Synergies between LHC and EIC for quarkonium physics, July 2024, ECT* Trento (Italy)

HL-LHC quarkonium prospects in pA, AA

Andry Rakotozafindrabe

High luminosity for heavy ions : Run 3 + Run 4

High luminosity for heavy ions : Run 3 + Run 4

High luminosity for heavy ions : Run 3 + Run 4

Collider mode : past vs future Pb-Pb

Run 2, delivered Pb-Pb 5.02 TeV in 2015 and 2018

Collider mode : past vs future Pb-Pb

Run 2, delivered Pb-Pb 5.02 TeV in 2015 and 2018

Run 3 + Run 4, Pb-Pb 5.5 TeV, requested 13 nb⁻¹ (ALICE, ATLAS, CMS), 2 nb⁻¹ (LHCb)

Predicted Pb-Pb delivered luminosity per month

CERN yellow report, WG5 [CERN-2019-007]

Collider mode : past vs future Pb-Pb

Run 2, delivered Pb-Pb 5.02 TeV in 2015 and 2018

Run 3 + Run 4, Pb-Pb 5.5 TeV, requested 13 nb⁻¹ (ALICE, ATLAS, CMS), 2 nb⁻¹ (LHCb)

Predicted Pb-Pb delivered luminosity per month

CERN yellow report, WG5 [CERN-2019-007]

R. Bruce et al. [*EPJ P 136 (2021) 7, 745*]

Collider mode : Pb-Pb in 2023

All experiments collected more data than in the last Run 2 Pb-Pb run Useable luminosity in ALICE is reduced to 1.96 nb⁻¹ after beam background (*) mitigation

(*) particle shower resulting from beam remnants (Pb207) hitting tertiary collimators in IR2 and reaching the detectors

No ion run in 2022, 66% target reached in 2023 \rightarrow need to catch up Expectations for ~5.35 nb⁻¹ for full Run3 in ATLAS/CMS/ALICE and ~1 nb⁻¹ in LHCb: 1.9 nb⁻¹ in 2024 (18d) and 1.45 nb⁻¹ (15d) in 2025 (ATLAS/CMS/ALICE) LHCb strongly wishes for higher target (x2): 2 nb⁻¹ for full Run3 (see backup)

F. Alessio [Chamonix workshop 2024]

Collider mode : past vs future p-Pb

Run 2, p-Pb/Pb-p 8.16 TeV in 2016, delivered approx. 39 (32) nb⁻¹ ALICE (LHCb), 194 (186) nb⁻¹ ATLAS (CMS) J. Jowett et al. [IPAC 2017 proceedings]

Run 3 + Run 4, p-Pb 8.8 TeV, requested 600 nb⁻¹ ALICE/LHCb, 1200 nb⁻¹ ATLAS/CMS

CERN yellow report, WG5 [CERN-2019-007]

Collider mode : past vs future p-Pb

Run 2, p-Pb/Pb-p 8.16 TeV in 2016, delivered approx. 39 (32) nb⁻¹ ALICE (LHCb), 194 (186) nb⁻¹ ATLAS (CMS)

Run 3 + Run 4, p-Pb 8.8 TeV, requested 600 nb⁻¹ ALICE/LHCb, 1200 nb⁻¹ ATLAS/CMS

Run 3 : no p-Pb scheduled R. Bruce [Physics with HL-LHC pA , 2024 workshop] Run 4 : one month p-Pb run ? maybe two ? w. or w/o beam reversal ? *R. Bruce et al.* [*EPJ P 136 (2021) 7, 745*]

Filling scheme	(nb-1)	\mathcal{L}_{tot} IP1/5	\mathcal{L}_{tot} IP2	\mathcal{L}_{tot} IP8
1240b_1240_1200_0		677 [705]	306 [313]	0 [0]
1240b_1144_1144_239		634 [647]	309 [316]	45 [52]
1240b_1088_1088_398		605 [613]	308 [317]	73 [85]
1240b_1032_1032_557		583 [580]	311 [319]	103 [119]
1240b_976_976_716		558 [547]	312 [320]	135 [152]
733b_733_702_468		415 [431]	287 [294]	86 [88]

J. Jowett et al. [IPAC 2017 proceedings]

CERN yellow report, WG5 [CERN-2019-007]

