

Scaling the equations: dealing with astronomical numbers

 $\frac{dM}{dr} = 4\pi r^2 \rho(r) = 4\pi r^2 \frac{\mathcal{E}(r)}{c^2}$

Relativistic free Fermi Gas

$$r = R_0 x; M = M_0 m$$

 $P = \mathcal{E}_0 p; \mathcal{E} = \mathcal{E}_0 \varepsilon$

Nuclear Physics 101: The Liquid Drop Model Bethe-Weizsäcker Mass Formula (circa 1935-36)

- $R = r_0 A^{1/3}$ Nuclear forces saturate equilibrium density
- Nuclei penalized for developing a surface
- Nuclei penalized by Coulomb repulsion
- Nuclei penalized for isospin imbalance (N \neq Z) \leq

•
$$B(Z, N) = -a_v A + a_s A^{2/3} + a_c Z^2 / A^{1/3} + a_a (N - Z)^2 +$$

+ shell corrections (2, 8, 20, 28, 50, 82,

 $a_v \simeq 16.0, \ a_s \simeq 17.2, \ a_c \simeq 0.7, \ a_a \simeq 23.3$ (in MeV)

Neutron stars are gravitationally bound!

 $A + \dots$ 126, ...)

Symmetric Bucket

Asymmetric Bucket

 $E_{\rm PNM} - E_{\rm SNM}$ $P_{\rm PNM} \approx \frac{1}{3} L \rho_0 \ ({\rm Pressure of PNM})$

sensitive to is the Equation of State

The Equation of State of Neutron-Rich Matter ... or more generally, asymmetric matter

Characterization in terms of a few bulk parameters of symmetric matter and the symmetry energy

$$T = 0; \ \rho = \rho_n + \rho_p; \ \alpha = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}; \ x \equiv \frac{\rho - \rho_0}{3\rho_0}$$
$$\mathcal{E}(\rho, \alpha) \simeq \mathcal{E}_0(\rho) + \alpha^2 \mathcal{S}(\rho) \simeq \left(\epsilon_0 + \frac{1}{2}K_0 x^2\right) + \left(J + Lx + \frac{1}{2}K_{\rm sym} x^2\right) \alpha^2$$

Bulk Property	Inferred Value	Oł
Saturation density	$\rho_0 \approx 0.15 \mathrm{fm}^{-3}$	Interior
Binding energy per nucleon	$\varepsilon_{0} \approx -16 \mathrm{MeV}$	Nuclear
Nuclear Incompressibility	$ \dot{K_0} \approx 230 \mathrm{MeV} $	Nuclear bre
Symmetry energy	$J \approx 32 \mathrm{MeV}$	Masses of neu
Symmetry slope	$L \approx 100 \mathrm{MeV}$	Neutron skin of

oservable

density **** masses $\star \star \star \star$ eathing mode *** tron-rich nuclei *** neutron-rich nuclei **

$$\mathcal{E}(\rho, \alpha = 1) \equiv \mathcal{E}_{\text{PNM}}(\rho) \simeq \mathcal{E}_0(\rho) + \mathcal{S}$$
$$P_{\text{PNM}}(\rho_0) \simeq P_{\text{SNM}}(\rho_0) + \frac{1}{3}\rho_0 L = \frac{1}{3}$$

The slope of the symmetry energy "L" is closely related to the pressure of pure neutron matter at saturation density

Heaven and Earth Laboratory Constraints on the EOS

Nuclear interaction is responsible for describing finite nuclei and neutron stars!

The slope of the symmetry energy L controls both the neutron skin of heavy nuclei as well as the radius of (low mass) neutron stars — objects that differ in size by 18 orders of magnitude!

Parity Conserving e-Nucleus Scattering Searching for an accurate picture of the proton distribution

Feb

05

Robert Hofstadter (February 5, 1915 - November 17, 1990)

1961

Honoured for his pioneering studies of electron scattering in atomic nuclei

"The Nobel Prize is given as a personal award but it also honors the field of research in which I have worked and it also honors my students and colleagues."

http://ScienceScript.org/forum

Nuclear *information is* contained in one single form factor, whose Fourier transform gives the spatial distribution

 $F_{
m ch}(q)$

Diffraction – Hofstadter, Nobel (1961)

Diffractive electron scattering on nuclei and the resulting charge density distributions, images of spherical nuclei

