

Asymmetric collisions in Madgraph5 Impact on nPDF of future D0 and B+ measurements with SMOG2

Anton Safronov PhD student (WUT, Poland)

This work has been supported by STRONG-2020 "The strong interaction at the frontier of knowledge: fundamental research and applications" which received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093.

Synergies between LHC and EIC for quarkonium physics 08–13 July 2024, Trento, Italy

List of Content

- 1. Motivation
- 2. Madgraph5 framework
- 3. State of the asymmetric collisions inside Madgraph5
- 4. D0 meson production with Madgraph55. Impact of D0 meson SMOG2 pseudo-data on nPDF
- 6. B+ meson production with Madgraph57. Impact of B+ meson SMOG2 pseudo-data on nPDF
- 8. Conclusions

Motivation

- Study quark and gluon content of nucleons and nuclei in
 - hadron-hadron scattering,
 - hadron-nucleus scattering,
 - or any asymmetric reactions (nucleus/hadron A + nucleus/hadron B),

described by Parton Distribution Functions (PDF)

- Evaluate the baseline for more sophisticated studies, like:
 - new state of matter in heavy-ion collisions,
 - charm and beauty quark production,
 - quarkonium productions and
 - the interpretation of the LHC and RHIC data.
- Develop a reliable and high-precision tool for feasibility studies for future measurements and experimental programs

Context (State of art)

- There is **no NLO** code for **asymmetric hadron** collisions with **radiative corrections**
- Modified versions of
 - **MCFM** (Monte Carlo for FeMtobarn processes)
 - **FEWZ** (FEWZ: A Fully Exclusive Numerical Code for QCD and EW Correction to Drell-Yan Process)

are used by High Energy Physics community (they are private and not properly validated)

- It's important to provide such a **tool** for **phenomenology**
- The code should be interfaceable even with generators like Pythia
- It should be able to perform calculations at high orders of QCD (Leading Order, Next-to-Leading Order) for any types of Parton Distribution Functions, or example:
 - nuclear,
 - nucleon,
 - pion,
 - photon, etc.

Framework – Collinear factorization

Cross sections in collinear factorization and perturbative QCD

$$d\sigma = \sum_{a,b} \int dx_1 dx_2 f_a(x_1, \mu_F) f_b(x_2, \mu_F) d\hat{\sigma}_{ab \to K}(\hat{s}, \mu_F, \mu_R)$$
Parton density functions Parton-level (differential)
(differential)

where the partonic cross section is calculated using:

$$\hat{\sigma} = \sigma^{Born} \left(1 + \frac{\alpha_s}{2\pi} \sigma^{(1)} + \left(\frac{\alpha_s}{2\pi}\right)^2 \sigma^{(2)} + \left(\frac{\alpha_s}{2\pi}\right)^3 \sigma^{(3)} + \dots\right)$$
Leading order
Next-to-leading order
Next-to-next-to-leading order

For charm, beauty, quarkonium production, the scales are small and α_s is large (0.15 ~ 0.25), NLO corrections are very large and cannot be neglected.

Such processes are usually accompanied with the **largest nuclear corrections** in proton-nucleus and nucleus-nucleus collisions

Framework - PDFs

Parton-distribution functions (PDFs): essential link between hadronic cross sections and perturbatively calculable partonic cross sections

Challenging situation for PDFs of nucleons inside nuclei (nPDFs): nuclear data significantly more complex to collect with two additional degrees of freedom (protons and neutrons)

nPDFs and PDFs give information on:

- the nuclear / hadronic structure in terms of quarks and gluons;
- the initial state of relativistic heavy-ion collisions,

to use **perturbative probes** of the **Q**uark **G**luon **P**lasma to study its properties

- nPDFs cannot be computed and similarly, to the proton PDFs are fit to experimental data. Only the evolution is perturbative
- Collinear factorization in terms of nPDFs is assumed and should be tested case by case
- Automating computations of cross sections with nPDFs up to NLO is highly desirable

Nuclear Modification Factors

For rare/hard probes $[\sigma_{NN}^{probe} \ll \sigma_{NN}^{inel}]$ $\sigma_{AB}^{probe} = A \times B \times \sigma_{NN}^{probe}$ [Each probe is produced independently]

We can define <u>nuclear modification factors</u> (R_{AA}, R_{pA}) :

$$R_{pA} \equiv \frac{\sigma_{pA}}{\left(1 \times A \times \sigma_{pp}\right)}$$

One expects:

- R_{pA} >1 for x \gtrsim 0.8 (Fermi-motion region),
- R_{pA} <1 for 0.25 \leq x \leq 0.8 (**EMC region**),
- R_{pA} >1 for 0.1 $\leq x \leq 0.25$ (antishadowing region)
- R_{pA} <1 for x \leq 0.1 (shadowing region)
- $R_{pA} \sim 1$: absence of nuclear effects

nPDFs and MG5

Any PDFs can be used in MG5 up to NLO like proton PDFs with LHAPDF library

Currently only the symmetric mode is implemented

Reminder: we **assume** that

- the factorization of the cross section even in presence of nuclear effects
- all the nuclear effects can be accounted by nPDFs and thus can be computed by MG5.

MadGraph

- MG5_aMC@NLO is a metacode, i.e. a code generating another code
- Matrix element generator written in Python
- Can compute cross section and generates events at NLO with QCD corrections automatically
- Using LHAPDF can compute the cross section for any PDF in it with negligible additional CPU time (but only for symmetrical beam species)
- Scale and PDF uncertainties automatically computed and stored in Histograms with Uncertainties (HwU)
- Output in multiple formats (root, HwU, gnuplot, etc...)

****	* * * * * * * * * * * * * * * * * * * *	
*		
Ĵ.	мана ана на	
*	WELCOME to *	
*	MADGRAPH5_aMC@NLO *	
*	*	
*	*	
*	* * *	
*	* * * * *	
*	* * * * 5 * * * * *	
*	* * * * *	
*	* * *	
*	*	
4		
Ĵ	VERSIUN 2./.2 2020-03-1/ *	
<u>.</u>		
*	ine maduraph5_aMC@NLO Development Team - Find us at *	
*	<pre>nttps://server06.fynu.ucl.ac.be/projects/madgraph *</pre>	
*	and *	
*	http://amcatnlo.web.cern.ch/amcatnlo/ *	
*	*	
*	Type 'help' for in-line help. *	
*	Type 'tutorial' to learn how MG5 works *	
*	Type 'tutorial aMCatNLO' to learn how aMC@NLO works *	
*	Type 'tutorial MadLoop' to learn how MadLoop works *	
*	*	
****	******	
load	d MG5 configuration from/input/mg5 configuration txt	
set	collier to /projet/pth/safronov/MG5/MG5 aMC v2 7 2/HEPTo	ols/lib
set	fastiet to /projet/pth/safronov/fastiet-ipstall/hip/fast	iet-config
set	lbandf to /projet/pth/safronov/MCE/MCE aMC v2 7 2/HEPToo]c/lbandf6/hin/lbandf-config
set	nipio to /projet/pth/safronov/MCE/MCE ame v2_7_2/HEP100	c/lib
Unin	nunja u /projec/pun/sarronov/mus/mus_amu_vz_/_2/HEP1000	s/ configuration tyt
USIN	ng default text editor "vi". Set another one in ./input/M	ys_configuration.txt
USIN	ng derault eps viewer "evince". Set another one in ./inpu	t/mgs_configuration.txt
Usin	ng derault web browser "firefox". Set another one in ./in	put/mg5_configuration.txt
Chec	cking if MG5 is up-to-date (takes up to 2s)	
No n	new version of MG5 available	
Load	ding default model: sm	
INFO	0: Restrict model sm with file/models/sm/restrict_defa	ult.dat .
INFO	0: Run "set stdout_level DEBUG" before import for more in	formation.
INFO	0: Change particles name to pass to MG5 convention	
Defi	ined multiparticle p = g u c d s u~ c~ d~ s~	
Defi	ined multiparticle j = g u c d s u~ c~ d~ s~	
Defi	ined multiparticle l+ = e+ mu+	
Defi	ined multiparticle l- = e- mu-	_
Defi	ined multiparticle vl – ve vm vt	٥
Defi	ined multiparticle vl ver vm. vt.	3
Doff	ined multiparticle $vi^{\prime} = ve^{-vm^{\prime}} vi^{\prime}$	o mu vo vo vt o mu th th the such of the
Dert	Theo molicipaliticle all = g u c u s u~ c~ u~ s~ a ve vm vt	e- mu- ve~ vm~ vt~ e+ mu+ t b t~ b~ z W+ N W- ta- ta
MG5_	_dmu>_	

MadGraph

- MG5_aMC@NLO is a metacode, i.e. a code generating another code
- Matrix element generator written in Python
- Can compute cross section and generates events at NLO with QCD corrections automatically

