We are all one big happy family!

arXiv:2407.11153 Date: Mon, 15 Jul 2024 18:22:14 GMT (11506kb,D)

Title: Neutron stars and the dense matter equation of state: from microscopic theory to macroscopic observations Authors: Katerina Chatziioannou, H. Thankful Cromartie, Stefano Gandolfi, Ingo Tews, David Radice, Andrew W. Steiner, Anna L. Watts Categories: nucl-th astro-ph.HE astro-ph.IM astro-ph.SR Comments: 55 pages, 26 figures **Report-no: LA-UR-23-22545**

Fermi Theory of the Weak Interactions The very "first" effective field theory

Weak Interactions

Fermi Theory for weak interactions

L \overline{I}

 $= L$ \overline{I}

 $s = s$

"Effective" low energy theory that explains many observed properties of radioactive nuclear decays

Universal strength: coupling constant GF

Weak decay of 60Co Nucleus

60Ni

$$
x, y, z \rightarrow -x, -y, -z
$$

parity transformation (reflection)

Observed NOT to be invariant under parity transformations

observed anisotropy in beta-emission when nuclei aligned to a magnetic field 1957

signature of parity violation

Beta emission preferentially in the direction opposite the nuclear spin, in violation of conservation of parity.

Magnetic

Nuclear

Wu. 1957

 ^{60}Co $+$ $^{60}Ni + e + v_a$

۰

 \bullet

GINO SEGRÉ AND BETTINA HOERLIN

Fermi four-fermion theory of beta decay

PREX-2 (Oct 29, 2020) Ciprian Gal - DNP Meeting *Adhikari et al., PRL 126, 172502 (2021)*

Heroic effort from our experimental colleagues

35 40 45 50 J(MeV)

55

 $\overline{0}$

 χ EFT (2013) Skins(Sn) QMC $\alpha_D (RPA)$

200

Conservation of difficulty: PVES provides the cleanest constraint on the EOS of neutron-rich matter in the vicinity of saturation density

0 50 100 150

 Λ^{11} \sim 13) Skins (Sn) QMC $\alpha_{\rm D}(\text{RPA})$

 L_{ρ} rtte

200

L(MeV)

 (38.29 ± 4.66)

50 100 150 (106±37)MeV

MESA

PREX: L is BIG!

 $\mathcal{N}_{\mathcal{N}}$ arXiv:2407.11153 Date: Mon, 15 Jul 2024 18:22:14 GMT (11506kb,D)

Title: Neutron stars and the dense matter equation of state: from microscopic theory to macroscopic observations Authors: Katerina Chatziioannou, H. Thankful Cromartie, Stefano Gandolfi, Ingo Tews, David Radice, Andrew W. Steiner, Anna L. Watts Categories: nucl-th astro-ph.HE astro-ph.IM astro-ph.SR Comments: 55 pages, 26 figures Report-no: LA-UR-23-22545

Toshio Suzuki, Rika Danjo and Toshimi Suda Research Center for Accelerator and Radioisotope Science, Tohoku University Sendai 982-0826, Japan

email: kt.suzuki2th@gmail.com

The neutron skin-thickness of ²⁰⁸Pb determined by electron and proton scattering

Abstract: Electron as well as proton elastic scattering is not able to determine the point proton and point neutron densities, $\rho_{\tau}(r)$, $(\tau = p, n)$, separately. If both scatterings are analyzed consistently, those densities would be determined uniquely, since the two densities are observed by different combinations from each other. The previous experiments did not provide $\rho_{\tau}(r)$ uniquely, but the values of the mean square radii of $\rho_p(r)$, $\langle r^2 \rangle_p$, and of $\rho_n(r)$, $\langle r^2 \rangle_n$, are shown to be determined consistently through the fourth moment of the observed charge density, $\langle r^4 \rangle_c$, in ²⁰⁸Pb. The previous analyses of (γ, π^0) and \bar{p} -nucleus obtained a similar value of $\langle r^2 \rangle_n$, but they do not yield the experimental value of $\langle r^4 \rangle_c$ observed in electron scattering.