Collider mode : a (vintage) calendar

Run 3	Year	Systems, $\sqrt{s_{_{\rm NN}}}$	Time	L_{int}
2023	2021	Pb–Pb 5.5 TeV	3 weeks	$2.3\mathrm{nb}^{-1}$
		pp 5.5 TeV	1 week	3 pb^{-1} (ALICE), 300 pb^{-1} (ATLAS, CMS), 25 pb^{-1} (LHC
2024	2022	Pb–Pb 5.5 TeV	5 weeks	$3.9~{ m nb}^{-1}$
		О–О, р–О	1 week	$500~\mu\mathrm{b}^{-1}$ and $200~\mu\mathrm{b}^{-1}$
	2023	p-Pb 8.8 TeV	3 weeks	0.6 pb ⁻¹ (ATLAS, CMS), 0.3 pb ⁻¹ (ALICE, LHCb)
		pp 8.8 TeV	few days	1.5 pb ⁻¹ (ALICE), 100 pb ⁻¹ (ATLAS, CMS, LHCb)
2025	2027	Pb–Pb 5.5 TeV	5 weeks	$3.8~{ m nb}^{-1}$
		pp 5.5 TeV	1 week	3 pb^{-1} (ALICE), 300 pb^{-1} (ATLAS, CMS), 25 pb^{-1} (LHC
2029	2028	p–Pb 8.8 TeV	3 weeks	0.6 pb^{-1} (ATLAS, CMS), 0.3 pb^{-1} (ALICE, LHCb)
Run 4		pp 8.8 TeV	few days	1.5 pb^{-1} (ALICE), 100 pb^{-1} (ATLAS, CMS, LHCb)
2032	2029	Pb–Pb 5.5 TeV	4 weeks	$3 \ { m nb}^{-1}$
2035 _	Run-5	Intermediate AA	11 weeks	e.g. Ar–Ar 3–9 pb^{-1} (optimal species to be defined)
Run 5		pp reference	1 week	

CERN yellow report, WG5 [CERN-2019-007]

6

pre-equilibrium dynamics

QGP hydrodynamic expansion

• Large b(c) mass \rightarrow produced in the early hard scattering stage

• High density of color charges in QGP \rightarrow bounded QQ pairs undergo color screening \rightarrow their binding is weakened

hot hadronic phase ch. freeze-out

free streaming kin. freeze-out

detection

initial conditions

hard scatterings

QGP

and the bath temperature, for e.g. $\Upsilon(nS)$:

A. Rakotozafindrabe (CEA Saclay)

hot hadronic phase

free streaming

detection

In-medium dynamics: progressive dissolution of the quarkonium states, depending on their binding strength

time

A. Rakotozafindrabe (CEA Saclay)

Mocsy et al., [Int.J.Mod.Phys.A 28 (2013) 1340012]

Y(3S) in PbPb collisions at LHC

CMS [arXiv : 2303.17026]

First $\Upsilon(3S)$ measurement in AA collisions

• 5.6 σ signal for Y(3S)

Our favourite observable

Nuclear modification factor for a quarkonium in AA collisions

with $\langle T_{AA} \rangle$: nuclear overlap function

Y(nS) : a GQP thermometer in PbPb ?

Y(1S) CMS [PLB 790 (2019) 270] ALICE [PLB 822 (2021) 136579] ATLAS [PRC 107 (2023) 054912] Y(2S) and Y(3S) CMS [arXiv : 2303.17026]

12

Y(nS) : a GQP thermometer in PbPb ?

- Sequential suppression pattern in more central events i.e. ordered by binding energy :
 - All states are suppressed, with a larger suppression observed for the excited states
 - $\Upsilon(3S)$ seems more suppressed than $\Upsilon(2S)$

Y(1S) CMS [PLB 790 (2019) 270] ALICE [PLB 822 (2021) 136579] ATLAS [PRC 107 (2023) 054912] Y(2S) and Y(3S) CMS [arXiv : 2303.17026]

12

Y(nS) in PbPb: future improvements in Run 3 + Run 4

CMS [arXiv : 2303.17026]

• Quite conservative Υ (3S) projections in the 2019 Cern Yellow Report Addendum

ATLAS and CMS [10.23731/CYRM-2019-007.Addendum]

Y(nS) in PbPb: future improvements in Run 3 + Run 4

ALICE [PLB 822 (2021) 136579]

E.G. Ferreiro, J.P. Lansberg [JHEP 10 (2018) 094, JHEP 03 (2019) 063] B. Krouppa, M. Strickland [Universe 2 (2016) 3]

• Significant improvement for the $\Upsilon(2S)$ statistics

ALICE, CERN yellow report, WG5 [CERN-2019-007]