***************************************	*****	**
		*
WELCOMEto		*
MADGRAPH5 a M	CONLO	*
-	-	*
		*
*	*	*
* * *	*	*
* * * * 5 * * * *	e	*
* * *	*	*
*	*	*
		*
VERSION 2.7.2	2020-03-17	*

load MG5 configuration from ../input/mg5 configuration.txt

Checking if MG5 is up-to-date... (takes up to 2s)

INFO: Change particles name to pass to MG5 convention Defined multiparticle p = g u c d s u~ c~ d~ s~ Defined multiparticle j = g u c d s u~ c~ d~ s~

No new version of MG5 available Loading default model: sm

Defined multiparticle l+ = e+ mu+ Defined multiparticle l- = e- mu-

MG5 aMC>

Defined multiparticle vl = ve vm vt Defined multiparticle vl~ = ve~ vm~ vt~ Defined multiparticle all = ɑ u c d s u~ c~ d~

set collier to /projet/pth/safronov/MG5/MG5 aMC v2 7 2/HEPTools/lib

set ninja to /projet/pth/safronov/MG5/MG5_aMC_v2_7_2/HEPTools/lib

set fastjet to /projet/pth/safronov/fastjet-install/bin/fastjet-config

INFO: Restrict model sm with file ../models/sm/restrict_default.dat . INFO: Run "set stdout_level DEBUG" before import for more information.

set lhapdf to /projet/pth/safronov/MG5/MG5_aMC_v2_7_2/HEPTools/lhapdf6/bin/lhapdf-config

10

Using default text editor "vi". Set another one in ./input/mg5 configuration.txt

Using default eps viewer "evince". Set another one in ./input/mg5_configuration.txt Using default web browser "firefox". Set another one in ./input/mg5 configuration.txt

The missing part is asymmetric collisions!

- Scale and PDF uncertainties automatically computed and stored in Histograms with Uncertainties (HwU)
- Output in multiple formats (root, HwU, gnuplot, etc...)

Framework – Collinear factorization

Cross sections in collinear factorization and perturbative QCD

 $d\sigma = \sum_{a,b} \int dx_1 dx_2 f_a(x_1, \mu_F) f_b(x_2, \mu_F) d\hat{\sigma}_{ab \to K}(\hat{s}, \mu_F, \mu_R)$ Parton density functions Parton-level (differential) Partonic cross section is calculated using: Cross section

where the partonic cross section is calculated using:

$$\hat{\sigma} = \sigma^{Born} \left(1 + \frac{\alpha_s}{2\pi} \sigma^{(1)} + \left(\frac{\alpha_s}{2\pi}\right)^2 \sigma^{(2)} + \left(\frac{\alpha_s}{2\pi}\right)^3 \sigma^{(3)} + \dots\right)$$
Leading order
Next-to-leading order
Next-to-next-to-leading order

For charm, beauty, quarkonium production, the scales are small and α_s is large (0.15 ~ 0.25), NLO corrections are very large and cannot be neglected.

Such processes are usually accompanied with the **largest nuclear corrections** in proton-nucleus and nucleus-nucleus collisions

Framework – Collinear factorization

Cross sections in collinear factorization and perturbative QCD

 $\sigma_{h_1h_2 \to X} = \sum_{a,b} \int dx_a \, dx_b f_{a/h_1}(x_a, \mu_F; LHAID_h_1) \, f_{b/h_2}(x_b, \mu_F; LHAID_h_2) \hat{\sigma}_{ab \to X}(x_a, x_b, \mu_F, \alpha_S(\mu_R; LHAID_h_2))$ Parton density functions **Parton-level** (differential) where the partonic cross section is calculated using: **Cross section** $\hat{\sigma} = \sigma^{Born} \left(1 + \frac{\alpha_s}{2\pi} \sigma^{(1)} + \left(\frac{\alpha_s}{2\pi}\right)^2 \sigma^{(2)} + \left(\frac{\alpha_s}{2\pi}\right)^3 \sigma^{(3)} + \dots\right)$ Leading order Next-to-leading order Next-to-next-to-leading order

For charm, beauty, quarkonium production, the scales are small and α_s is large (0.15 ~ 0.25), NLO corrections are very large and cannot be neglected.

