9eP5VB3ctolKSSRHjxUJAyKGOYpwCHlBMs2VQRhDlVt0I8RhxhqbIqqhC+fgr/Jx3bsKrGxa1TaVwt4yiAI3AMToEFaqABbkATtAEGKXgAT+BZu9cetRftdTG6oi13DsEPaG+fMZaSKg==</latexit>

µ/T⌧1



+ A=

G = G  + G    G0 0
Self-consistent DFT ground state

Covariant Density Functional Theory
Walter Kohn 

Nobel Laureate 
Chemistry 1998

Anatomy of a self-consistent Covariant DFT calculation
The Hohenberg-Kohn Theorem: The ground state energy  
can be obtained variationally: the density that minimizes  

the total energy is the exact ground state density

Empirical parameters calibrated to physical observables
Ground state properties emerge from functional minimization

From finite nuclei to neutron stars!

s: intermediate range scalar attraction (2p exchange) 
w: short-range vector repulsion (contact term in cEFT)  
r: isospin (flavor) dependent short-range interaction 
g: long-range Coulomb repulsion between protons 
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Covariant Density Functional Theory
Relativistic Density Functional: The Effective Lagrangian Density
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The Encoding:
gs and gv: saturation properties (⇢0 , "0 ! masses, charge radii)

g⇢: symmetry energy (J ⌘ a4 ! masses, charge radii)

 and �: nuclear compressibility (K0 ! ISGMR)

⇤v: slope symmetry energy (L! neutron skins, neutron-star radii)

⇣: high-density component of EOS (limiting neutron-star mass)
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From finite nuclei to neutron stars!
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Neutron Stars meet Bayesian Inference 
Model Building for the understanding of atomic nuclei and neutron stars

M: A theoretical MODEL with parameters and biases
D: A collection of experimental and observational DATA
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The Prior P(M): An insightful transformation in DFT

The Likelihood provides new evidence to update P(M)
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The marginal likelihood (or evidence) is an overall 
normalization factor in Monte Carlo simulations

Thomas Bayes  
(1701-1761)



HOW THE SAUSAGE IS MADE is the practical and often unpleasant 
or messy aspects of a process that are usually not made public.
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Given that the meson fields couple to their associated bilinear nucleon currents, the baryon
sources must also be replaced by their (normal-ordered) expectation values in the mean-field
ground state:

ψ̄ (x)ψ (x) → ⟨: ψ̄ (x)ψ (x) :⟩ = ρs(r), 3a.

ψ̄ (x)γ µψ (x) → ⟨: ψ̄ (x)γ µψ (x) :⟩ = gµ0ρv(r), 3b.

ψ̄ (x)γ µτaψ (x) → ⟨: ψ̄ (x)γ µτaψ (x) :⟩ = gµ0δa3ρ3(r), 3c.

ψ̄ (x)γ µτpψ (x) → ⟨: ψ̄ (x)γ µτpψ (x) :⟩ = gµ0ρp(r), 3d.

where ρs is the dynamically generated scalar density, ρv is the conserved isoscalar baryon density,
ρ3 is the isovector baryon density, and ρp is the proton density. In terms of the individual proton
and neutron densities, one can write ρv = ρp + ρn and ρ3 = ρp − ρn. We have introduced the
proton isospin projection operator as τ p = (1 + τ 3)/2. Using the above approximations, one can
now derive the associated Euler–Lagrangian equations of motion for a generic quantum field qi
(58):

∂µ

[
∂L

∂
(
∂µqi

)
]

− ∂L

∂qi
= 0. 4.

In the particular case of the Lagrangian density given in Equation 1, the classical meson fields
satisfy Klein–Gordon equations containing both nonlinear meson interactions and ground-state
baryon densities as source terms. That is,

(
∇2 −m2

s

)
φ0(r) −

∂Ueff

∂φ0
= −gsρs(r), 5a.

(
∇2 −m2

v

)
V0(r) +

∂Ueff

∂V0
= −gvρv(r), 5b.

(
∇2 −m2

ρ

)
b0(r) +

∂Ueff

∂b0
= −gρ

2
ρ3(r). 5c.

In turn, the Coulomb field satisfies the much simpler Poisson’s equation,

∇2A0 = −eρp, 6.

while the nucleons satisfy a Dirac equation with the meson fields generating scalar and time-like
vector mean-field potentials. That is,

[
−iα · ∇ + gvV0(r) +

gρ
2
τ3b0(r) + eτpA0(r) + β

(
M − gsφ0(r)

)]
ψ (r) = Eψ (r). 7.