FRIB RESEARCHERS LEAD TEAM TO MERGE NUCLEAR PHYSICS EXPERIMENTS AND **ASTRONOMICAL OBSERVATIONS TO** ADVANCE EQUATION-OF-STATE RESEARCH

Use PREX/CREX/MREX to calibrate future hadronic experiments at FRIB that will aim to extract the neutron skin of very exotic neutron-rich nuclei such as 60Ca, 78Ni, 132Sn

Electric Dipole Response

Out-of-phase oscillation of neutrons vs protons Symmetry energy acts as restoring force 8 Pygmy dipole resonance a soft mode with neutron rich skin oscillating against the symmetric core High quality data from RCNP, GSI, HIGS, … On a variety of nuclei such as Pb, Sn, Ni, Ca, … hopefully in the future along isotopic chains

IVGDR: The quintessential nuclear excitation

TOPICAL REVIEW

Neutron skins of atomic nuclei: per aspera ad astra

To cite this article: M Thiel *et al* 2019 *J. Phys. G: Nucl. Part. Phys.* **46** 093003

$$
EWSR = \int_0^\infty \sigma(\omega)d\omega \approx 60 \left(\frac{NZ}{A}\right) \text{MeV mb}
$$

$$
\alpha_D = \left(\frac{\hbar c}{2\pi^2}\right) \int_0^\infty \frac{\sigma(\omega)}{\omega^2} d\omega = \left(\frac{8\pi e^2}{9}\right) m_{-1}
$$

Electric Dipole Polarizability α_{D}

JP *et al.,* **PRC85, 041302 (2012); Roca-Maza** *et al.,* **PRC88, 024316 (2013)** A powerful electroweak complement to Rskin (γ -absorption experiments) IVGDR: *Coherent oscillations of protons against neutrons* Correlation to symmetry energy almost as strong as in the case of Rskin *Nuclear symmetry energy acts as* **CO** Energy weighted sum rule largely model independent $\mathrm{EWSR} =$ Inverse energy weighted sum strongly correlated to L Enverse energy weighted sum rule largely model in the *N* 0 Important contribution from PDR Electric dipole polarizability (IEWSR) sensitive to *L*: ↵^D *J* ⇠*a*+*bL*

Lectures will attempt to provide an overall (personal) picture of the feld

Heaven and Earth Laboratory Constraints on the EOS

The slope of the symmetry energy L controls both the neutron skin of heavy nuclei as well as the radius of (low mass) neutron stars — objects that difer in size by 18 orders of magnitude!

Nuclear interaction is responsible for describing fnite nuclei and neutron stars!

"Listening" to the GW Signal LIGO-Virgo detection band strain" current theory. nary inspiral and merger [1, 2] demonstrate the dis-

- Early BNS Inspiral: The sensitivity of the detectors in the detectors in the detectors in the detectors in the \mathbb{R}
- Indistinguishable from two colliding black holes
- Analytic "Post-Newtonian-Gravity" expansion *Orbital separation:1000 km (20 minutes)* India "Post-Newtonian-Gravity" expansion N ribital ooparation. Tooo will (20 minidico)
- Late BNS Inspiral:
- Tidal effects become important
- Sensitive to stellar compactness EOS *Orbital separation: 200 km (2 seconds)* nsitive to steller compact Wildi befaration. Zoo Nin (2 beconds)
- BNS Merger: Were neutron star systems of double neutron star systems, like the cele-
- GRelativity in the strong-coupling regime
- Numerical simulations with hot EOS *Orbital separation: 50 km (0.01 seconds)* merical simulations with hot EOS wave emission (to be the $(0, 0)$. \geq ullar separation. Su Nin (0.01 securius)

displacement is 1000 times smaller than proton!

GW170817: Tidal Polarizability (2017)

The tidal polarizability measures the "fluffiness" (or stiffness)of a neutron star against deformation. Very sensitive to stellar radius!