Such processes are usually accompanied with the **largest nuclear corrections** in proton-nucleus and nucleus-nucleus collisions

MadGraph in NLOAccess

MG5_aMC@NLO is now available online with its full NLO version on NLOAccess (https://nloaccess.in2p3.fr/MG5/)

The asymmetric version of the code is available at: https://github.com/mg5amcnlo/mg5amcnlo.git

https://nloaccess.in2p3.fr/

5 mg5amcnlo (Public)		🖈 Edit Pins 👻	⊙ Unwatch 3	≁ ^९ ४ Fork 32	∙ 🖒 Star 5	8 -
Help us improve GitHub Codespaces Tell us how to make GitHub Codespaces work better for					Give feedback	
양 RPA → 양 66 Branches ⓒ 28 Tags	Q Go to file	t Add file 🔻	<> Code •	About		
This branch is 39 commits ahead of, 54 commits behind			;1 #80	No description, w	website, or topics p	rovided.
💮 AntonSafr96 01.07.2024. Added describtion to the	run_card, updated *.PDF outpu 🚥 🗙 🏸	973618 · last week 🛛 🖸) 11,782 Commits	む View license ∽ Activity		
.github/workflows	try to fix github action		7 months ago	Custom prope		
HELAS	fix the fermion propagators		5 years ago	☆ 58 stars ③ 3 watching		
MadSpin	3.5.0 (#53)		last year	양 32 forks		
PLUGIN	allow PLUGIN modifying (as deep as needed)	he madgraph	8 years ago	Report repository		
Template	01.07.2024. Added new *.pdf output, scale und	. calculation, c	last week	Releases		
🖿 aloha	better debug message for some aloha crash (v	vhen wrong in	7 months ago	🛇 28 tags		

MG5 extension to asymmetric collisions will be included on NLOAccess

Validations of MG5 in asymmetric collisions

Validation vs MCFM for W and Z production in proton-lead collisions

- Very good agreement between MG5 and MCFM-based computations both for central value and uncertainties
- Uncertainties match, if MCFM-based computation done with asymmetric error estimation

Example: c production in pPb collision at LHC

To make this plot, one just needs as input two numbers: LHAPDF IDs of proton and nCTEQ15 for Lead Scale uncertainty is automatically computed.

For charm production, μ_F uncertainty nearly as large as the **nPDF uncertainty**.

Example: *b* production in *p*Pb collision at LHC

Bottom quark production

LHAPDF IDs of proton and nCTEQ15 for Lead Scale uncertainty is automatically computed.

Example: *B*+ production in *p*Pb collision at LHC

Impact on nPDF of future D0 and B+ measurements with SMOG2

Directed by

Cynthia Hadjidakis (IJClab)

$R^{D^0}_{pA}$ for different nuclei (H, He, Ne, Ar, Kr, Xe): rapidity dependence

$R^{D^0}_{\ pA}$ for different nuclei (H, He, Ne, Ar, Kr, Xe): A dependence

Vertical bar – scale uncertainties Boxes – nPDF uncertainties

Production of the D0 pseudo-data of SMOG2 LHCb using MG5 output

System	$\sqrt{s_{ m NN}}$	< pressure>	ρ_S	L	Rate	Time	ſL	
	(GeV)	(10^{-5} mbar)	(cm^{-2})	$(cm^{-2}s^{-1})$	(MHz)	(s)	$(\tilde{p}b^{-1})$	
pH_2	115	4.0	$2.0 imes 10^{13}$	6×10^{31}	4.6	2.5×10^6	150	
pD_2	115	2.0	$1.0 imes 10^{13}$	3×10^{31}	4.3	$0.3 imes 10^6$	9	
pAr	115	1.2	$0.6 imes 10^{13}$	1.8×10^{31}	11	2.5×10^6	45	
pKr	115	0.8	0.4×10^{13}	1.2×10^{31}	12	2.5×10^6	30	
pXe	115	0.6	0.3×10^{13}	0.9×10^{31}	12	2.5×10^6	22	
pHe	115	2.0	$1.0 imes 10^{13}$	3×10^{31}	3.5	3.3×10^3	0.1	40
pNe	115	2.0	1.0×10^{13}	3×10^{31}	12	3.3×10^3	0.1	40
pN_2	115	1.0	0.5×10^{13}	1.5×10^{31}	9.0	3.3×10^3	0.1	
pO_2	115	1.0	0.5×10^{13}	1.5×10^{31}	10	3.3×10^3	0.1	
PbAr	72	8.0	4.0×10^{13}	1×10^{29}	0.3	6×10^{5}	0.060	
PbH_2	72	8.0	4.0×10^{13}	1×10^{29}	0.2	1×10^5	0.010	
pAr	72	1.2	0.6×10^{13}	1.8×10^{31}	11	3×10^5	5	

