Complementarity of the LHC and the EIC for heavy-ion studies with quarkonia

Daniel Kikoła

ETC* Trento, 12.07.2024

Baryon chemical potential

Temperature

Fig. Courtesy Brookhaven National Laboratory

LHC

Heavy ion collisions and heavy quarks

Matsui & Satz (1986):

Quark-gluon plasma (QGP)

= suppression of J/ψ production

Matsui & Satz (1986):

Quark-gluon plasma (QGP)

= suppression of J/ψ production

Suppression pattern

 $\rightarrow\,$ temperature of the QGP

Charmonium (top) and bottomonium (bottom) spectral functions at different temperaturesa

A. Mocsy, P. Petreczky, Phys.Rev. D73 (2006) 074007

Break-up in nuclear matter

Break-up in a final state

Sensitive to the feed-down e.g.

 $\begin{array}{l} \psi(2S) \rightarrow J/\psi, \\ Y(3S) \rightarrow Y(2S) \rightarrow Y(1S) \\ \chi_b \ (1P) \rightarrow Y(1S) \end{array}$

Secondary production in QGP

Regeneration

Coalescence

Recombination of c \overline{c} quarks close in space

Coalescence over a large volume, c an c quarks could be uncorrelated originally

Secondary production may depend on charm cross section and details of the in-medium interactions

Production in a final state, e.g.:

 $\langle \sigma v
angle (D ar D o J \Psi + \pi) = .03 \pm .01 ~{
m mb}$ $\langle \sigma v
angle (D^* ar D^* o J \Psi + \pi) = 1 ~ {
m mb}$ $\langle \sigma v
angle (D^* ar D o J \Psi + \pi) = 3.75 \pm .25 ~{
m mb}$ $\langle \sigma v
angle (D ar D o J \Psi +
ho) = .065 \pm .01 ~{
m mb}$ $\langle \sigma v \rangle (D^* \bar{D} \to J \Psi + \rho) = .15 \pm .05 \text{ mb}$ $\langle \sigma v
angle (D^* ar D^* o J \Psi +
ho) = .95 \pm .05 ~{
m mb}$ $\langle \sigma v \rangle (D_s \bar{D} \to J/\psi + K) = .25 \pm .05 \text{ mb}$ $\langle \sigma v
angle (D_s^* \bar{D}
ightarrow J/\psi + K) = 1.7 \, \, {
m mb}$ $\langle \sigma v
angle (D_s ar D^* o J/\psi + K) = 1.5 ~{
m mb}$ $\langle \sigma v \rangle (D_s^* D^* \to J/\psi + K) = .4 \text{ mb}$

L. M. Abreu et al, Phys. Rev. C 97, 044902 (2018): J. D. Lap, B. Mullr, Phys.Lett.B 846 (2023):

Time dependence of hadronic J/ψ production by D-mesons

J. D. Lap, B. Mullr, Phys.Lett. B 846 (2023)

Production in a final state

L. M. Abreu et al: Phys. Rev. C 97, 044902 (2018): We conclude that the interactions between J/ψ and all the considered mesons reduce the original J/ψ abundance (determined at the end of the quark gluon plasma phase) by 20% and 24% in RHIC and LHC collisions respectively. Consequently, any really significant change in the J/ψ abundance comes from dissociation and regeneration processes in the QGP phase.

J. D. Lap, B. Muller, PLB 846 (2023): Our calculation demonstrates that we cannot safely ignore the contribution from hadronic charmonium production processes to the J/ψ yield in heavy-ion collisions at LHC energies. As such, any calculation of thermal production of J/ψ must take regeneration by *D*-meson collisions into account.

Observables

- Nuclear modification factor R_{pA} , R_{AA} $R_{AA} = 1$, $R_{pA} = 1$ if no modification in the medium
- <u>Azimuthal momentum anisotropy</u>

<u>Collision geometry</u>

$$R_{AB} = \frac{1}{\langle N_{\rm coll} \rangle} \frac{d^2 N^{AB} / dy dp_T}{d^2 N^{pp} / dy dp_T}$$

Cold nucler matter effects

Sizable uncertainty on model calculations due to nPDF

Break-up in a final state?

Phys. Rev. Lett. 111, 202301 (2013).

Phys.Rev. C 95 (2017) 3, 034904

Break-up in a final state?