As Q increases, size modifies fo **1955: Hofstadter and McAllister determine size**

> of the proton using SLAC 240 MeV beam Uniform interior ′−0.24 fm is a clear manifestation of nuclear saturation: the existence of an equilibrium density

Form factor: Parametrizes deviation from point-like target

 $\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega} \frac{|F(\mathbf{q})|^2}{Point_{BC}}$

1951: Lyman, Hanson, and Scott measured e-A

observed finite size of nuclei (Al to Au)

the effects of nuclear radius

Proton: R<1 fm, need $q \sim 1$ fm⁻¹

scattering at the 22-MeV Betatron (UIUC),

Au: $R \cong 10$ fm, need q ~ 0.1 fm⁻¹ to observe

1953: Hofstadter, Fechter, and McIntyre extract

radii (Be to Au) at Stanford Mark-III linac.

First measurement of e-p scattering (F(q)≅1)

 $\mathbf{F}(\mathbf{q}) = 1 - \mathbf{q}$

€

LABORATORY ANGLE OF SCATTERING (IN DEGREES) R.Hofstadter and R.W.McAllister, Phys. Rev. 98, 217 (1955)

Form Factor is the Fourier transform of the Density

A Two-Parameter "Symmetrized Fermi" Form Factor

modulated by an exponential falloff (" π a")

$$\frac{qa}{(\pi qa)}\sin(qc) - qc\cos(qc)$$

$${}^{2}\rangle = \frac{3}{5}c^{2} + \frac{7}{5}(\pi a)^{2}$$

$${}^{4}\rangle = \frac{3}{7}c^{4} + \frac{18}{7}(\pi a)^{2}c^{2} + \frac{31}{7}(\pi a)^{4}$$

Form Factor ("q") and Spatial Density ("r") are related by a Fourier transform

Parity Violating e-Nucleus Scattering Searching for an accurate picture of the neutron distribution

 Charge (proton) density known with enormous precision Probed via parity-conserving elastic e-scattering Weak-charge (neutron) density known very poorly known Probed via parity-violating elastic e-scattering

$$\begin{bmatrix} \left(\frac{d\sigma}{d\Omega}\right)_{R} - \left(\frac{d\sigma}{d\Omega}\right)_{L} \\ \frac{d\sigma}{\left(\frac{d\sigma}{d\Omega}\right)_{R}} + \left(\frac{d\sigma}{d\Omega}\right)_{L} \end{bmatrix} = \begin{pmatrix} \frac{d\sigma}{d\Omega} \\ \frac{d\sigma}{d\Omega} \end{pmatrix}_{R}$$

[©] Electric-charge density dominated by protons Weak-charge density dominated by neutrons

	up-quark	down-quark
γ -coupling	+2/3	-1/3
Z ₀ -coupling	$\approx +1/3$	pprox -2/3
$g_{ m v}\!=\!2t_z-4Q\sin^2 heta_{ m W}\!pprox\!2$		

PREX-2 (Oct 29, 2020) Ciprian Gal - DNP Meeting Adhikari et al., PRL 126, 172502 (2021)

Conservation of difficulty: PVES provides the cleanest constraint on the EOS of neutron-rich matter in the vicinity of saturation density

