

FROM BETHE-SALPETER WAVEFUNCTIONS TO GPDS

Khépani Raya-Montaño

Mapping PDAs and PDFs Sep 10 - Sep 14, 2018. ECT*, Trento, Italy

Motivation

- Understanding strong interactions is still being a challenge for physicists, even decades after the formulation of the fundamental theory of quarks and gluons, namely, Quantum Chromodynamics (QCD).
- QCD is characterized by two emergent phenomena: confinement and dynamical chiral symmetry breaking (DCSB), which have far reaching consequences in the hadron spectrum and their properties.
- Due to the non perturbative nature of QCD, unraveling the hadron structure, from the fundamental degrees of freedom, is an outstanding problem.
- Dyson-Schwinger equations (DSEs) combine the IR and UV behavior of the theory at once. Therefore, DSEs are an ideal platform to study quarks, gluons and hadrons.

Outline

1. The basics (DSEs)

- Quark propagator and Bethe-Salpeter equation
- Perturbation theory integral representations
- 2. PDAs and TFFs [revisited]
- 3. η - η ' PDAs and TFFs
- 4. LFWFs, GPDs, PDFs and EFFs
- 5. Conclusions and remarks

The basics: Dyson-Schwinger equations

- DCSB is a critical emergent phenomenom in QCD. It is the most important mass generating mechanism for visible matter in the universe (~98% of proton mass).
- Quark propagator encodes this phenomenom in the mass function, $M(p^2)$.

- DSEs are an infinite tower of coupled equations. To extract the encoded physics, one must systematically truncate.
- The simplest symmetry preserving truncation, which gives a correct description of pseudoscalar and light vector meson phenomenology, is the rainbow truncation:

$$\int_{p}^{-1} = \int_{p}^{-1} - \int_{q}^{-1} \int_{q}^{p-q} \int_{q}^{p-q} S^{-1}(p,\zeta) = [\mathcal{Z}_{2F}S_{0}^{-1}(p)] + \int_{q}^{\Lambda} G((p-q)^{2}) D^{0}_{\mu\nu}(p-q,\zeta) \frac{\lambda^{a}}{2} \gamma_{\mu} S(q) \frac{\lambda^{a}}{2} \gamma_{\nu},$$
$$S(p,\zeta) = Z(p^{2};\zeta^{2})(i\gamma \cdot p + M(p^{2}))^{-1} = (i\gamma \cdot p \ A(p^{2};\zeta^{2}) + B(p^{2};\zeta^{2}))^{-1}$$

G(k²) : Phys.Rev. C84, 042202(R) (2011).

Mass function

 Mass function for different current-quark masses: The lighter the quark is, the stronger the effect of DCSB is. Even when m=0, a dynamically generated mass appears (this is DCSB).

- Quarks and gluons are not found free in nature, they form hadrons. Baryons are colorless bound states of three quarks and mesons are colorless bound states of quark-antiquark pair.
- The Bethe-Salpeter equation (BSE) is the equation in quantum field theory that describes meson-like systems:

• $\Gamma(p; P)$ is the **Bethe-Salpeter amplitude** (**BSA**). K(q, p; P) is the scattering kernel, which should be determined and is related to the truncation of the gap equation.

 The Interaction kernel, K(q,p;P), is related to the truncation of the gap equation via the axial vector Ward-Takahashi identity (Phys.Lett. B733 (2014) 202-208, Qin et al.):

$$[\Sigma(p^+)\gamma_5 + \gamma_5\Sigma(p^-)] = \int_q K(p,q;P)[\gamma_5S(q^-) + S(q^+)\gamma_5] \,.$$

• A kernel sufficient for many needs:

$$K(p,q;P) = -k^2 G(k^2) D^0_{\mu\nu}(k) \left[\frac{\lambda^c}{2} \gamma_{\mu}\right] \left[\frac{\lambda^c}{2} \gamma_{\nu}\right] , \ k = p - q.$$

 Together with the rainbow approximation, it is called rainbowladder truncation (RL).