LHCb-PUB-2018-015 04/12/2018

 $\sqrt{s} = 113 \ GeV$

2.0 < y_lab <4.6

-2.79 < y_cms <-0.19

We have less statistics (limited by) for H_2

$$\sigma_{D_0 + \overline{D_0}} = 2 \times \sigma_c \times \varepsilon_{eff} \times Br \times f(c \to D0) \times \mathcal{L}$$

 $Br(D^{0} \to K^{-}\pi^{+}) = (3.9 \pm 0.09 \pm 0.12)\%$ $\mathbf{f}(\mathbf{c} \to \mathbf{D^{0}}) = 0.542 \pm 0.024$

$$f = rac{A}{B}$$
 $\sigma_f^2 \approx f^2 \left[\left(rac{\sigma_A}{A}
ight)^2 + \left(rac{\sigma_B}{B}
ight)^2 - 2 rac{\sigma_{AB}}{AB}
ight]^{[17]}$

Calculation of the AccxEff and uncertainties

Acceptance efficiency integrated over y is taken as 0.5-1% (we took 1%) (priv. comm. Emilie Maurice)

To achieve this, we have to scale Gaussian from the LHCb by factor 0.56 (yellow distribution)

> Uncertainties are considered as uncorrelated over y!

Systematic uncertainty estimations are based on pPb systematics for D0 production: arXiv:1707.02750v1 (5 TeV) arXiv:2205.03936v4 (8.16 TeV)

PID	Lum	Tracking	Signal	Prompt	Sim.sample	BR
1%	2%	3%	1%	0.1%	1%	0.8%

 $\frac{\delta\sigma_{syst}}{\sigma_{syst}} = 4\%$

Except for bins -2.5 < **y_cms** < -2.0

 $\frac{\delta\sigma_{syst}}{\sigma_{syst}} = 5\%$

$R^{D^0}_{pA}$ for different nuclei (H, He, Ne, Ar, Kr, Xe): reweighing of the nPDFs

$R^{D^0}_{pA}$ for Ar: reweighing of the nPDFs, nCTEQ vs EPPS21

Reweighing of the nPDFs: proton beam on Xe target vs Pb beam on H target

$R^{D^0}_{pA}$ for He and newer nPDFs: reweighing

$R^{D^0}_{pA}$ for Xe for newer nPDFs: reweighing

Production of the B+ pseudo-data of SMOG2 LHCb using MG5 output

System	$\sqrt{s_{ m NN}}$	< pressure>	ρ_S	L	Rate	Time	∫L	
	(GeV)	(10^{-5} mbar)	(cm^{-2})	$(cm^{-2}s^{-1})$	(MHz)	(s)	$(\mathbf{p}\mathbf{b}^{-1})$	
pH_2	115	4.0	$2.0 imes 10^{13}$	6×10^{31}	4.6	2.5×10^6	150	
pD_2	115	2.0	$1.0 imes 10^{13}$	3×10^{31}	4.3	$0.3 imes 10^6$	9	
pAr	115	1.2	0.6×10^{13}	1.8×10^{31}	11	2.5×10^6	45	
pKr	115	0.8	$0.4 imes 10^{13}$	1.2×10^{31}	12	2.5×10^6	30	
pXe	115	0.6	0.3×10^{13}	0.9×10^{31}	12	2.5×10^6	22	
pHe	115	2.0	$1.0 imes 10^{13}$	3×10^{31}	3.5	3.3×10^3	0.1	40
pNe	115	2.0	1.0×10^{13}	3×10^{31}	12	3.3×10^3	0.1	40
pN_2	115	1.0	0.5×10^{13}	1.5×10^{31}	9.0	3.3×10^3	0.1	10
pO_2	115	1.0	0.5×10^{13}	1.5×10^{31}	10	3.3×10^3	0.1	
PbAr	72	8.0	4.0×10^{13}	1×10^{29}	0.3	6×10^{5}	0.060	
PbH_2	72	8.0	4.0×10^{13}	1×10^{29}	0.2	1×10^5	0.010	
pAr	72	1.2	$0.6 imes 10^{13}$	$1.8 imes 10^{31}$	11	3×10^5	5	