X. Du, M. He, R. Rapp [Phys.Rev.C 96 (2017) 5]

Mocsy et al., [Int.J.Mod.Phys.A 28 (2013) 1340012]

Bottomonium system

A. Rakotozafindrabe (CEA Saclay)

PDG [Prog.Theor.Exp.Phys. 2022, 083C01]

Y(1S): RHIC (200 GeV) vs LHC (5.02 TeV)

- Similar suppression seen at RHIC and at LHC (x 25 in \sqrt{s}):

- in favour of a negligible melting of the direct Y(1S) (i.e. dissociation temperature not reached yet at LHC)? - need precise measurements of the suppression of excited states and feed-down fractions

(2021) 136579

ALICE [PLB 822

Cold Nuclear Matter effects on Heavy quarkonia

initial state-effect nPDF modification, saturation

interplay initial/final state-effect Coherent energy loss

A. Rakotozafindrabe (CEA Saclay)

hadronisation

free streaming

detection

final state-effect Nuclear absorption

final state-effect Co-mover break-up

hadronic matter

nuclear medium

time

CMS [arXiv : 2303.17026] CMS [PLB 835 (2022) 137397]

Y(1S) in p-Pb vs Pb-Pb

- \bullet Y(1S) much less suppressed in p-Pb than in Pb-Pb
 - even compatible with unity at backward rapidity

ALICE [PLB 806 (2020) 135486]

LHCb [JHEP 11 (2018) 194, JHEP 02 (2020) 093]

- measurements with enhanced precision in Run 3 + Run 4 will put stringent constraints on the models

CMS [arXiv : 2303.17026] CMS [PLB 835 (2022) 137397]

▶ In p-Pb and increasing rapidity, excited states suffer more suppression from CNM effects

A. Rakotozafindrabe (CEA Saclay)

ALICE [PLB 806 (2020) 135486]

Double ratios $J/\psi / \psi(2S)$ in p-Pb

Prompt

Non-prompt double ratio : large uncertainties, can benefit from Run 3 + Run 4 p-Pb run
Prompt double ratio : excited state more affected by CNM effects

A. Rakotozafindrabe (CEA Saclay)

LHCb [JHEP 04 (2024) 111]

Non-prompt

Charmonium regeneration

Up to 100 cc pairs in central Pb-Pb collisions @ 5.5 TeV (x10 RHIC @ 0.2 TeV)

- + Color charges mobility in the QGP
- Possible (re)combination of uncorrelated c and \overline{c}
- during QGP evolution and/or at hadronization (chemical freeze-out)

P. Braun-Munziger, J.Stachel [PLB 490 (2000) 196] R. Thews et al. [PRC 63 (2001) 054905]

Charmonium regeneration

Up to 100 cc pairs in central Pb-Pb collisions @ 5.5 TeV (x10 RHIC @ 0.2 TeV)

- + Color charges mobility in the QGP
- Possible (re)combination of uncorrelated c and \overline{c}
- during QGP evolution and/or at hadronization (chemical freeze-out)

P. Braun-Munziger, J.Stachel [PLB 490 (2000) 196] R. Thews et al. [PRC 63 (2001) 054905]

► To first approximation :

- Crucial parameter of the models : the charm production cross-section
- Regeneration will interfere with the sequential suppression pattern for charmonia

At LHC : higher ε , but moderate suppression of inclusive J/ ψ

NA50 [EPJC 39 (2005) 335] PHOBOS [PRC 83 (2011) 024913] ALICE [PRL 116 (2016) 222302] STAR [PLB 797 (2019) 134917] ALICE Run 1-2 review [arXiv:2211.04384] ALICE [arXiv:2303.13361]

> • At LHC, the (presumably) larger suppression from color screening at higher ε is compensated by a sizeable regeneration

• Regeneration \propto

$$\left(\frac{dN_{c\bar{c}}}{dy}\right)$$

A. Rakotozafindrabe (CEA Saclay)

J/ψ regeneration vs y and vs pt

- ▶ The density of charm quarks is larger at mid-y and at low p_T
- At low pt, R_{AA} (mid-y) > R_{AA} (fwd-y)

A. Rakotozafindrabe (CEA Saclay)

ALICE [arXiv:2303.13361]

▶ Therefore, we can expect an enhanced regeneration component at mid-y compared to fwd-y at low p_T

J/ψ regeneration : inherit parent (anti)charm elliptic flow

Elliptic flow v_2 :