$$\Gamma_M(p;P) = -\int_q k^2 G(k^2) D^0_{\mu\nu}(k) \frac{\lambda^c}{2} \gamma_\mu [S(q^+)\Gamma_M(q;P)S(q^-)] \frac{\lambda^c}{2} \gamma_\nu \; .$$

For a pseudoscalar meson, the BSA is characterized by 4 tensor structures:

 $\Gamma_M(p;P) = \gamma_5(iE_M(p;P) + \gamma \cdot PF_M(p;P) + \gamma \cdot p \ p \cdot PG_M(p;P) + p_\alpha \sigma_{\alpha\beta} P_\beta H_M(q;P))$

• In the case of the pion, the axial vector Ward-Takahashi identity relates the dominant BSA, $E_{\pi}(p;P)$, with the quark propagator as follows:

$$f_{\pi}E_{\pi}(p^2) = B(p^2)$$
 "Goldstone's theorem"

The relationship above is exact in the chiral limit, and it implies that the two-body problem is solved (almost) completely, once solution of one body problem is known.

Outline

- 1. The basics (DSEs)
 - Quark propagator and Bethe-Salpeter equation
 - Perturbation theory integral representations
- 2. PDAs and TFFs [revisited]
- 3. η - η ' PDAs and TFFs
- 4. LFWFs, GPDs, PDFs and EFFs
- 5. Conclusions and remarks

Perturbation theory integral representations

The quark propagator may be expressed as:

$$S(p;\zeta) = -i\gamma \cdot p \ \sigma_v(p^2;\zeta) + \sigma_s(p^2;\zeta)$$

 Numerical solutions are parametrized in terms of N pairs of complex conjugate poles:

$$\sigma_v(q) = \sum_{k=1}^N \left(\frac{z_k}{q^2 + m_k^2} + \frac{z_k^*}{q^2 + m_k^{*2}} \right) \ , \ \sigma_s(q) = \sum_{k=1}^N \left(\frac{z_k m_k}{q^2 + m_k^2} + \frac{z_k^* m_k^*}{q^2 + m_k^{*2}} \right)$$

 These are constrained to the UV conditions of the free quark propagator form. For our computations, N=2 is adequate.

Phys.Rev. D67 (2003) 054019.

M. S. Bhagwat, M. A. Pichowsky, and P. C. Tandy

Perturbation theory integral representations

BSAs are written in a Nakanishi-like representation (Phys. Rev. 130, 1230–1235 (1963). N. Nakanishi):

$$\mathcal{F}^k(p;P) = \int_{-1}^1 dz \ \rho(z) \int_0^\infty d\Lambda \ \delta(\Lambda - \Lambda_c) \frac{1}{(p^2 + z \ p \cdot P + \Lambda^2)^n}$$

- All BSAs can be written in such simple form.
- More than fifty years old. **Forgotten** for most of that time.
- Rediscovered 5 years ago: pion PDA and elastic form factor (Phys.Rev.Lett. 111 (2013) no.14, 141802; Phys.Rev.Lett. 110 (2013) no.13, 132001).
- Now put to great use: PDAs, form factors, PDFs, etc.; mesons and baryons; light and heavy.

Salmè's talk Ding's talk

Outline

- 1. The basics (DSEs)
 - Quark propagator and Bethe-Salpeter equation
 - Perturbation theory integral representations

2. PDAs and TFFs [revisited]

- 3. η - η ' PDAs and TFFs
- 4. LFWFs, GPDs, PDFs and EFFs
- 5. Conclusions and remarks

- The PDA is a projection of the system's Bethe-Salpeter wavefunction onto the light-front. It is therefore process independent and hence plays a crucial role in explaining and understanding a wide range of a given meson's properties.
- Given a pseudoscalar meson with total momentum P, a resolution scale ζ and a light-cone four-vector n ($n^2 = 0, n. P = -m_M$), the PDA reads as:

$$f_M \phi_M(x;\zeta) = Z_2 \int_q \delta(n \cdot q^+ - xn \cdot P) \gamma_5 \gamma \cdot n[S(q^+)\Gamma_M(q;P)S(q^-)] .$$

