Measurements of mesons at ePIC

UNIVERSITÀ DELLA CALABRIA

Salvatore Fazio

Università della Calabria & INFN Cosenza

Workshop on: "Synergies between LHC and EIC for quarkonium physics" ECT*, Trento (Italy) – July 8-12, 2024

What process must be measured?

The Electron-Ion Collider

A DOE approved project! Could be the only new collider in the coming ~20-30 years

- ✓ Add a 5 to 18 GeV electron storage ring (same tunnel) & its injector complex to the RHIC facility
- ✓ Two interaction regions, IP6 and IP8
- ✓ High Luminosity: 10³³ 10³⁴ cm⁻²s⁻¹ (~10² 10³ times HERA)
- ✓ Flexible √s = 29-141 GeV (per nucleon)
- ✓ Highly polarized (~70%) e^{\uparrow} , p^{\uparrow} , d^{\uparrow} , He^{\uparrow} , flexible spin pattern
- ✓ Wide variety of nuclear beams: (D to U)

World's first Polarized electron-proton/light ion and electron-Nucleus collider

The epic detector

Tracking

- New 1.7 T solenoid
- Si MAPS (vertex, barrel, forward, backward disks)
- MPGDs (µRWELL/µMegas) (barrel, forward, backward disks)

Particle identification

- High performance DIRC (barrel)
- Dual radiator (aerogel+gas) RICH (forward)
- Proximity focusing RICH (aerogel) (backward)
- TOF (~30ps): AC-LGAD (barrel and forward)

E.M. Calorimetry

- Imaging EMCAL (barrel)
- W-powder/ScFi (forward)
- PbWO₄ crystals (backward)

Hadronic Calorimetry

- Fe/Scint reuse from sPHENIX (barrel)
- Steel/Scint W/Scint (backwards/forward)

DAQ: streaming/triggerless with AI

Far forward/backwards detectors

Detector	Acceptance
Zero-Degree Calorimeter (ZDC)	θ < 5.5 mrad (η > 6)
Roman Pots (2 stations)	0.0 < θ < 5.0 mrad (η > 6)
Off-Momentum Detectors (2 stations)	θ < 5.0 mrad (η > 6)
B0 Detector	5.5 < θ < 20.0 mrad (4.6 < η < 5.9)

The impact parameter information encoded in $t = (p' - p)^2$

- Scattered protons measured by
 - Roman Pots (low *t*)
 - B0 (higher t)

- High precision luminosity measurement at 1% level for absolute luminosity and 0.01% for relative luminosity measurement using several methods based on the Bremsstrahlung process:
- Low Q2 taggers PHP tagger

The epice Collaboration

Pathway:

- Detector down in ~6 y
- Operations start in ~7 y

A truly global pursuit for a new experiment at the EIC

(Official statistics at November 2023)

24 Countries; 173 Institutions and counting!

500+ scientists and counting!

Structure of the epice Physics Working Groups

ANALYSIS COORDINATORS

Each PWG convener is for a two-years term

	Salvatore Fazio (Cosenza) Rosi Reed (Lehigh)	 Rotations in each PWG are staggered every year Conveners in blue are ending their term after Lehigh meeting
	INCLUSIVE PHYSICS Tyler Kutz (MIT) Claire Gwenlan (Oxford)	Meeting time: Mondays (biweekly) at 12pm ET Mailing list: eic-projdet-Inclusive-I@lists.bnl.gov Indico: <u>https://indico.bnl.gov/category/417/</u>
	SEMI-INCLUSIVE PHYSICS Charlotte Van Hulse (Alcala) Stefan Diehl (UConn)	Meeting time: Tuesdays (biweekly) at 8:30am ET Mailing list: eic-projdet-semiincl-I@lists.bnl.gov Indico: <u>https://indico.bnl.gov/category/418/</u>
	JETS AND HEAVY FLAVOR Brian Page (BNL) Olga Evdokimov (UIC)	Meeting time: Wednesdays (biweekly) at 12:00pm ET Mailing list: <u>eic-projdet-jethf-l@lists.bnl.gov</u> Indico: https://indico.bnl.gov/category/420/
EXC	CLUSIVE, DIFFRACTION AND TAGGING Raphael Dupre (Orsay) Rachel Montgomery (Glasgow)	Meeting time: Mondays (biweekly) at 12pm ET Mailing list: eic-projdet-excldiff-l@lists.bnl.gov Indico: <u>https://indico.bnl.gov/category/419/</u>
	BSM AND PRECISION EW Ciprian Gal (JLab) Michael Nycz (Virginia)	Meeting time: Tuesdays (biweekly) at 8:30am ET (together with Inclusive PWG) Mailing list: eic-projdet-semiincl-I@lists.bnl.gov Indico: https://indico.bnl.gov/category/421/