The above set of equations—Equations 5–7—represents the effective KS equations for the nuclear
many-body problem. As such, this set of mean-field equations must be solved self-consistently.
That is, the single-particle orbitals satisfying the Dirac equation are generated from the various
meson fields, which in turn satisfy Klein–Gordon equations with the appropriate ground-state
densities as the source terms. This process demands an iterative procedure in which mean-field
potentials of theWood–Saxon form are initially provided to solve the Dirac equation for the occu-
pied nucleon orbitals, which are then combined to generate the appropriate densities for the me-
son field. The Klein–Gordon equations are then solved with the resulting meson fields providing
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Given that the meson fields couple to their associated bilinear nucleon currents, the baryon
sources must also be replaced by their (normal-ordered) expectation values in the mean-field
ground state:

ψ̄ (x)ψ (x) → ⟨: ψ̄ (x)ψ (x) :⟩ = ρs(r), 3a.

ψ̄ (x)γ µψ (x) → ⟨: ψ̄ (x)γ µψ (x) :⟩ = gµ0ρv(r), 3b.

ψ̄ (x)γ µτaψ (x) → ⟨: ψ̄ (x)γ µτaψ (x) :⟩ = gµ0δa3ρ3(r), 3c.

ψ̄ (x)γ µτpψ (x) → ⟨: ψ̄ (x)γ µτpψ (x) :⟩ = gµ0ρp(r), 3d.

where ρs is the dynamically generated scalar density, ρv is the conserved isoscalar baryon density,
ρ3 is the isovector baryon density, and ρp is the proton density. In terms of the individual proton
and neutron densities, one can write ρv = ρp + ρn and ρ3 = ρp − ρn. We have introduced the
proton isospin projection operator as τ p = (1 + τ 3)/2. Using the above approximations, one can
now derive the associated Euler–Lagrangian equations of motion for a generic quantum field qi
(58):

∂µ

[
∂L

∂
(
∂µqi

)
]

− ∂L

∂qi
= 0. 4.

In the particular case of the Lagrangian density given in Equation 1, the classical meson fields
satisfy Klein–Gordon equations containing both nonlinear meson interactions and ground-state
baryon densities as source terms. That is,

(
∇2 −m2

s

)
φ0(r) −

∂Ueff

∂φ0
= −gsρs(r), 5a.

(
∇2 −m2

v

)
V0(r) +

∂Ueff

∂V0
= −gvρv(r), 5b.

(
∇2 −m2

ρ

)
b0(r) +

∂Ueff

∂b0
= −gρ

2
ρ3(r). 5c.

In turn, the Coulomb field satisfies the much simpler Poisson’s equation,

∇2A0 = −eρp, 6.

while the nucleons satisfy a Dirac equation with the meson fields generating scalar and time-like
vector mean-field potentials. That is,

[
−iα · ∇ + gvV0(r) +

gρ
2
τ3b0(r) + eτpA0(r) + β

(
M − gsφ0(r)

)]
ψ (r) = Eψ (r). 7.

The above set of equations—Equations 5–7—represents the effective KS equations for the nuclear
many-body problem. As such, this set of mean-field equations must be solved self-consistently.
That is, the single-particle orbitals satisfying the Dirac equation are generated from the various
meson fields, which in turn satisfy Klein–Gordon equations with the appropriate ground-state
densities as the source terms. This process demands an iterative procedure in which mean-field
potentials of theWood–Saxon form are initially provided to solve the Dirac equation for the occu-
pied nucleon orbitals, which are then combined to generate the appropriate densities for the me-
son field. The Klein–Gordon equations are then solved with the resulting meson fields providing
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Covariant Density Functional Theory:  
From Finite Nuclei to Neutron Stars

The Kohn-Sham (Mean-field like) Equations
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TABLE III. Constrained energies EGMR =
√

m1/m−1 (in MeV)
for the GMR in 90Zr, 116Sn, 144Sm, and 208Pb obtained from exper-
iments at TAMU [62] and RCNP [63–67]. Theoretical results were
obtained by following the constrained RMF formalism developed in
Ref. [68].