• The moments of the distribution are given by:

$$f_M(n \cdot P)^{m+1} < x^m >= \operatorname{tr}_{CD} Z_2 \int_q (n \cdot q^+)^m \gamma_5 \gamma \cdot n[S(q^+)\Gamma_M(q;P)S(q^-)] ,$$
$$< x^m >= \int_0^1 dx \; x^m \phi_M(x;\zeta) \; .$$

Ding's talk

PDAs from DSEs

Phys.Rev.Lett. 110 (2013) no.13, 132001 Phys.Lett. B753 (2016) 330-335

*****[**Red**]: $\phi_{\eta_b}(x)$.

- **♦**[Blue]: $\phi_{\eta_c}(x)$.
- **♦**[**Purple**]: $\phi_{\eta_s}(x)$.
- *****[Green]: $\phi_{\pi}(x)$.
- *[Black]: $\phi_{CL}(x)$.

- Dilation of pion PDA is a manifestation of DCSB; for the heavier systems PDAs are narrow.
- s-quark is the boundary between strong and weak mass generation being dominant.
- The last five years have shown us what the PDAs for mesons are, with complete certainty.

• For a pseudoscalar meson M_5 , the $\gamma\gamma^* \rightarrow M_5$ transition is written as:

$$T_{\mu\nu}(k_1, k_2) = \epsilon_{\mu\nu\alpha\beta} k_{1\alpha} k_{2\beta} G_{M_5}(k_1^2, k_1 \cdot k_2, k_2^2) ,$$

$$T_{\mu\nu}(k_1, k_2) = \operatorname{tr} \int \frac{d^4 l}{(2\pi)^4} i \mathcal{Q}\chi_{\mu}(l, l_1) \Gamma_{M_5}(l_1, l_2) S(l_2) i \mathcal{Q}\Gamma_{\nu}(l_2, l)$$

 Quark propagator and BSA are known from their PTIRs, quarkphoton vertex can be written in terms of quark propagator dressing functions.

 DSE prediction of charged pion form factor motivated a reevaluation of the reach of JLab12 program, with the aim of testing such prediction (so that green point was added).

 $F_{\pi}(Q^2)$ evolves as $1/Q^2$ with scaling violations (~ ln Q^2).

- For the transition form factor, the conformal limit is a constant, independent of logarithms.
- But, the way you reach that constant is completely determined by the logarithms. We improved DSE methods to include this effect.
- Nothing depends depends on arbitrary scale, but everything depends on Λ_{QCD} which is the RGI scale that defines QCD.

Phys.Rev. D93 (2016) no.7, 074017.

KR, L. Chang, A. Bashir, J.J. Cobos-Martinez, L.X. Gutiérrez-Guerrero, C.D. Roberts, P.C. Tandy

DSE prediction does not conciliate with Babar:

- A pion **PDA** that is a **broad**, **concave** function at the hadronic scale, **explains both** $F_{\pi}(Q^2)$, $G_{\pi}(Q^2)$ and their hard photon limits.
- Babar data, however favors a *flat-top* PDA, which yields a correct power-law, but produces an erroneous value of the anomalous dimension.
- Belle data strongly supports our conclusions.

Phys.Rev. D93 (2016) no.7, 074017.

KR, L. Chang, A. Bashir, J.J. Cobos-Martinez, L.X. Gutiérrez-Guerrero, C.D. Roberts, P.C. Tandy

Phys.Rev. D95 (2017) no.7, 074014.

"Partonic structure of neutral pseudoscalars via two photon transition form factors" **KR**, M. Ding, A. Bashir, L. Chang, C.D. Roberts

Phys.Rev. D95 (2017) no.7, 074014.