Play Technical Design Report and paper on physics

Technical Design Report (TDR) is our current top priority

pre–TDR (60% design completion) \implies early 2025

TDR (90% design completion) \implies ~ early 2026

TDRs will have a chapter on of detector performance for physics

- Extended paper on ePIC's Physics on a peer-reviewed journal
 - **Extended description** of the physics performance and science reach at ePIC
 - Holistic detector performance
 - Physics and science reach
 - Gives full details on physics studies and performance plots
 - Includes physics impact studies (extraction of physics, e.g. PDFs, GPDs, TMDs)
- Spin-off papers can also be published by individual study groups (theorists included)

- Show a bunch of ongoing studies on meson production
 - Priority to processes challenging the detector
 - $\circ~$ All are based on full GEANT simulation
 - All are sensitive to the reconstruction: still crude but quickly improving by the day
- I am a listener here
 - During discussion we would love to here from this community
 - What can ePIC do for quarkonia?
 - New projects we should look at?
 - Opportunities for closer collaboration?

u-Channel ρ⁰

- Low Mandelstam *u*, high *t*
- Backwards (*u*-channel) physics \rightarrow nucleon/nuclear tomography
- Forward (t-channel) cross-sections → parton tomography via GPDs
- Backwards cross-sections → quark clusters and baryon number distributions in transverse plane via Transition Distribution Amplitudes (TDAs)
- \circ See published paper:

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.106.015204

In ePIC:

- \circ Produced VM takes most of momentum of struck nucleon \rightarrow goes to the far-forward region
 - B0 spectrometer critical for measuring $\rho^0 \rightarrow \pi^+\pi^-$
- \circ Struck nucleon shifts of several units in rapidity \rightarrow ends up in mid-rapidity
- Simulation studies based on an edited version of the eSTARlight generator

u-Channel ρ⁰

F

Plots: Z. Sweger (UCDavis)

u-Channel ρ⁰

u-channel ρ^0 cross section

slope reconstruction

Invariant mass reconstruction

- Reco. efficiency = 95%
 - flagged bad if <90%

Plots: Z. Sweger (UCDavis)

Meson form factors

- $ep \rightarrow e'\pi^+ n$
- Enigma of emergent hadronic mass
- Pion form factor under study, all final state particles reconstructed
 - e' and π^+ in central detector
 - *n* in FF region (mainly ZDC)
- \circ At small -t, the pion pole process dominates σ_L

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_{\pi}^2)^2} g_{\pi pn}^2(t) F_{\pi}^2(Q^2,t)$$

 $\circ Q^2$ and -t reconstruction resolution is crucial for extracting F_{π}^2 from the measured cross section

Plots: L. Preet (Regina)

Meson form factors

- **Best method**: −*t* reconstruction using corrected *n* track
 - See paper: https://www.sciencedirect.com/science/article/abs/pii/S0168900223002280
 - *n_{corr}* is constructed using missing momentum information:

$$p_{miss} = \left| \vec{p}_e + \vec{p}_p - \vec{p}_{e'} - \vec{p}_{\pi^+} \right|$$

• And replacing θ_{Miss} , ϕ_{Miss} with θ_{ZDC} , ϕ_{ZDC} , and fixing the neutron mass

 $-t_{truth} = -(\gamma^* - \pi^+)^2$ $-t_{rec_corr} = -(p - n_{corr})^2$

 \boldsymbol{n}

e

p

epi

Diffractive vector meson production in eA (J/ψ)

- Probe low-x structure
- Sensitivity to gluon distributions in nucleon/nuclei
- Probe spatial parton structure of nuclei
- Challenges: veto incoherent background, *t*-reconstruction

Coherent event Selection (J/ψ)

- 3 track events (at least two tracks in main detector)
- J/psi mass window of 0.4 GeV (no PID)
- Veto activity in forward region (reco/hits):
 - B0 tracks, B0 clusters, Hits in OMD/RPs, Ecal and Hcal ZDC Clusters

Diffractive vector meson production in eA (J/ψ)

- Veto of incoherent events: promising veto performance
- Majority of remaining background is photons from quasi-coherent events (J/Psi+Pb+photon)
 - \circ Good sensitivity to those events in BO/ZDC
 - Some work still needed on clustering for photons in B0/ZDC to allow check of energy resolution