Nucleus TAMU RCNP NL3 FSU FSU2

90Zr 17.81 ± 0.35 — 18.76 17.86 17.93 ± 0.09
116Sn 15.90 ± 0.07 15.70 ± 0.10 17.19 16.39 16.47 ± 0.08
144Sm 15.25 ± 0.11 15.77 ± 0.17 16.29 15.55 15.59 ± 0.09
208Pb 14.18 ± 0.11 13.50 ± 0.10 14.32 13.72 13.76 ± 0.08

Research Center for Nuclear Physics (RCNP) in Osaka, Japan
[63–67]. Here m1 and m−1 are suitable moments of the
strength distribution that represent the energy-weighted and
inverse-energy-weighted sums, respectively. The theoretical
results listed on the table were obtained by following the
constrained RMF formalism developed in Ref. [68]. Moreover,
it was found in Ref. [69] that pairing correlations have a very
minor impact on the GMR energies. Therefore, pairing was not
included in the case of the open-shell nuclei 116Sn and 144Sm.
The same information has been displayed in graphical form in
Fig. 1. Note that the red solid line in the figure represents a fit
to the FSU2 predictions of the form Efit = 72.8 A−0.31 MeV;
this compares favorably against the macroscopic expectation
of EGMR ≈ 80A−1/3 MeV [70,71]. We find both intriguing
and unsettling that the TAMU and RCNP data—particularly
for 208Pb—are inconsistent with each other. Given the critical
nature of this information, we trust that the discrepancy may be
resolved in the near future. In the meantime, and to account for
the experimental discrepancy, we have adopted slightly larger
errors in the optimization of the functional, namely, 2% for
90Zr and 1% for the rest.

90 116 144 208
A

13

14

15

16

17

18

19

E
G

M
R
(M

eV
)

TAMU
RCNP
NL3
FSU
FSU2

Efit=72.8A-0.31 MeV

FIG. 1. (Color online) Constrained giant monopole energies for
90Zr, 116Sn, 144Sm, and 208Pb. Experimental data were obtained
from experiments carried out at TAMU [62] and RCNP [63–67].
Theoretical predictions are presented for NL3 [8], FSUGold [10],
and FSUGold2 supplemented with theoretical errors. The red solid
line represents a best fit to the FSUGold2 predictions of the form
Efit = 72.8A−0.31 MeV.

Our results indicate that the predictions from FSU and
FSU2 are compatible with each other. This is consistent with
the notion that GMR energies probe the incompressibility
coefficient of SNM, that is, K (see Table IV). Moreover, with
the exception of 116Sn, both FSU and FSU2 reproduce the
experimental data, although they both favor the smaller RCNP
measurement in the case of 208Pb. Note that the answer to the
question of why tin is so soft [51,64,65] continues to elude
us to this day [69,72–78]. By the same token NL3, with a
significantly larger value of K than both FSU and FSU2,
overestimates the experimental data, except in the case of
the TAMU data for 208Pb [79]. Although, in principle, GMR
energies of neutron-rich nuclei probe the incompressibility
coefficient of neutron-rich matter [51], in practice the neutron-
proton asymmetry for these nuclei is simply too small to
provide any meaningful constraint on the density dependence
of the symmetry energy. This is the main reason behind the
agreement between FSU and FSU2, even though they predict
radically different values for the slope of the symmetry energy
L (see Table IV).

D. Neutron-star structure

The last observable that was included in the calibration
of the new FSU2 functional was the maximum neutron-star
mass. Displayed in Fig. 2 with horizontal bars are the two
most massive, and accurately measured, neutron stars [18,19].
Clearly, those observations place stringent constraints on the
high-density component of the EOS, as models that predict
limiting masses below 2M⊙—such as FSUGold—must be
stiffened accordingly. Therefore, for the optimization of the
FSU2 functional, we have adopted a value of Mmax = 2.10M⊙
with a relatively small 1% error. If required by future
observations, this input can be easily modified by a suitable
tuning of the quartic vector coupling constant ζ .