The ratio of ψ (2S) over J/ ψ yield does not show a significant multiplicity dependence in pp nor pPb at forward radipidty

JHEP 06 (2023) 147

$J/\psi R_{AA} vs$ collision energy

$J/\psi R_{AA}$ and elliptic flow

Elliptic flow measurement to constrain $c+\overline{c} \rightarrow J/\psi$ recombination (?)

Hot QCD White Paper, arXiv:2303.17254

Complications: non-trivial effects in inp+p and p+Pb at the LHC

Phys. Lett. B 791 (2019) 172

Example: theoretical uncertities

B. Wu , R. Rapp, Universe 2024, 10, 244

Uncertiaties due to: charm cross section, feed-down, shadowing parametrization

Example: theoretical uncertities

PLB 805 (2020) 135434

Uncertiaties due to: charm cross section, feed-down, shadowing parametrization

Opportunities at the EIC and fixed-target

collisions at the LHC:

Callibration of quarkonium as a probe of

the QGP

Electron-Ion Collider

Energy: √s = 20 – 140 GeV

Electron-Ion Collider

Energy: $\sqrt{s} = 20 - 140$ GeV Ion species: from p to U

Electron-Beam Ion Source (EBIS)

<u>Ion Pairs</u>						
in the RHIC Comple						
Zr-Zr, Ru-Ru	(2018)					
Au-Au	(2016)					
d-Au	(2016)					
p-Al	(2015)					
h-Au	(2015)					
p-Au	(2015)					
Cu-Au	(2012)					
U-U	(2012)					
Cu-Cu	(2012)					
D-Au	(2008)					
Cu-Cu	(2005)					

https://indico.cern.ch/event/949203/contributions/3988180/attachments/ 2117011/3564269/EIC-Acc-Overview-Oct-7-2020-Seryi-r3.pdf

SMOG-LHCb: the demonstrator of a gas target

System for Measuring Overlap with Gas

Successful p+Ne, p+Ar, p+He, Pb+Ar, Pb+Ne data taking Energy range: $\sqrt{s_{pA}} \approx 68 - 115$ GeV, $\sqrt{s_{PbA}} = 72$ GeV

LHCb SMOG 2

Possibility of heavier and different noble gases (Kr, Xe, H₂, D₂, O₂, N₂) with a pressure two orders of magnitude higher than SMOG

SMOG2 gas confinement cell installed in the LHCb detector, https://lhcb-outreach.web.cern.ch/detector/smog/

LHCb SMOG 2

• Expected large quarkonium and open-charm meson yields

	SMOG pNe ($\sqrt{s} = 68 \text{ GeV}$)	SMOG2 pAr ($\sqrt{s} = 115$ GeV)
Integrated luminosity	$\sim 100 \ nb^{-1}$	$\sim 100 \ pb^{-1}$
syst. error on J/Ψ x-sec.	6-7%	2-3%
J/Ψ yield	15k	35M
D^0	100k	350M
Λ_c yield	1k	3.5M
$\Psi(2S)$ yield	150	400k
$\Upsilon(1S)$	4	15k
Low-mass (5< $M_{\mu\mu}$ <9 GeV/ c^2) Drell-Yan yield	5	20k

• Charm production in A+A (nPDFs)

Nucl. Phys. A 1026 (2022) 122447

• Charm production in A+A (nPDFs)

Nucl. Phys. A 1026 (2022) 122447

- Charm production in A+A (nPDFs)
- Quarkonium and D-D interactions in the final state (absorption/production cross section)
 - femtoscopic correlations

Femtoscopic correlations:

 J/ψ – hadron correlations \rightarrow co-mover breakup cross-section

D - \overline{D} correlations $\rightarrow J/\psi$ regeneration cross section in hadronic phase

final state interactions + emission volume

$$C(k^*) = \int \mathrm{d}^3 r^* S(\mathbf{r}^*) |\boldsymbol{\psi}(\mathbf{r}^*, \boldsymbol{k}^*)|^2,$$

$$C(k^*) = \frac{P(\vec{p}_a \vec{p}_b)}{P(\vec{p}_a)P(\vec{p}_b)}$$

Femtoscopic correlations:

 J/ψ – hadron correlations \rightarrow co-mover breakup cross-section

D - \overline{D} correlations $\rightarrow J/\psi$ regeneration cross section in hadronic phase

final state interactions + emission volume

Femtoscopic correlations:

J/psi – hadron correlations \rightarrow co-mover breakup cross-section

D - \overline{D} \rightarrow J/psi regeneration cross section

final state interactions + emission volume

$$C(k^*) = \int \mathrm{d}^3 r^* S(\mathbf{r}^*) |\boldsymbol{\psi}(\mathbf{r}^*, \boldsymbol{k}^*)|^2,$$

Scattering length of the $\mathsf{D}\pi$ interaction for two isospin channels

arXiv: 2401.13541

Effects / factors to constrain at the EIC and the LHC

- Charm production in A+A (nPDFs)
- Quarkonium interactions in the final state (absorption/production cross section)
- System-size and energy dependence of absorption in so-called nuclear matter and hadronic phase

Example: J/psi and charm at FT program at LHCb

Effects / factors to constrain at the EIC and the LHC

- Charm production in A+A (nPDFs)
- Quarkonium interactions in the final state (absorption/production cross section)
- System-size and energy dependence of absorption in so-called nuclear matter and hadronic phase
- Feed-down

\rightarrow LHC and High-luminosity LHC

Summary

- Quarkonium an useful probe of the QGP
- Easy to measure, difficult to extract the QGP properties
- The EIC and the fixed-target program at the LHCb have potential to constrain and improve our understanding of non-QGP effects

Electron-Ion Collider

Energy: √s = 20 – 140 GeV

(Small) caveat: EIC covers x-range overlapping with RHIC and fixed-target program at the LHC, but not very low-x at the LHC

LHCb SMOG 2

Possibility of heavier and different noble gases (Kr, Xe, H₂, D₂, O₂, N₂) with a pressure two orders of magnitude higher than SMOG

System	$\sqrt{s_{ m NN}}$	< pressure >	$ ho_S$	\mathcal{L}	Rate	Time	$\int \mathcal{L}$
	(GeV)	(10^{-5} mbar)	(cm^{-2})	$(cm^{-2}s^{-1})$	(MHz)	(s)	(pb^{-1})
pH_2	115	4.0	$2.0 imes 10^{13}$	$6 imes 10^{31}$	4.6	$2.5 imes 10^6$	150
pD_2	115	2.0	$1.0 imes 10^{13}$	3×10^{31}	4.3	$0.3 imes 10^6$	9
$p \mathrm{Ar}$	115	1.2	$0.6 imes 10^{13}$	$1.8 imes 10^{31}$	11	2.5×10^6	45
$p \mathrm{Kr}$	115	0.8	$0.4 imes 10^{13}$	$1.2 imes 10^{31}$	12	2.5×10^6	30
p X e	115	0.6	$0.3 imes 10^{13}$	$0.9 imes 10^{31}$	12	2.5×10^6	22
$p \mathrm{He}$	115	2.0	$1.0 imes 10^{13}$	3×10^{31}	3.5	$3.3 imes 10^3$	0.1
$p \mathrm{Ne}$	115	2.0	$1.0 imes 10^{13}$	3×10^{31}	12	$3.3 imes 10^3$	0.1
pN_2	115	1.0	$0.5 imes 10^{13}$	$1.5 imes 10^{31}$	9.0	3.3×10^3	0.1
pO_2	115	1.0	$0.5 imes 10^{13}$	$1.5 imes 10^{31}$	10	$3.3 imes 10^3$	0.1
PbAr	72	8.0	4.0×10^{13}	1×10^{29}	0.3	6×10^5	0.060
PbH_2	72	8.0	4.0×10^{13}	1×10^{29}	0.2	1×10^5	0.010
pAr	72	1.2	$0.6 imes 10^{13}$	1.8×10^{31}	11	3×10^5	5

CERN-LHCb-PUB-2018-015

Cold nucler matter effects

Lednicky and Lyuboshitz model of femtoscopic correlations

The s-wave scattering amplitude f(k) $f(k) = \left(\frac{1}{f_0} + \frac{1}{2}d_0k^2 - ik\right)^{-1}$

 f_0 - the scattering length, d_0 - the effective range. r_0 , f_0 and d_0 can be extracted from a fit of the LL formula to the experimental femtoscopic correlation function.

Quarkonium RAA

arXiv:2303.17254