Diffractive vector meson production in eA (J/ψ)

 \square Phase space can be extended by use of low Q^2 tagger

• Increases statistics and reduces uncertainty on e', can eventually help t-reconstruction

Acceptance of low-Q taggers and Acceptance in central detector

Diffractive vector meson production in eA (J/ψ)

J/psi invariant mass reconstruction

Signal efficiency for different lepton flavours in various Q^2 regions:

	electrons			Muons		
Cut	Q ² <0.001	0.001 <q<sup>2<0.03</q<sup>	1 <q<sup>2 < 10</q<sup>	Q ² <0.001	0.001 <q<sup>2<0.03</q<sup>	1 <q<sup>2 < 10</q<sup>
3 tracks	0.565585	0.338035	0.973705	0.566175	0.337	0.97383
VM mass cut	0.495305	0.29898	0.838785	0.52959	0.317285	0.898815
Veto FFD	0.495305	0.29897	0.838745	0.52959	0.31727	0.898795

Plots: M. Pitt (Ben Gurion)

Diffractive vector meson production in eA (\phi)

 $eAu \rightarrow \phi \rightarrow K^+K^-$

- \circ Coherent electroproduction of ϕ meson in eA
- Sensitivity to gluon saturation
- Challenges: PID and FF detectors crucial to measure the decay kaons, reconstruct |t| and veto the incoherent part

Y production

$$\Upsilon(1S), \Upsilon(2S), \Upsilon(3S) \rightarrow e^+e^-$$

- Sensitivity to gluon distributions
- \circ Near threshold production \rightarrow origin of mass
- Challenges: tracking resolution is crucial

 \circ First studies at low Q^2

- Used Ratio yields 1 : 0.45 : 0.33 from STARlight paper
- Fitted with the **Double-Sided Crystal Ball function**
- $m_{\Upsilon nS} = m_{\Upsilon 1S} \frac{\text{PDGmass}_{nS}}{\text{PDGmass}_{1S}}$
- Resolution of each peak:
 - $\sigma_{1S} = 66.5 \pm 2.6 \text{ MeV}$
 - $\sigma_{2S} = 56.4 \pm 6.6 \text{ MeV}$
 - $\sigma_{3S} = 67.5 \pm 2.6 \text{ MeV}$
- Need to reobtain values using a larger sample size

Plots: S. Yoo (Berkeley)

Summary

- ✓ The EIC provides an unprecedented opportunity for the ultimate understanding of QCD
 - It might be the only new collider in the world for the next decades
- ✓ The ePIC experimental Collaboration was formed in Spring 2022
 - ePIC is approved as part of the EIC project, and progressing according to schedule

Physics studies at ePIC - quarkonia

- TDR and companion physics paper our current top priority
- Several studies on VM production in ep and eA are being done or initiated
- Event reconstruction at the ePIC experiment being finalized & novel analysis tools being developed
 - Opportunity for new, more realistic, impact studies
- We welcome suggestions for new studies from this community
 - It is NOW the right time to join the efforts and get involved!

Scientific goals: origin of the mass of visible matter

- Gluons have no mass and quarks are very light, but nucleons and nuclei are heavy, making up for most of the visible mass in the Universe
- Visible matter only made of constituents of light mass: masses emerge from quark-gluon dynamics

Proton (valence quarks: uud) $\rightarrow m_p = 940 \text{ MeV}$

- The mass is dominated by the energy of highly relativistic gluonic field
- EIC can determine an important contribution term to the proton mass, the so-called "QCD trace anomaly" → accessible in exclusive reactions (e.g. Y photoproduction near threshold)

Contributions to the total mass of the nucleon

Scientific goals: GPDs

Like usual PDFs, GPDs are non-perturbative functions defined via the matrix elements of parton operators:

$$\begin{aligned} \mathbf{F}^{q} &= \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ix\bar{P}^{+}z^{-}} \langle p' | \bar{q}(-\frac{1}{2}z) \gamma^{+}q(\frac{1}{2}z) | p \rangle |_{z^{+}=0,\mathbf{z}=0} \\ &= \frac{1}{2\bar{P}^{+}} \left[H^{q}(x,\xi,t,\mu^{2}) \bar{u}(p') \gamma^{+}u(p) + E^{q}(x,\xi,t,\mu^{2}) \bar{u}(p') \frac{i\sigma^{+\alpha}\Delta_{\alpha}}{2m_{N}} u(p) \right] \end{aligned}$$