Also displayed in Fig. 2 are theoretical predictions for
the mass-vs-radius (M-R) relations for the three models
considered in the text. As alluded to earlier, with a stiff EOS
NL3 predicts large stellar radii and a maximum neutron-
star mass of almost 3M⊙. In contrast, FSUGold with a
relatively soft EOS predicts smaller values for both. The new
FSUGold2 functional displays a M-R relation that appears
intermediate between NL3 and FSUGold. In particular, after
the optimization we obtain a maximum stellar mass of Mmax =
(2.07 ± 0.02)M⊙, safely within the bounds set by observation.
Given the large impact that the quartic vector coupling constant
ζ has on the EOS at high densities, these results are totally
consistent with our expectations (see Table I). However, stellar
radii seem to be controlled by the density dependence of
the symmetry energy in the immediate vicinity of saturation
density [80]. Thus, models with large values of L tend to
predict neutron stars with large radii [47]. This is the main
reason behind the relatively uniform “shift” between FSU
and FSU2 (see Table IV). It is important to realize that no
observable highly sensitive to the density dependence of the
symmetry energy, such as the neutron-skin thickness of 208Pb
or stellar radii, was used in the calibration of FSU2. Such
a choice was deliberate, as at present there are no stringent
experimental or observational constraints on the isovector
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TABLE I. Model parameters for the newly optimized FSUGold2 relativistic EDF along with two accurately calibrated RMF models: NL3
[8] and FSUGold [10]. The parameter κ and the meson masses ms, mv, and mρ are all given in MeV. The nucleon mass has been fixed at
M = 939 MeV in all the models.

Model ms mv mρ g2
s g2

v g2
ρ κ λ ζ %v

NL3 508.194 782.501 763.000 104.3871 165.5854 79.6000 3.8599 −0.015 905 0.0000 0.000 000
FSU 491.500 782.500 763.000 112.1996 204.5469 138.4701 1.4203 +0.023 762 0.0600 0.030 000
FSU2 497.479 782.500 763.000 108.0943 183.7893 80.4656 3.0029 −0.000 533 0.0256 0.000 823

such case, the overall quality of the EDF would be poor, as
binding energies and charge radii would be well reproduced
at the expense of all remaining observables. Therefore, to
mitigate this deficiency one should manipulate the errors in
such a way that the relative weights of all observables be
commensurate with each other. By necessity, this implies some
“trial and error” as there is no clear choice for the optimal
protocol [26]. The choice of error for each observable adopted
in the fit is discussed below.

Once the objective function has been properly defined
by specifying a theoretical model and a set of observables
with properly defined errors, the Levenberg-Marquardt method
was used to obtain the optimal set of parameters p =
(ms,ρ0,ε0,M

∗,K,J,L,ζ ). In turn, the model parameters q may
be obtained from the transformation outlined in the Appendix.
The resulting set of model parameters for the newly built
functional FSUGold2 (or “FSU2” for short) are displayed in
Table I. Also shown for comparison are two canonical sets
of parameters, NL3 [8] and FSUGold (or “FSU” for short)
[10]. Given that the EOS for symmetric nuclear matter and
the symmetry energy are both stiff in the case of NL3 and

TABLE II. Experimental data for the binding energy per nucleon
(in MeV) [60] and charge radius (in fm) [61] for all the nuclei involved
in the optimization. Also displayed are the theoretical results obtained
with NL3 [8], FSUGold [10], and FSUGold2.

Nucleus Observable Experiment NL3 FSU FSU2

16O B/A 7.98 8.06 7.98 8.00
Rch 2.70 2.75 2.71 2.73

40Ca B/A 8.55 8.56 8.54 8.54
Rch 3.48 3.49 3.45 3.47

48Ca B/A 8.67 8.66 8.58 8.63
Rch 3.48 3.49 3.48 3.47

68Ni B/A 8.68 8.71 8.66 8.69
Rch — 3.88 3.88 3.86

90Zr B/A 8.71 8.70 8.68 8.69
Rch 4.27 4.28 4.27 4.26

100Sn B/A 8.25 8.30 8.24 8.28
Rch — 4.48 4.48 4.47

116Sn B/A 8.52 8.50 8.50 8.49
Rch 4.63 4.63 4.63 4.61

132Sn B/A 8.36 8.38 8.34 8.36
Rch 4.71 4.72 4.74 4.71

144Sm B/A 8.30 8.32 8.32 8.31
Rch 4.95 4.96 4.96 4.94

208Pb B/A 7.87 7.90 7.89 7.88
Rch 5.50 5.53 5.54 5.51

both soft for FSU, such a comparison is very informative.
However, when comparing these models, one should keep in
mind that different models are calibrated using different sets
of observables and associated errors. This introduces some
inherent biases into the models that ultimately become an
important source of systematic errors.