 $\Lambda_{1.4} = 390^{+190}_{-120}$ $^{+190}_{-120}$ (90%) **GW170817 rules out very large neutron star radii! Neutron Stars must be compact** *Small L!* **(Latest LIGO/Virgo analysis)** *Sof EOS!*

 $Q_{ij} = \Lambda \mathcal{E}_{ij}$ Micro-Macro $\Lambda = k_2$ $\int c^2 R$ 2*GM* $\sqrt{5}$ $=$ k_2 ✓ *R R^s* $Micro-Macro$ \triangleleft $\left\{ \begin{array}{ccc} c^2 R \end{array} \right\}^5$ $\left\{ \begin{array}{ccc} R \end{array} \right\}^5$ Large level arm!

- Tidal Polarizability(Deformability): Electric Polarizability: $P_i = \chi E_i$
- Tidal field induces a mass polarization R A time dependent mass quadrupole

emits gravitational waves

Gravitational Waves: Past, Present and Future

Thursday Afternoon Session: Anna Puecher

Most massive neutron star ever detected strains the limits of physics

 $2GM_{\rm WD}$

Measuring Heavy Neutron Stars (2019) Shapiro Delay: General Relativity to the Rescue

CMN

$$
G(M_{\rm ns} + M_{\rm wd}) = 4\pi^2 \frac{a^3}{P^2}
$$

Newtonian Gravity sensitive to the total mass of the binary Kepler's Third Law

> **Shapiro delay — a purely General Relativistic effect can break the degeneracy**

> > Cromartie/Fonseca et al. (2020)

PREX-2 (Oct 29, 2020) Ciprian Gal - DNP Meeting *Adhikari et al., PRL 126, 172502 (2021)*

Heroic effort from our experimental colleagues

35 40 45 50 J(MeV)

55

 $\overline{0}$

 χ EFT (2013) Skins(Sn) QMC $\alpha_D (RPA)$

200

Conservation of difficulty: PVES provides the cleanest constraint on the EOS of neutron-rich matter in the vicinity of saturation density

0 50 100 150

 Λ^{11} \sim 13) Skins (Sn) QMC $\alpha_{\rm D}(\text{RPA})$

 L_{ρ} rtte

200

L(MeV)

 (38.29 ± 4.66)

50 100 150 (106±37)MeV

MESA

PREX: L is BIG!

Lectures will attempt to provide an overall (personal) picture of the feld

nucleons plus exotic matter; green, strange quark matter. The horizontal bands What have we learned since GW170817

mass versus physical radius for several typical radius process in the several typical typical typical radius ma
International typical and the several typical typical or the several typical typical typical typical typical t

- (1.97 ± 0.04) Max ≈ 0.04 Max ≈ 0.04 Max ≈ 0.04 measurements for two other millisecond pulsars ≈ 2.8 PREX suggest a **stiff** EOS around saturation density **i** although CREX has muddled the waters! measurement. In particular, most EOS curves involving exotic matter, such as
- LIGO-Virgo favor a **soft** EOS at around 2n₀ 2.04 at all PRD 103 124015 (2021) increases the maximum possible mass for each EOS. For a 3.15-ms spin period, a 3.15-ms spin period, a 3.15-ms
The maximum period, a 3.15-ms spin period, a 3.15-ms spin period, a 3.15-ms spin period, a 3.15-ms spin period although see Gamba et al., PRD 103, 124015 (2021)
- NICER/Pulsar Timing suggest a **stiff** EOS at ~4n₀

observational constraints and constraints

The Dawn of a Golden Era in Neutron-Star Physics

of a softening/stiffening of the EOS (phase transition?)

 $\gtrsim\!2\rho_0$ $\gtrsim 4\rho_0$

The Dawn of a Golden Era in Neutron-Star Physics

New telescopes will be needed – larger area, wider X–ray band than NICER

LARGE AREA X-RAY SPECTRAL-TIMING

Third-generation GW observatories with unprecedented sensitivity will detect gravitational-wave sources across the entire universe. with up to millions of detections per year!

New x-ray observatories with exceptional capabilities optimized for the study of the ultra dense matter EOS will measure the mass-radius relation for more than 20 pulsars over an extended mass range!

Neutron-Rich Matter in Heaven

Neutron-Rich Matter on Earth

The MESA Facility will provide the most precise measurement of the neutron skin thickness of 208Pb

The Facility for Rare Isotope Beams will produce exotic nuclei at the limits of stability that will inform the EOS at the densities of relevance to atomic nuclei