"Partonic structure of neutral pseudoscalars via two photon transition form factors" **KR**, M. Ding, A. Bashir, L. Chang, C.D. Roberts

Outline

- 1. The basics (DSEs)
 - Quark propagator and Bethe-Salpeter equation
 - Perturbation theory integral representations
- 2. PDAs and TFFs [revisited]
- 3. η - η' PDAs and TFFs
- 4. LFWFs, GPDs, PDFs and EFFs
- 5. Conclusions and remarks

η- η' mesons

 To produce flavor mixing, ladder kernel is insufficient, non Abelian anomaly must be included:

$$\Gamma(p; P) = \int_{q} (K_L + K_A)_{tu}^{rs} (\mathcal{S} \ \Gamma(q; P) \ \mathcal{S})_{sr} , \ \mathcal{S} = \operatorname{diag}(S^q, S^q, S^s) .$$
Ladder Anomaly

Anomaly kernel is based upon Mandar et al. work (Phys. Rev. C76, 045203 (2007)):

 $(K_A)_{tu}^{rs}(q,k,P) = -\xi(k-q)\{\cos\theta_{\xi}^2[\zeta\gamma_5]_{rs}[\zeta\gamma_5]_{tu} - \sin\theta_{\xi}^2[\zeta\gamma\cdot P\gamma_5]_{rs}[\zeta\gamma\cdot P\gamma_5]_{tu}$

 η - η ' PDAs lie close to the conformal distribution.

η- η' TFFs

 The good agreement of our preliminary computation with experimental data is encouraging.

 Subtleties, however, must be taken into consideration: c-cbar contributions, scale dependence of the flavor mixed decay constants, for example.

See Phys.Rev. D90 (2014) no.7, 074019

Phys.Rev. D93 (2016) no.7, 074017. K. Raya et al.
Phys.Rev. D95 (2017) no.7, 074014. K. Raya, M. Ding et al.
η-η' in preparation... M. Ding, K. Raya et al.

- We described a computation of $\gamma\gamma^* \rightarrow$ neutral pseudoscalar transition form factors, in which all elements employed are determined by solutions of QCD's Dyson-Schwinger equations.
- The novel analysis techniques we employed made it possible to compute $F_{\pi}(Q^2), G(Q^2)$, on the entire domain of space-like momenta, for the first time in a framework with a **direct connection to QCD**.
- Our QCD based theoretical computation demonstrates that the results of asymptotic QCD are faithfully reproduced, while also successfully agreeing with *"all"* data. It strongly suggests that Belle, not Babar, is correct on neutral pion.
- Starting from quarks and gluons, the picture of $\gamma\gamma^* \rightarrow$ neutral pseudoscalar has been completed.

Outline

- 1. The basics (DSEs)
 - Quark propagator and Bethe-Salpeter equation
 - Perturbation theory integral representations
- 2. PDAs and TFFs [revisited]
- 3. η - η ' PDAs and TFFs
- 4. LFWFs, GPDs, PDFs and EFFs
- 5. Conclusions and remarks

LFWF: pion and Kaon

Following Phys.Rev. D97 (2018) no.9, 094014, we model Kaon Bethe-Salpeter wave function as:

$$n_K \chi_K^{(2)}(k_-^K; P_K) = \mathcal{M}(k; P_K) \int_{-1}^1 d\omega \,\rho_K(\omega) \mathcal{D}(k; P_K)$$

1: Leading twist contribution to PDA (only γ_5 BSA):

 $\mathcal{M}(k; P_K) = -\gamma_5 [\gamma \cdot P_K M_u + \gamma \cdot k(M_u - M_s) + \sigma_{\mu\nu} k_\mu P_{K\nu}],$

- 2: Sprectral weight: To be chosen later.
- 3: Product of 3 quadratic forms in the denominator:

$$\mathcal{D}(k; P_K) = \Delta(k^2, M_u^2) \Delta((k - P_K)^2, M_s^2) \hat{\Delta}(k_{\omega-1}^2, \Lambda_K^2) ,$$

where: $\Delta(s, t) = [s + t]^{-1}, \ \hat{\Delta}(s, t) = t \Delta(s, t) .$

LFWF: pion and Kaon

Following Phys.Rev. D97 (2018) no.9, 094014, we model Kaon Bethe-Salpeter wave function as:

$$n_K \chi_K^{(2)}(k_-^K; P_K) = \mathcal{M}(k; P_K) \int_{-1}^1 d\omega \ \rho_K(\omega) \mathcal{D}(k; P_K) \ ,$$