B. Ground-state properties

We start this section by displaying in Table II ground-state
binding energies and charge radii for all the nuclei involved
in the optimization. Experimental data for these observables
were obtained from the latest atomic-mass evaluation [60] and
charge radii compilation [61], respectively. In turn, the errors
assigned to the binding energies and charge radii are 0.1%
and 0.2%, respectively. As mentioned earlier, these adopted
errors are several orders of magnitude larger than the quoted
experimental uncertainties [60,61]. Only by doing so can one
prevent the optimization from being dominated by these two
ground-state observables. Also displayed in Table II are the
theoretical predictions from all three models. Because the
influence of pairing correlations in both the binding energies
and charge radii are very small, we did not take pairing into
consideration for the open-shell nuclei 116Sn and 144Sm. Note
that the theoretical errors predicted by FSU2 (of about 1 part
in 1000) are too small to be displayed in the table. Also note
that the quoted theoretical value for the charge radius was
obtained by adding to the extracted nuclear point proton radius
the intrinsic charge radius of the proton r = 0.8783(86) fm
[61]. That is, Rch = (R2

p + r2)1/2. We can see that both the
binding energies and charge radii are very well reproduced
by all the models. In the particular case of FSU2, with the
exception of the charge radius of 16O, the discrepancy relative
to experiment is less than 0.5%. The slightly larger than 1%
deviation in the case of 16O should not come as a surprise, as
with only 16 nucleons oxygen barely qualifies as a “mean field”
nucleus. It is important to stress that neither binding energies
nor charge radii have a significant impact on the stiffness of
the EOS. Indeed, NL3 and FSU predict significantly different
stiffness for the EOS (see below), yet they both reproduce fairly
accurately the experimental results for these two observables.

C. Giant monopole resonances

In optimizing the FSUGold2 functional, we have also
incorporated GMR energies for 90Zr, 116Sn, 144Sm, and
208Pb. In Table III we display constrained GMR energies
EGMR =

√
m1/m−1 extracted from measurements at the Texas

A&M University (TAMU) cyclotron facility [62] and at the
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Building relativistic mean field models for finite nuclei and neutron stars
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Background: Theoretical approaches based on density functional theory provide the only tractable method to
incorporate the wide range of densities and isospin asymmetries required to describe finite nuclei, infinite nuclear
matter, and neutron stars.
Purpose: A relativistic energy density functional (EDF) is developed to address the complexity of such diverse
nuclear systems. Moreover, a statistical perspective is adopted to describe the information content of various
physical observables.
Methods: We implement the model optimization by minimizing a suitably constructed χ2 objective function
using various properties of finite nuclei and neutron stars. The minimization is then supplemented by a covariance
analysis that includes both uncertainty estimates and correlation coefficients.
Results: A new model, “FSUGold2,” is created that can well reproduce the ground-state properties of finite nuclei,
their monopole response, and that accounts for the maximum neutron-star mass observed up to date. In particular,
the model predicts both a stiff symmetry energy and a soft equation of state for symmetric nuclear matter,
suggesting a fairly large neutron-skin thickness in 208Pb and a moderate value of the nuclear incompressibility.
Conclusions: We conclude that without any meaningful constraint on the isovector sector, relativistic EDFs
will continue to predict significantly large neutron skins. However, the calibration scheme adopted here is
flexible enough to create models with different assumptions on various observables. Such a scheme—properly
supplemented by a covariance analysis—provides a powerful tool to identify the critical measurements required
to place meaningful constraints on theoretical models.

DOI: 10.1103/PhysRevC.90.044305 PACS number(s): 21.60.Jz, 21.65.Cd, 21.65.Mn

I. INTRODUCTION

Finite nuclei, infinite nuclear matter, and neutron stars are
complex, many-body systems governed largely by the strong
nuclear force. Although quantum chromodynamics (QCD) is
the fundamental theory of the strong interaction, enormous
challenges have prevented us from solving the theory in the
nonperturbative regime of relevance to nuclear systems. To
date, these complex systems can be investigated only in the
framework of an effective theory with appropriate degrees of
freedom. Among the effective approaches, the one based on
density functional theory (DFT) is most promising, as it is the
only microscopic approach that may be applied to the entire
nuclear landscape and to neutron stars. In the past decades nu-
merous energy density functionals (EDFs) have been proposed
which can be grouped into two main branches: nonrelativistic
and relativistic. Skyrme-type functionals are the most popular
ones within the nonrelativistic domain, where nucleons inter-
act via density-dependent effective potentials. Using such a
framework, the Universal Nuclear Energy Density Functional
(UNEDF) Collaboration [1] aims to achieve a comprehensive
understanding of finite nuclei and the reactions involving them
[2–4]. On the other end, relativistic mean field (RMF) models,
based on a quantum field theory having nucleons interacting
via the exchange of various mesons, have been successfully
used since the 1970s and provide a covariant description of
both infinite nuclear matter and finite nuclei [5–10].

