

Tagged Deep Inelastic Scattering Thia Keppel

Mapping Parton Distribution Amplitudes and Functions ECT* - Trento

- Semi-inclusive deep inelastic scattering technique
 but *not* to access the current regime
- "Tagging" facilitates effective <u>targets</u> not readily found in nature
- Tagged DIS provides novel probe of partonic structure of these effective targets
- Three examples:
- Neutron
- Pion
- Kaon

Mapping Parton Distribution Amplitudes and Functions ECT* - Villa Tambosi - Trento

 M_x = mass of system X

t = four-momentum transfer squared at the nucleon vertex

3

<u>nucleon</u>

- Semi-inclusive deep inelastic scattering technique
 but *not* to access the current regime
- "Tagging" facilitates effective <u>targets</u> not readily found in nature
- Tagged DIS provides novel probe of partonic structure of these effective targets
- Three examples:
- <u>Neutron</u>
- Pion
- Kaon

Mapping Parton Distribution Amplitudes and Functions ECT* - Villa Tambosi - Trento

Example 1: TDIS to access neutron valence structure

"BONUS" Experiment at Jefferson Lab – use fixed target tagging to create an effective <u>free neutron</u> target

The BONUS experimental approach:

use low mass radial TPC detector / target in magnetic field to TAG "spectator" proton at (very) low momenta (~65 MeV/c) and large angles (> 90° in lab)difficult but doable

 F_2^n not well known at large x:

- Conflicting fundamental theory expectations
- Data inconclusive due to uncertainties in deuterium nuclear corrections

Polarized quark distributions

In the parton model:

$$F_1(x) = \frac{1}{2} \Sigma_i e_i^2[q_i(x)]$$
$$g_1(x) = \frac{1}{2} \Sigma_i e_i^2[\Delta q_i(x)]$$

At high Q^2 , $A_1=g_1/F_1$ and:

$$\frac{g_1^n}{F_1^n} = \frac{\Delta u + 4\Delta d}{u + 4d}$$
$$\frac{g_1^p}{F_1^p} = \frac{4\Delta u + \Delta d}{4u + d}$$

Effort launched to do a <u>simultaneous</u> fit of polarized, unpolarized PDFs (and fragmentation functions) - particularly tailored for studies of the large x region _{*}

BONUS effective neutron target via TDIS *achieved!*

Phys.Rev. C92 (2015) no.1, 015211 Phys.Rev. C91 (2015) no.5, 055206 Phys. Rev. C89 (2014) 045206 – editor's suggestion Phys. Rev. Lett. 108 (2012) 199902 Nucl. Instrum. Meth. A592 (2008) 273-286

- Not quite high enough
 x, Q²
- Nonetheless still powerful as input for global PDF fits...

chart Ubia

CTEQ-Jefferson Lab Collaboration

Global PDF fits *including the nonperturbative regime*

Accardi, Melnitchouk, Owens, Sato, CK, friends... See www.jlab.org/theory/cj/

			10/2014	12/2014	06/2015	06/2015	06/2010	01/2017
	April 2017		NNPDF3.0	MMHT2014	CT14	HERAPDF2.5	CJ15	ABMP16
	Fixed Target DIS		v	V	~	×	~	~
	J	LAB	×	×	×	×	~	×
	HERA I+II		~	~	~	~	 	~
	HERA jets		×	~	×	×	×	×
	Fixed Target DY		~	~	~	×	~	~
	Tevatron W,Z		v	~	~	×	~	~
	Tevatron jets		v	~	~	×	~	×
	LHC jets		v	~	~	×	×	×
		or boson	×	~	~	×	×	~
rom	<u>v</u> .	top	 	×	×	×	×	V
plena	ary 17	ment	Monte Carlo	Hessian $\Delta \chi^2$ dynamical	Hessian $\Delta\chi^2$ dynamical	Hessian $\Delta \chi^2 = 1$	Hessian Δχ²=1.645	Hessian $\Delta \chi^2 = 1$
15 20	Parametrization		Neural Networks (259 pars)	Chebyshev (37 pars)	Bernstein (30-35 pars)	Polynomial (14 pars)	Polynomial (24 pars)	Polynomial (15 pars)
	HQ scheme		FONLL	TR'	ΑСΟΤ-χ	TR'	ΑСΟΤ-χ	FFN (+BMST)
	Order		NLO/NNLO	NLO/NNLO	NLO/NNLO	NLO/NNLO	NLO	NLO/NNLO