25

30

Heroic effort from our experimental colleagues

Electroweak Probes of Nuclear Densities

Science

10

10⁻²

 10^{-3}

 $F_{ch}(q)$

Observation of coherent elastic neutrino-nucleus scattering

D. Akimov,^{1,2} J. B. Albert,³ P. An,⁴ C. Awe,^{4,5} P. S. Barbeau,^{4,5} B. Becker,⁶ V. Belov,^{1,2} A. Brown,^{4,7} A. Bolozdynya,² B. Cabrera-Palmer,⁸ M. Cervantes,⁵ J. I. Collar,⁹* R. J. Cooper,¹⁰ R. L. Cooper,^{11,12} C. Cuesta,¹³[†] D. J. Dean,¹⁴ J. A. Detwiler,¹³ A. Eberhardt,¹³ Y. Efremenko,^{6,14} S. R. Elliott,¹² E. M. Erkela,¹³ L. Fabris,¹⁴ M. Febbraro,¹⁴ N. E. Fields,⁹[‡] W. Fox,³ Z. Fu,¹³ A. Galindo-Uribarri,¹⁴ M. P. Green,^{4,14,15} M. Hai,⁹§ M. R. Heath,³ S. Hedges,^{4,5} D. Hornback,¹⁴ T. W. Hossbach,¹⁶ E. B. Iverson,¹⁴ L. J. Kaufman,³||S. Ki,^{4,5} S. R. Klein,¹⁰ A. Khromov,² A. Konovalov,^{1,2,17} M. Kremer,⁴ A. Kumpan,² C. Leadbetter,⁴ L. Li,^{4,5} W. Lu,¹⁴ K. Mann,^{4,15} D. M. Markoff,^{4,7} K. Miller,^{4,5} H. Moreno,¹¹ P. E. Mueller,¹⁴ J. Newby,¹⁴ J. L. Orrell,¹⁶ C. T. Overman,¹⁶ D. S. Parno,¹³¶ S. Penttila,¹⁴ G. Perumpilly,⁹ H. Ray,¹⁸ J. Raybern,⁵ D. Reyna,⁸ G. C. Rich,^{4,14,19} D. Rimal,¹⁸ D. Rudik,^{1,2} K. Scholberg,⁵ B. J. Scholz,⁹ G. Sinev,⁵ W. M. Snow,³ V. Sosnovtsev,² A. Shakirov,² S. Suchyta,¹⁰ B. Suh,^{4,5,14} R. Tayloe,³ R. T. Thornton,³ I. Tolstukhin,³ J. Vanderwerp,³ R. L. Varner,¹⁴ C. J. Virtue,²⁰ Z. Wan,⁴ J. Yoo,²¹ C.-H. Yu,¹⁴ A. Zawada,⁴ J. Zettlemoyer,³ A. M. Zderic,¹³ COHERENT Collaboration#

CEvNS

REPORTS

Cite as: D. Akimov et al., Science 10.1126/science.aao0990 (2017).

Who ordered THAT !?!?

Preliminary Observations:

UNIVERSITY of VIRGINIA

0.4

0.35

0.3

0.25

0.2

0.15

0.15

skin (fm)

R

- CREX result is consistent with a thin neutron skin prediction (e.g. coupled cluster calculations) and is strongly inconsistent with predictions of a very thick skin
- At this point it appears potentially challenging for DFT models to reproduce both the CREX result of a thin skin in ⁴⁸Ca and the PREX result of a relatively thick skin in ²⁰⁸Pb.

Caryn Palatchi

⁹⁸Ni

¹³²Sp

PREX-2

0.3

0.35

0.25

 $R_{skin}^{208}(fm)$

0.2

Isidor Isaac Rabi

The PREX-CREX Dilemma (No theoretical model can reproduce both!)

Combined Theoretical Analysis of the Parity-Violating Asymmetry for ⁴⁸Ca and ²⁰⁸Pb

Paul-Gerhard Reinhard^{1,*} Xavier Roca-Maza^{1,*} and Witold Nazarewicz^{3,‡}

"We conclude that the simultaneous accurate description of the PV asymmetry in calcium and lead cannot be achieved by our models that accommodate a pool of global nuclear properties ..."

- Density Functional Theory in all its flavors predicts a strong correlation
- 34 "non-implausible" chiral interactions also display a similar correlation
- Modifications to existent DFT models can "break" the strong correlation – but at the expense of generating unphysical behavior in other observables

The P2 experiment

- Aimed to measure weak mixing angle sin² θ_{W} through parityviolating elastic electron scattering on hydrogen
- Uses solenoid spectrometer with tracking detectors and Cherenkov detector
- The same setup but with ²⁰⁸Pb target can be used for neutron skin measurement to confirm/confront PREX results

30

35

25

Was PREX a Statistical Fluke? The MESA Facility in Mainz will provide the most precise electroweak measurement of the neutron skín thickness of 2087b (+/-0.03 fm)

MREX@MESA

The P2 experiment

Fig.12 CAD drawing of the P2 detector

Wednesday Afternoon Session: Concettina ("tt") Sfienti

- Aimed to measure weak mixing angle $\sin^2 \theta_W$ through parity-violating elastic electron scattering on hydrogen
- Uses solenoid spectrometer with tracking detectors and Cherenkov detector
- The same setup but with ²⁰⁸Pb target can be used for neutron skin measurement to confirm/confront PREX results