*wc09c@my.fsu.edu
†jpiekarewicz@fsu.edu

In the traditional spirit of effective theories, both nonrel-
ativistic and relativistic EDFs are calibrated from nuclear
experimental data that is obtained under normal laboratory
conditions, namely, at or slightly below nuclear saturation
density and with small to moderate isospin asymmetries.
The lack of experimental data at both higher densities and
with extreme isospin asymmetries leads to a large spread
in the predictions of the models, even when they may all
be calibrated to the same experimental data. Consequently,
fundamental nuclear properties, such as the neutron density
of medium-to-heavy nuclei [11–14], proton and neutron drip
lines [15,16], and a variety of neutron-star properties [17–19],
remain largely undetermined.

It has been a common practice for a long time to supplement
experimental results with uncertainty estimates. Indeed, no
experimental measurement could ever be published without
properly estimated “error bars.” Often, the most difficult part
of an experiment is a reliable quantification of systematic
errors, and improving the precision of the measurement
consists of painstaking efforts at reducing the sources of such
uncertainties. On the contrary, theoretical predictions merely
involve reporting a “central value” without any information on
the uncertainties inherent in the formulation or the calculation.
Thus, to determine whether a theory is successful or not, the
only required criterion is to reproduce the experimental data.
Although this approach has certain value—especially if the
examined model reproduces a vast amount of experimental
data—such a criterion is often neither helpful nor meaningful.
The situation becomes even worse if the predictions of an
effective theory are extrapolated into unknown regions, such
as the boundaries of the nuclear landscape and the interior

0556-2813/2014/90(4)/044305(17) 044305-1 ©2014 American Physical Society
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Emulators and Reduced Order Models

Emulators are statistical 
ML models that faithfully 
reproduce the behavior of 
a complex physical system 
at a “tiny” fraction of the 

computational cost!



Neutron Stars meet Bayesian Emulators
Today’s posterior is tomorrow’s prior! 

The influx of experimental/observational data will challenge future model building. 

Given that updates to the model are computationally expensive, an emulator provides  
an inexpensive and (hopefully) accurate alternative to the original high-fidelity model. 

Reduced order models — although widely used in other fields — are just making their  
entrance in the nuclear science arena.
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A “universal” reduced basis capable of accurately and efficiently  
reproduce the entire single-particle spectrum of a variety of nuclei  

at a small fraction in computational cost

Neutron Stars meet Bayesian Emulators
Reduced Basis Methods
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2. Solve the exact “high-fidelity” model for a few 
values of the model parameters l and collect all the 
the resulting eigenfunctions 
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 3. Implement a “singular value decomposition” 
(SVD)  to construct the low-dimensional 
orthonormal and universal reduced basis: 



A “universal” reduced basis capable of accurately and efficiently  
reproduce the entire single-particle spectrum of a variety of nuclei  

at a small fraction in computational cost!

Neutron Stars meet Bayesian Emulators
Reduced Basis Methods
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A “universal” reduced basis capable of accurately and efficiently  
reproduce the entire single-particle spectrum of a variety of nuclei  

at a small fraction in computational cost … and extrapolate!

Neutron Stars meet Bayesian Emulators
Reduced Basis Methods
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208Pb(Z=82, N=126)

FUTURE WORK
• Moving on

• White Dwarf Stars
• Neutron Stars

• Continuing
• Protons
• Different combinations of EIM

• Oganesson
<latexit sha1_base64="W6aAMr2M0BmfXDdL21Y5MD87LmA="></latexit>
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Heaven and Earth: Nuclear EOS Density Ladder 
No single method can constrain the EOS over the entire density 

domain. Instead, each rung on the ladder provides information that 
can be used to determine the EOS at neighboring rungs

2023  |  VERSION 1.1

How were the heavy  
elements from iron  
to uranium made? 

Are there new states  
of matter at ultrahigh  

temperatures and  
densities?