- second-order coefficient of the Fourier decomposition of the azimuthal angle distribution
- measured w.r.t. event plane

- in the v2 measurement of prompt D hadrons)
- elliptic flow, in particular at low p_T
- Regeneration models : test vs both the measured R_{AA} and v_2

ALICE [PRL 119 (2017) 242301] CMS [EPJC 77 (2017) 252] ATLAS [EPJC 78 (2018) 784]

► (Anti)charm quarks (at least partially) participate to the motion in-medium collective dynamics (as seen

• We can expect J/ψ from regeneration mechanism to inherit (at least part of) their parent (anti)charm

$J/\psi v_2$: prospects in Run 3 + Run 4

- high p_T for hidden charm

ALICE [ALI-SIMUL-312973]

▶ Pb-Pb : v₂ measurements at high p_T are desirable to check if any mechanism can build collectivity at

▶ p-Pb : is there an onset of collective effects in small system ? can it be transferred to hidden charm ?

Fixed-target at LHCb : $J/\psi / D^0$ in PbNe at $\sqrt{s} = 68.5$ GeV

To better understand charmonium suppression: measure of charmonium yields and the overall charm quark production.

Most of the charm quarks hadronise into open charm D⁰ mesons.

 \rightarrow Use D⁰ production yield as reference for the study of the charmonium yield modification, assuming that D0 production is not modified by the medium.

LHCb [EPJC 83 (2023) 658]

• Linear trend of J/ψ / D⁰ ratio in pNe vs PbNe \rightarrow consistent with nuclear absorption

A. Rakotozafindrabe (CEA Saclay)

- system in p-Pb, Pb-Pb collisions
- This QCD laboratory provides :
 - harvest of results involving ground and excited states, from all LHC experiments
 - many opportunities at reach with Run 3 + Run 4 data

Today : a biased selection of recent LHC results on hidden charm and beauty in the quarkonium

Thanks for your attention

SPARE SLIDES

Charmonium system

A. Rakotozafindrabe (CEA Saclay)

PDG [Prog. Theor. Exp. Phys. 2022, 083C01]

(TAMU) Du and Rapp [NPA 943 (2015) 147]

Transport model TAMU:

Continuous charmonium dissociation and regeneration in the QGP, described by a rate equation

- Larger suppression of $\psi(2S)$ with respect to J/ψ , on the whole p_T range
- ▶ Both states are enhanced at low p_T, which is successfully described by the TAMU model which includes a regeneration component

CMS [EPJC 78 (2018) 509] ALICE [JHEP 02 (2020) 041] ALICE [arXiv:2210.08893]

Uncertainties on the dissociation temperature

PHENIX [PRC 91 (2015) 02413]

A. Rakotozafindrabe (CEA Saclay)

► Using S-wave differential cross-section measurements from ATLAS or CMS in pp at √s = 7 TeV + LHCb P-wave to S-wave ratio measurements

 ATLAS [PRD 87 (2013) 052004]
 CMS [PLB 727 (2013) 101]
 CMS [PLB 749 (2015) 14]
 LHCb [EPJC 74 (2014) 3092]

• Using S-wave differential cross-section measurements from ATLAS or CMS in pp at $\sqrt{s} = 7$ TeV + LHCb P-wave to S-wave ratio measurements

 ATLAS [PRD 87 (2013) 052004]
 CMS [PLB 727 (2013) 101]
 CMS [PLB 749 (2015) 14]
 LHCb [EPJC 74 (2014) 3092]

• Extract feed-down fraction from fits to S-wave and P-wave diff. cross-section and PDG branching ratios

 $\Upsilon(1S)$ feed-down fraction at $< p_T > \gamma_{(1S)} \sim 5.8$ GeV

ATLAS + LHCb: 1S		
State	$\langle p_T \rangle$ feed-down fraction	
$\Upsilon(1S)$	0.763 ± 0.010	
$\Upsilon(2S)$	0.0625 ± 0.0019	
$\chi_b(1P)$	0.127 ± 0.009	
$\Upsilon(3S)$	0.00786 ± 0.00018	
$\chi_b(2P)$	0.039 ± 0.004	

Boyd et al. [PRD 108 (2023) 094024]

► Using S-wave differential cross-section measurements from ATLAS or CMS in pp at √s = 7 TeV + LHCb P-wave to S-wave ratio measurements

 ATLAS [PRD 87 (2013) 052004]
 CMS [PLB 727 (2013) 101]
 CMS [PLB 749 (2015) 14]
 LHCb [EPJC 74 (2014) 3092]