• Experimental access to GPDs via Compton Form Factors (CFFs)

$$\mathcal{H}(\xi,t) = \sum_{q} e_q^2 \int_{-1}^{1} dx \, H^q(x,\xi,t) \left(\frac{1}{\xi - x - i\varepsilon} - \frac{1}{\xi + x - i\varepsilon}\right)$$

Connection to the **proton spin**: $J_q = \frac{1}{2} \lim_{t \to 0} \int_{-1}^1 dx \, x [H^q(x,\xi,t) + E^q(x,\xi,t)] \qquad J_q = \frac{1}{2} \Delta \Sigma + L_q$ [X.D. Ji, Phys. Rev. Lett. 78, 610 (1997)]

25

Accessing GPDs in exclusive processes

Real photon (DVCS):

- Very clean experimental signature
- No VM wave-function uncertainty
- Hard scale provided by Q^2
- Access to the whole set of GPDs
- Sensitive to both quarks and gluons [via Q² dependence of xsec (scaling violation)]

Hard Exclusive Meson Production (HEMP):

- Uncertainty of wave function
- Hard scale provided by $Q^2 + M^2$
- J/Psi, Y \rightarrow direct access to gluons, $c\overline{c}$, or bb pairs produced via q(g) - g fusion
- Light VMs \rightarrow quark-flavor separation
- Psedoscalars → helicity-flip GPDs

Only possible at EIC: from valence quark region, deep into the sea!

 $H^q E^q$

\sim
Hq

ρ	2u+d, <mark>9g/4</mark>
З	2u–d, <mark>3g/4</mark>
ø	S , <mark>g</mark>
ρ⁺	u–d
J/ψ, Y	g

$\widetilde{H^q}$	$\widetilde{E^{q}}$
π ⁰	2∆u+∆d
η	2∆u–∆d

Accessing GPDs in exclusive processes

DVCS: $ep \rightarrow \gamma$

Key detector performance:

- γ/π^0 separation in ECAL for DVCS
- Acceptance and low material for VM decay leptons
- Resolution of lepton pair inv. mass
- Muon id
- Scattered electrons over full kinem.
- *t*-lever arm in FF spectrometers

A window into the Gluon Saturation regime

Scientific goals: gluon saturation

Low gluon density (ep): pQCD predicts 2→2 process ⇒ back-to-back di-jet

Diffraction

High sensitivity to gluon density in linear regime $\sigma^{[g(x,Q^2)]^2}$

High gluon density (eA):

- $2 \rightarrow many \ process$
 - \Rightarrow expect broadening of away-side

Key detector performance:

- Quality of detection at mid rapidity
- Reconstruction of dijets (dihadron)
- Particle ID

The EIC Luminosity

 $\circ e - p$ collisions luminosity vs center-of-mass energy

achieves expected physics needs

 $\circ e - A$ collisions luminosity is similar within a factor of ~2 to 3

Tracking

• MAPS Tracker:

- Small pixels (20 μm), low power consumption (<20 mW/cm²) and low material budget (0.05% to 0.55% X/X₀) per layer
- Based on ALICE ITS3 development
- Vertex layers optimized for beam pipe bake-out and ITS-3 sensor size
- Forward and backward disks

MPGD Layers:

- Provide timing and pattern recognition
- Cylindrical µMEGAs
- Planar µRWell's before hpDIRC Impact point and direction for ring seeding
- AC-LGAD TOF and AstroPix (BECAL):
 - Additional space point for pattern recognition / redundancy
 - Fast hit point / Low p PID

Calorimetry

Forward EMCal

High granularity W/SciFi a unique technology allowing to achieve e/h ~1 (response to hadrons)

Backwards EMCal PbW04 crystals, SiPM photosensors

Backwards HCal

Steel/Sc Sandwich

tail catcher

Barrel HCAL Fe/Sc sandwich, ~3.5λ (sPHENIX re-use)

4 (6) layers of imaging calorimetry by Astropix MAPS, and sampling calorimetry by Pb/SciFi

Forward Hcal SiPMs on tile

Auxiliary detectors

Needed to tag particles with very small scattering angles both in the outgoing lepton and hadron beam direction

- B0-Taggers
- Off-momentum taggers
- Roman Pots
- Zero-degree Calorimeter
- low Q2-tagger
- Luminosity detector

Streaming DAQ

- No External trigger
- All collision data digitized, but zero suppressed at FEB
- Low / zero dead-time
- Event selection can be based on full data from all detectors (in real-time, or later)
- Collision data flow is independent and unidirectional
 - \rightarrow no global latency requirements
- Avoiding hardware triggers avoids complex custom hardware and firmware