The Nuclear Physics  
of Neutron Stars

Cosmic Ladder



First Week: Heaven and Earth — Informing  
the Equation of State of NS Matter  

(Adriana, Anna, Concettina, Serena; Jorge) 
Second Week: Core Collapse Supernovae 

(Andre, Francesco, Martin, Moritz; Almudena) 
Third Week: Neutron Star Mergers 
(Albino, Alejandra, Om; Bruno)

Organizers  
Almudena Arcones (TU Darmstadt) ,  Bruno Giacomazzo (Univers i tà  degl i  Studi  d i  Mi lano-Bicocca) ,
Jorge Piekarewicz  (F lor ida  State  Univers i ty)

Student  coordinator  and Advisor
Bruno Giacomazzo

The school  is  t ru ly  mult id isc ip l inary  as  i t  addresses fundamental  quest ions in  f ie lds  as  d iverse as
astrophysics ,  gravi tat ional  physics ,  nuclear  physics ,  and part ic le  physics.  Neutron stars  are  supported
against  gravi tat ional  col lapse by  nuclear  interact ions that  become strongly  repuls ive  at  short  densi t ies
leading,  in  turn ,  to  an equat ion of  state  (EOS)  capable  of  support ing neutron stars  in  excess of  two solar
masses.  Neutron stars  are  unique cosmic laborator ies  that  probe the strong interact ion at  the extremes
of  densi ty  and isospin  asymmetry ,  and which may harbor  exot ic  states  of  matter  in  thei r  cores.  F inal ly ,
the gravi tat ional-wave and e lectromagnet ic  emission f rom the col l is ion of  b inary  neutron stars  is  start ing
to  provide fundamental  new insights  into  the astrophysical  s i te  for  the r-process and on the nature  of
dense matter .
In  th is  school  we wi l l  d iscuss neutron stars  and their  EOS,  core-col lapse supernovae and neutron star
mergers.  These two high-energy events  a l low us to  understand the extreme condi t ions in  neutron stars  as
wel l  as  the or ig in  of  heavy e lements  in  the universe.

Trento,  15 July - 2 August 2024

Training in Advanced Low Energy Nuclear Theory
Nuclear theory for astrophysics

DTP/TALENT TRAINING SCHOOL 

Director  of  ECT*:  Professor  Gert  Aarts
The ECT* is part of the Fondazione Bruno Kessler. The Centre is funded by the Autonomous Province of Trento, funding agencies of EU Member and Associated states, and
by INFN-TIFPA and has the support of the Department of Physics of the University of Trento.

Keynote Speakers  and Lecturers
Almudena Arcones (TU Darmstadt) ,   Andre da Si lva  Schneider  (Univers idade Federal  de  Santa  Catar ina) ,
Bruno Giacomazzo (Univers i tà  degl i  Studi  d i  Mi lano-Bicocca) ,  Ale jandra  Gonzalez  (Univers i ty  of  Jena) ,
Mart in  Obergaul inger  (Univers i ty  of  Valencia) ,  A lb ino Perego (Univers i ty  of  Trento) ,
Jorge Piekarewicz  (F lor ida  State  Univers i ty) ,  Anna Puecher  (Univers i ty  of  Potsdam),  Adr iana Raduta
( IF IN-HH Bucharest) ,  Mor i tz  Reichert  (Univers i ty  of  Valencia) ,  Concett ina  Sf ient i  (Johannes Gutenberg-
Univers i tät ) ,  Om Sharan Salaf ia  ( INAF) ,  I rene Tamborra  (Nie ls  Bohr  Inst i tute) ,  Serena Vinciguerra
(Univers i ty  of  Amsterdam),  Anna Watts  (Univers i ty  of  Amsterdam)

SUPPORTING INSTITUTIONS

APPLICATIONS
Appl icat ions for  the  ECT* DTP/TALENT Train ing School  2024 should  be made e lectronical ly  through the
ECT* web page.  I t  should  inc lude:  a  curr iculum v i tae ,  a  1-page descr ipt ion of  academic and scient i f ic
achievements ,  a  short  let ter  expressing the appl icants ’  personal  mot ivat ion for  part ic ipat ing in  the
School .  In  addi t ion ,  a  reference let ter  f rom the candidate ’s  superv isor  should  be sent  to  Barbara  Gazzol i
(gazzol i@ectstar .eu)   for  the  at tent ion of  Professor   Gert  Aarts  -  D i rector  of  ECT*.  For  further  deta i ls  see
www.ectstar .eu

Nuclear Theory for Astrophysics



We are all part of one big family 
with the common goal of decoding 

the wonderful and enigmatic 
character of neutron stars!