• Extract feed-down fraction from fits to S-wave and P-wave diff. cross-section and PDG branching ratios

 $\Upsilon(1S)$ feed-down fraction at $< p_T > \gamma_{(1S)} \sim 5.8$ GeV

	ATLAS + LHCb: 1S	
State	$\langle p_T \rangle$ feed-down fraction	
$\Upsilon(1S)$	0.763 ± 0.010) direct
$\chi_b(1P)$	$\begin{array}{c} 0.0625 \pm 0.0019 \\ 0.127 \pm 0.009 \end{array}$	
$\Upsilon(3S)$ $\chi_{h}(2P)$	$\begin{array}{c} 0.00786 \pm 0.00018 \\ 0.039 \pm 0.004 \end{array}$	

Boyd et al. [PRD 108 (2023) 094024]

► Using S-wave differential cross-section measurements from ATLAS or CMS in pp at √s = 7 TeV + LHCb P-wave to S-wave ratio measurements

ATLAS [PRD 87 (2013) 052004] CMS [PLB 727 (2013) 101] CMS [PLB 749 (2015) 14] LHCb [EPJC 74 (2014) 3092]

• Extract feed-down fraction from fits to S-wave and P-wave diff. cross-section and PDG branching ratios

 $\Upsilon(1S)$ feed-down fraction at $< p_T > \gamma_{(1S)} \sim 5.8 \text{ GeV}$

	ATLAS + LHCb: 1S	
State	$\langle p_T \rangle$ feed-down fraction	
$\Upsilon(1S)$ $\Upsilon(2S)$ $\chi_b(1P)$ $\Upsilon(3S)$ $\chi_b(2P)$	$\begin{array}{c} 0.763 \pm 0.010 \\ 0.0625 \pm 0.0019 \\ 0.127 \pm 0.009 \\ 0.00786 \pm 0.00018 \\ 0.039 \pm 0.004 \end{array}$) direct feed-do

Boyd et al. [PRD 108 (2023) 094024]

wn

• Using S-wave differential cross-section measurements from ATLAS or CMS in pp at $\sqrt{s} = 7$ TeV + LHCb P-wave to S-wave ratio measurements

ATLAS [PRD 87 (2013) 052004] CMS [PLB 727 (2013) 101] CMS [PLB 749 (2015) 14] LHCb [EPJC 74 (2014) 3092]

• Extract feed-down fraction from fits to S-wave and P-wave diff. cross-section and PDG branching ratios

 $\Upsilon(1S)$ feed-down fraction at $< p_T > \gamma_{(1S)} \sim 5.8$ GeV

	ATLAS + LHCb: 1S	
State	$\langle p_T \rangle$ feed-down fraction	
$\Upsilon(1S)$ $\Upsilon(2S)$ $\chi_b(1P)$ $\Upsilon(3S)$ $\chi_b(2P)$	$egin{array}{c} 0.763 \pm 0.010 \ 0.0625 \pm 0.0019 \ 0.127 \pm 0.009 \ 0.00786 \pm 0.00018 \ 0.039 \pm 0.004 \end{array}$) direct feed-down

Boyd et al. [PRD 108 (2023) 094024]

Only conjecturing the melting of the excited states feeding down $\Upsilon(1S)$ is not enough

- cold nuclear matter (CNM) effects ? direct $\Upsilon(1S)$ melting ?

CMS [arXiv : 2303.17026]

Charmonia vs bottomonia in Pb-Pb, pT dependence

CMS [arXiv : 2303.17026] CMS [EPJC 78 (2018) 509] ALICE [JHEP 02 (2020) 041] ALICE [arXiv:2210.08893]

Small systems : collectivity and hydrodynamics

J.F. Grosse-Oetringhaus, U.A. Wiedemann [arXiv:2407.07484]

What about J/ψ from B feed-down ?

Current and projected measurements for B and non-prompt J/ ψ

CMS [PLB 790 (2019) 270]

CMS [PLB 790 (2019) 270]

Pseudo-rapidity density, energy density at LHC

ALICE [PLB 845 (2023) 137730]

Charged-particle pseudo-rapidity density

Estimate of the lower bound of the Bjorken transverse energy density

Pseudo-rapidity density vs collision energy

Collision energy dependence of the charged-particle pseudo-rapidity density at mid-rapidity normalised to the average number of participants, for different systems (pp, pA, AA)

A. Rakotozafindrabe (CEA Saclay)

ALICE [arXiv:2211.04384]