CTEQ-Jefferson Lab Collaboration

Global PDF fits *including the nonperturbative regime*

Accardi, Melnitchouk, Owens, Sato, CK, friends... See www.jlab.org/theory/cj/

		10/2014	12/2014	06/2015	06/2015	06/2016	01/2017
	April 2017	NNPDF3.0	MMHT2014	CT14	HERAPDF2.0	CJ15	ABMP16
	Fixed Target DIS	v	V	~	×	~	V
	JLAB	×	×	×	×	~	2
	HERA I+II	V	~	~	~	~	V
	HERA jets	×	~	× ~	x x	×	×
	Fixed Target DY						
	Tevatron W,Z	×	~	~	×	~	~
210	update jets	v	~	~	×	~	×
iy) 2010	LHC jets	×	~	~	×	×	×
	LHC vector boson	v	v .	~	×	×	~
	LHC top	v	×	×	×	×	V
	Stat. treatment	Monte Carlo	Hessian $\Delta \chi^2$ dynamical	Hessian $\Delta \chi^2$ dynamical	Hessian $\Delta \chi^2 = 1$	Hessian Δχ²=1.645	Hessian Δχ²=1
	Parametrization	Neural Networks (259 pars)	Chebyshev (37 pars)	Bernstein (30-35 pars)	Polynomial (14 pars)	Polynomial (24 pars)	Polynomial (15 pars)
	HQ scheme	FONLL	TR'	ΑСΟΤ-χ	TR'	ΑСΟΤ-χ	FFN (+BMST)
	Order	NLO/NNLO	NLO/NNLO	NLO/NNLO	NLO/NNLO	NLO	NLO/NNLO

EMC effect in deuterium – correction for nPDFs

Alekhin, Kulagin, Petti Phys. Rev. D 96, 054005 (2017)

"...the recent direct measurement of the ratio F2D/F2N from the BONuS experiment contributes to constrain the overall normalization of the nuclear corrections in our fits."

CLAS12 (JLab Hall B) now taking first data!

Probing the Nucleon Valence Regime at Jefferson Lab

- New generation of experiments at JLab at 12 GeV will access the regime where valence quarks dominate See also P. Reimer talk
- First experiments *completed!*
 - Hall C F2p,d
 - Hall A 3H/3He
- Dedicated theory efforts also underway
 - "CJ", (CTEQ-Jefferson Lab) and also "JAM" (polarized pdf) collaborations

Expect large improvements in our understanding of PDFs in the the valence regime in the next 1-2 years!

Tagged Neutron Structure at the Electron Ion Collider

The TDIS technique is better suited to colliders: no target material absorbing lowmomentum nucleons, forward acceptance only!

Tagged Neutron Structure at the Electron Ion Collider

TDIS measurements require coverage for [protons] with:

- low momenta (pT/pbeam ~ 0.8 1.2)
- good momentum resolution (ΔpT ~20 MeV, < Fermi momentum)
- small intrinsic momentum spread in the ion beam for accurate reconstruction

EIC being designed with this physics in mind

– neutron structure functions up to $Q^2 = 40 \text{ GeV}^2$

 $e + D \rightarrow e' + p + X \underline{a \ la \ BONUS}$

Determining Large-x Parton Distributions with EIC

First look at projected EIC data in CTEQ-Jefferson Lab "CJ" PDF Fits

So far, have used JLEIC 10x100 GeV² projections in bins 0.1 < x < 0.9 for:

- ✓ F₂^p
- ✓ F_2^n from deuterium with *tagged proton spectator*
- \checkmark F₂^d
- Measurements ranging up to high Q² will enable studies of target mass, higher twist, pert/nonpert transition
- Can check on-shell extrapolation by measuring F₂^p from deuterium with tagged neutron spectator, comparing to proton target data
 - Validation of TDIS technique
- Can check nuclear corrections to F_2^d against $F_2^{n (tagged)}$

A. Accardi, R. Ent, J.Furletova,C. Keppel, K. Park,R. Yoshida, M. Wing

EIC e-d (with n_{tag}) projection with 100/fb luminosity

Science

Top: improvement in relative PDF uncertainties compared to CJ15 **Bottom:** relative uncertainties compared to CJ15

CJ15 • d quark precision will become CJ15+F2p+CJ15+F2p+F2ntag CJ15+F2p+F2ntag+F2d CJ15+F2p+F2ntag+F2d (becomes ~5% at x = 0.9)

d/u tracks d

 ~20% improvement in g(x), accessed by F₂ shape in Q² – lever arm in Q² matters most

 CJ15 CJ15+F2p
 The u quark uncertainty
 CJ15+F2p+F2ntag CJ15+F2p+F2ntag+F2d
 becomes less than ~1%; may be important for large mass BSM new particles.

21

- Semi-inclusive deep inelastic scattering technique
 but *not* to access the current regime
- "Tagging" facilitates effective <u>targets</u> not readily found in nature
- Tagged DIS provides novel probe of partonic structure of these effective targets
- Three examples:
- Neutron
- <u>Pion</u>
- Kaon

Mapping Parton Distribution Amplitudes and Functions ECT* - Villa Tambosi - Trento

<u>Example 2:</u> TDIS to access pion structure function use Sullivan process scattering from nucleon-pion fluctuation

squared at the nucleon vertex

Pion Structure Function from TDIS Measurements at HERA

Pure isovector exchange

⇒ Lp= ½ Ln (isospin Clebsch-Gordon) Data: Lp ≈ 2Ln

 \Rightarrow additional isoscalar exchanges for Lp Proton isoscalar events include diffractive scattering – the neutral pion is buried

Neutron events isovector only, charged pions dominate

DESY 08-176 JHEP06 (2009) 74

• One pion exchange is the dominant mechanism.