Combining denominators through Feynman parametrization:

$$\chi_{K}^{(2)}(k_{-}^{K}; P_{K}) = \mathcal{M}(k; P_{K}) \int_{0}^{1} d\alpha \, 2\chi_{K}(\alpha; \sigma^{3}(\alpha)) \,, \, \sigma = (k - \alpha P_{K})^{2} + \Omega_{K}^{2} \,,$$

where Ω_K^2 depends on the model and Feynman parameters, and:

$$\chi_K(\alpha;\sigma^3) = \left[\int_{-1}^{1-2\alpha} d\omega \int_{1+\frac{2\alpha}{\omega-1}}^1 dv + \int_{1-2\alpha}^1 d\omega \int_{\frac{\omega-1+2\alpha}{\omega+1}}^1 dv\right] \frac{\rho_K(\omega)}{n_K} \frac{\Lambda_K^2}{\sigma^3}$$

• Pion case is recovered when $M_s \rightarrow M_d$.

The pseudoscalar LFWF can be written:

$$f_K \psi_K^{\uparrow\downarrow}(x, k_\perp^2) = \operatorname{tr}_{CD} \int_{dk_\parallel} \delta(n \cdot k - xn \cdot P_K) \gamma_5 \gamma \cdot n \chi_K^{(2)}(k_-^K; P_K) \, dk_\parallel^{\downarrow} \, dk_\parallel^{\downarrow}$$

• The moments of the distribution are given by:

$$\langle x^m \rangle_{\psi_K^{\uparrow\downarrow}} = \int_0^1 dx x^m \psi_K^{\uparrow\downarrow}(x, k_\perp^2) = \frac{1}{f_K n \cdot P} \int_{dk_\parallel} \left[\frac{n \cdot k}{n \cdot P} \right]^m \gamma_5 \gamma \cdot n \chi_K^{(2)}(k_-^K; P_K)$$

$$= \frac{12}{f_K} \int_0^1 d\alpha \alpha^m \mathcal{Y}_K(\alpha; \sigma^2) \Rightarrow \psi_K^{\uparrow\downarrow}(x, k_\perp^2) = \frac{12}{f_K} \mathcal{Y}_K(x; \sigma_\perp^2) .$$

$$\mathcal{Y}_K(\alpha; \sigma^2) = [M_u(1 - \alpha) + M_s \alpha] \mathcal{X}(\alpha; \sigma_\perp^2) , \ \sigma_\perp = k_\perp^2 + \omega_K^2 .$$

 Notably, from the definiton of the moments, one can identify the LFWF. Compactness of these results is one merit of the algebraic model.

$$\varphi_K(x) = \frac{1}{16\pi^3} \int d^2k_\perp \psi_K^{\uparrow\downarrow}(x, k_\perp^2)$$

LFWF: pion and kaon

Spectral density is chosen as:

$$\begin{split} u_G \rho_G(\omega) &= \frac{1}{2b_0^G} \left[\operatorname{sech}^2 \left(\frac{\omega - \omega_0^G}{2b_0^G} \right) + \operatorname{sech}^2 \left(\frac{\omega + \omega_0^G}{2b_0^G} \right) \right] \left[1 + \omega \ v_G \right] ,\\ &\frac{\Lambda_\pi \ b_0^\pi \ w_0^\pi \ v_\pi}{M_u \ 0.1 \ 0.73 \ 0} \left| \frac{\Lambda_K \ b_0^K \ w_0^K \ v_K}{2\Lambda_\pi \ b_0^\pi \ 0.95 \ 0.16} \right. \\ &M_u = 0.31 \ \operatorname{GeV}, \ M_s = 1.2M_u, \ m_\pi = 0.140 \ \operatorname{GeV}, \ m_K = 0.49 \end{split}$$

In order to produce broad, concave PDAs such that:

$$\langle (2x-1)^2 \rangle_{\varphi_{\pi}} := \int_0^1 dx \, (2x-1)^2 \varphi_{\pi}(x) \approx 0.25 \,, \qquad \frac{<1/x>_{AM}}{<1/x>_{CL}} \approx 1.15$$
$$\langle 2x-1 \rangle_{\varphi_K} \approx -0.04 \,, \ \langle (2x-1)^2 \rangle_{\varphi_K} \approx 0.25 \,.$$

• Note: If spectral density is chosen as: $\rho_G(\omega; \nu) \sim (1 - z^2)^{\nu}$,

one obtains closed algebraic forms of PDAs and PDFs:

 $\phi(x;\nu) \sim [x(1-x)]^{\nu}, \quad u_{\pi}(x;\nu) \sim [x(1-x)]^{2\nu}.$

In particular, asymptotic PDA corresponds to v=1.

Sketching the pion's valence-quark generalised parton distribution

C. Mezrag^a, L. Chang^b, H. Moutarde^a, C. D. Roberts^c, J. Rodríguez-Quintero^d, F. Sabatié^a, S. M. Schmidt^e

^aCentre de Saclay, IRFU/Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, France
 ^bCSSM, School of Chemistry and Physics University of Adelaide, Adelaide SA 5005, Australia
 ^cPhysics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
 ^dDepartamento de Física Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, Huelva E-21071, Spain
 ^eInstitute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany

Phys.Lett. B741 (2015) 190-196

LFWF and PDA: pion and kaon

Overlap GPD representation: Pion

A two-particle truncated expression for the pion and Kaon GPDs, in the DGLAP kinematic domain, is obtained from the overlap of the LFWF:

$$H_{M}^{q}(x,\xi,t) = \int \frac{\mathrm{d}^{2}\mathbf{k}_{\perp}}{16\,\pi^{3}}\Psi_{u\bar{f}}^{*}\left(\frac{x-\xi}{1-\xi},\mathbf{k}_{\perp}+\frac{1-x}{1-\xi}\frac{\Delta_{\perp}}{2}\right)\Psi_{u\bar{f}}\left(\frac{x+\xi}{1+\xi},\mathbf{k}_{\perp}-\frac{1-x}{1+\xi}\frac{\Delta_{\perp}}{2}\right)$$

Overlap GPD representation: Kaon

A two-particle truncated expression for the pion and Kaon GPDs, in the DGLAP kinematic domain, is obtained from the overlap of the LFWF:

$$H_{M}^{q}(x,\xi,t) = \int \frac{\mathrm{d}^{2}\mathbf{k}_{\perp}}{16\pi^{3}} \Psi_{u\bar{f}}^{*} \left(\frac{x-\xi}{1-\xi}, \mathbf{k}_{\perp} + \frac{1-x}{1-\xi} \frac{\Delta_{\perp}}{2} \right) \Psi_{u\bar{f}} \left(\frac{x+\xi}{1+\xi}, \mathbf{k}_{\perp} - \frac{1-x}{1+\xi} \frac{\Delta_{\perp}}{2} \right) .$$

GPDs and PDFs: Pion and Kaon

- To be able to compare the resulting pion PDF with experimental data, one should obtain the intrinsic model scale, then DGLAP evolve to the experiment scale, ζ=5.2 GeV.
- The DGLAP evolution equations:

$$< x_{\zeta_{H}}^{m} >_{M}^{u} = \int_{0}^{1} dx \; x^{m} u_{M}(x) \;, \; < x_{\zeta}^{m} >_{M}^{u} = < x_{\zeta_{H}}^{m} >_{M}^{u} \left[\frac{\alpha(\zeta^{2})}{\alpha(\zeta_{H}^{2})} \right]^{\gamma_{0}^{m}/\beta_{0}}$$

 We guess the best initial scale: such that, for example, when the PDF is evolved to 2 GeV, one obtains the average of lattice moments (Brommet et al., Best et al., Detmold et al.):

$$\langle x \rangle$$
 $\langle x^2 \rangle$ $\langle x^3 \rangle$ average0.26(8)0.11(4)0.058(27)

Pion PDF

 $\zeta_0 = 0.349$ GeV: Obtained directly from the experimental data (π). $\zeta_0 = 0.374$ GeV: Obtained to best fit the lattice moments at 2 GeV (π). $\zeta_0 = 0.510$ GeV: Typical hadron scale. See for example: Phys.Lett. B737 (2014) 23-29 and Phys.Rev. D93 (2016) no.7, 074021*.