Can extract pion structure function

• Fine print disclaimer! Oversimplified (rescattering, absorption,...), requires in-depth model and kinematic studies

Pion Structure Function Measurements

- Knowledge of the pion structure function is *very limited*:
 - HERA TDIS data at low x
 - Pionic Drell-Yan from nucleons in nuclei at large x

Pion Structure Function from Drell-Yan: Large x Concerns

Web-based Self-Serve Pion PDF: More Large x Concern

From combined HERA TDIS Leading-Neutron and Drell-Yan analysis...

Web-based self-server performs a combined data analysis – can test sensitivity to new data

Github:

https://github.com/JeffersonLab/jamfitter

Jupyter notebook: <u>https://jupyter.jlab.org/</u>

P.C. Barry, **N. Sato,** W. <u>Melnitchouk</u>, <u>C-R Ji</u> arXiv: 1804.01965 (2018)

TDIS+BONUS Technique Provides Potential for HERA-type Experiments at JLab Sullivan Process scattering from neutron-pion fluctuation

Within ~10% at JLab TDIS kinematics, best at lowest t values

Like BONUS, a challenging low p proton tag experiment

JLab Hall A TDIS Experiment

proton tag detection in GEM-based mTPC at pivot

Modules

Hall A with SBS:

 ✓ High luminosity, 50 µAmp, ∠ = 3x10³⁶/cm² s
 ✓ Large acceptance ~70 msr
 Important for small cross sections

mTPC inside superconducting solenoid

Scattered electron detection in new Super Bigbite Spectrometer (SBS) – DOE project complete

e- beam

TDIS Kinematics – optimized for meson cloud

Projected Results – Pion Structure Function from TDIS at JLab

J. R. McKenney, et al., Phys. Rev. D93 (2016), 054011
T. J. Hobbs et al, Few Body Syst. 56 (2015) no.6-9

- Semi-inclusive deep inelastic scattering technique
 but *not* to access the current regime
- "Tagging" facilitates effective <u>targets</u> not readily found in nature
- Tagged DIS provides novel probe of partonic structure of these effective targets
- Three examples:
- Neutron
- Pion
- <u>Kaon</u>

But wait, there's more...!.... (*Example 3:* TDIS to access kaon structure function)

Based on Lattice QCD and DSE:

- Valence quarks carry some 52% of the pion's momentum at the light front, at the scale used for LQCD calculations, or ~65% at the perturbative hadronic scale
- At the same scale, valence-quarks carry $\frac{2}{3}$ of the kaon's light-front momentum, or roughly 95% at the perturbative hadronic scale
- Less glue in the kaon than in the pion

Approved TDIS rungroup experiment - get "for free"

- Very difficult
- <u>A first preliminary look</u>, en -> ($eK\Lambda$)

At high x, the shapes of valence u quark distributions in pion, kaon and proton are different, and so are their asymptotic $x \rightarrow 1$ limits S-S Xu, L. Chang, C.D. Roberts, H-S Zong, Phys. Rev. D 97 (2018) no.9, 094014

Projected JLab TDIS Results for π , K Structure Functions

Meson Structure Functions at the EIC Good Acceptance for TDIS-type Forward Physics! Low momentum nucleons <u>easier</u> to measure!

Example: acceptance for p' in $e + p \rightarrow e' + p' + X$

Huge gain in acceptance for forward tagging....

Detection of ¹H(e,e'K⁺) Λ , Λ decay to p + π^{-}

Office of

Science

Tagged events weighted by cross-section

K+ #L, t-exp Regularization Form

weighted by : sigma tdis

Landscape for n, π , K Structure Functions after EIC

Proton: large existing data set EIC will add:

- Better constraints at large-x
- Precise F₂ⁿ neutron SF data

Pion and kaon - limited data from:

- Drell-Yan experiments
- Some pion SF data from HERA
 EIC will add large (x,Q²) landscape for both pion and kaon!

....and some shameless advertisements

Mapping Parton Distribution Amplitudes and Functions ECT* - Trento

Workshop on Parton distributions as a bridge from low to high energies November 8 and 9, 2018 [before the Fall CTEQ meeting] Jefferson Laboratory, Newport News, VA

- Multi-dimensional PDFs (TMDs and GPDs)
- Collinear parton distributions at JLab 12, EIC, and LHeC
- QCD and Nuclear PDFs in electron-nucleus and neutrinonucleus scattering

Consider yourself invited!

- TDIS provides unique access to effective neutron, pion, kaon... targets
 - Nucleons and mesons are the basic building blocks of matter.
 - Critical, fundamental hadron structure measurements!
- TDIS can directly probe the meson cloud of the nucleon
 - Direct measurement of nucleon-meson fluctuation component of DIS
 - Access pion and kaon structure functions
- Very few experiments to date
 - Neutron at JLab BONUS, pion at HERA
 - Neutron and pion, also kaon, at JLab12
 - EIC will open up a new TDIS era

TDIS can also provide a new, precision window on the EMC effect Also neutron DVCS,....

Mapping Parton Distribution Amplitudes and Functions ECT* - Trento