Kaon PDF

 $\zeta_0 = 0.349$ GeV: Obtained directly from the experimental data (π). $\zeta_0 = 0.374$ GeV: Obtained to best fit the lattice moments at 2 GeV (π). $\zeta_0 = 0.510$ GeV: Typical hadron scale. See for example: Phys.Lett. B737 (2014) 23-29 and Phys.Rev. D93 (2016) no.7, 074021*.

GPDs and PDFs: Kaon

Green: Computed from HS formula

Black: DSE result, Phys.Rev. D96 (2017) no.3, 034024

- Employing an AM formulated in the context of LFWF and quasidistributions, Phys.Rev. D97 (2018) no.9, 094014, we performed and exploratory study of:
 - Pion and kaon valence quark GPDs: DGLAP region, in the overlap representation (see, for example, Phys.Lett. B780 (2018) 287-293).
 - Pion and kaon valence quark PDFs.

Pion and kaon elastic form factors.

- Qualitative results of PDFs and EFFs seem to be consistent.
- Quantitative results, when a comparisson when realistic results is possible, are compatible.

In collaboration with J. Rodríguez-Quintero et al.

- Short, medium and long term goals:
 - ✓ Incorporation of missing ingredients: gluon content in kaon and pion (when studying PDFs), the rest of the Bethe-Salpeter amplitudes, for example.
 - Improve our understanding how the parton distributions should evolve with their corresponding evolution equations.
 - ✓ Following Phys.Lett. B780 (2018) 287-293, extend our GPD analysis to the ERBL región.
 Mountarde's talk
 - ✓ Realistic computations, based upon the real solutions of the quark propagator DSEs and BSEs.
 Chang's talk

Reduce model dependence and provide trustable predictions.

In collaboration with J. Rodríguez-Quintero et al.

Outline

- 1. The basics (DSEs)
 - Quark propagator and Bethe-Salpeter equation
 - Perturbation theory integral representations
- 2. PDAs and TFFs [revisited]
- 3. η - η ' PDAs and TFFs
- 4. LFWFs, GPDs, PDFs and EFFs
- 5. Conclusions and remarks

- Within a single systematic and consistent approach, starting from quark propagator, we unified the description of $\gamma \gamma^*$ transition form factors with:
 - ✓ Valence quark distribution amplitudes
 - ✓ Charged pion elastic form factor
 - ✓ Masses, decay constants, etc.
- A sound understanding of the distribution of valence-quarks within mesons has been reached.
 - Smooth connection of Goldstone modes with systems containing the heaviest valence quarks that can today be studied experimentally.
- Predictions for all kinds of parton distributions for mesons (and baryons?) are arising. QCD based AM models provide excellent starting points for qualitative explorations.

Mezrag's talk

Gao's talk

- With several facilities at work all around the world, hadron physics is a very active field today: it is the time to be interested in hadron physics.
- Continuum QCD has evolved to the point where QCD connected predictions for elastic and transition form factors and parton distributions of all types are within reach:
 - PDFs and GPDs: Phys.Lett. B737 (2014) 23-29; Phys.Lett. B741 (2015) 190-196; Phys.Rev. D93 (2016) no.7, 074021
 - PDAs and form factors: Phys.Rev.Lett. 110 (2013) no.13, 132001; Phys.Rev.Lett. 111 (2013) no.14, 141802; Phys.Lett. B753 (2016) 330-335, Phys.Rev. D93 (2016) no.7, 074017; Phys.Lett. B783 (2018) 263-267.
- Lattice QCD and experiments provide crucial information to improve the theoretical predictions. Exist now an array of exciting predictions waiting for empirical validation.