LHCb-PUB-2018-015 04/12/2018

 $\sqrt{s} = 113 \ GeV$

2.0 < y_lab <4.5

-2.79 < y_cms <-0.29

We have less statistics (limited by) H_2 and Xe

$$\sigma_{B+} = \sigma_b \times \varepsilon_{eff} \times Br \times f(b \to B^+) \times \mathcal{L}$$

$$Br(B^+ \to J/\psi K^+) = (1.020 \pm 0.019) \times 10^{-3}$$

Br(J/\psi \to \mu^+\mu^-) = (5.961 \pm 0.033)\%

$$f(b \rightarrow B^0) = 40.4 \pm 0.6 \%$$

$$f = rac{A}{B}$$
 $\sigma_f^2 pprox f^2 \left[\left(rac{\sigma_A}{A}
ight)^2 + \left(rac{\sigma_B}{B}
ight)^2 - 2 rac{\sigma_{AB}}{AB}
ight]^{[17]}$

28

Production of the pseudo-data of SMOG2 LHCb using MG5 output

	LHCb										
	Proton beam ($\sqrt{s_{NN}} = 115 \text{ GeV}$)				Pb beam ($\sqrt{s_{NN}} = 72 \text{ GeV}$)						
	Target		L	$\sigma_{\text{inel.}}$	Γ _{inel} .	∫L	L	$\sigma_{\text{inel.}}$	Γ _{inel} .	$\int \mathcal{L}$	
-			[cm ⁻² s ⁻¹]	[mb]	[kHz]	[pb ⁻¹]	[cm ⁻² s ⁻¹]	[mb]	[kHz]	[nb ⁻¹]	
		H↑	4.3×10^{30}	39	168	43	5.6×10^{26}	1.8	1	5.6×10^{-1}	
		H ₂	1.0×10^{33}	39	40000	1.0×10^{4}	1.2×10^{29}	1.8	212	1.2×10^{2}	
	Gas-Jet	\mathbf{D}^{T}	4.3 ×10 ³⁰	72	309	43	5.6×10^{26}	2.2	1	5.6×10^{-1}	
		³ He [↑]	3.4×10^{32}	117	40000	3.4×10^{3}	4.7×10^{28}	2.5	118	47	
Internal gas		Xe	3.1×10^{31}	1300	40000	3.1×10^{2}	2.3×10^{28}	6.2	186	23	
target	Storage Cell	H	9.2 ×10 ³²	39	35880	9.2×10 ³	1.2×10^{29}	1.8	212	1.2×10^{2}	
		H ₂	1.0×10^{33}	39	40000	1.0×10^{4}	1.2×10^{29}	1.8	212	1.2×10^{2}	
		\mathbf{D}^{\uparrow}	5.6×10^{32}	72	40000	5.6×10^{3}	8.8×10^{28}	2.2	194	88	
		cen	³ He [↑]	1.3×10^{33}	117	40000	1.3×10^{4}	8.3×10^{28}	2.5	206	83
		Xe	3.1×10^{31}	1300	40000	3.1×10^{2}	3.0×10^{28}	6.2	186	30	
Internal	11/1	C (500 µm)	2.8×10^{30}	271	760	28	5.6×10^{26}	3.3	2	5.6×10^{-1}	
solid target	Target	Ti (500 µm)	1.4×10^{30}	694	972	14	2.8×10^{26}	4.7	1	2.8×10^{-1}	
halo	Turget	W (500 µm)	1.6×10^{30}	1700	2720	16	3.1×10^{26}	6.9	2	3.1×10^{-1}	
	E1030	NH_3^{\uparrow}	7.2×10^{31}	420	30240	7.2×10^2	1.4×10^{28}	19	259	14	
D	E1039	ND_3^{\uparrow}	7.2×10^{31}	519	37368	7.2×10^{2}	1.4×10^{28}	22	314	14	
splitting	Unpol-	C (5 mm)	2.8×10^{31}	271	7600	2.8×10^2	5.6×10^{27}	3.3	18	5.6	
opnung	solid	Ti (5 mm)	1.4×10^{31}	694	9720	1.4×10^{2}	2.8×10^{27}	4.7	13	2.8	
	target	W (5 mm)	1.6×10^{31}	1700	27200	1.6×10^{2}	3.1×10^{27}	6.9	21	3.1	

A Fixed-Target Programme at the LHC: Physics Case and Projected Performances for Heavy-Ion, Hadron, Spin and Astroparticle Studies

C. Hadjidakis^{a,1}, D. Kikoła^{b,1}, J.P. Lansberg^{a,1}, L. Massacrier^{a,1}, M.G. Echevarria^{c,d,2}, A. Kusina^{e,2},
I. Schienbein^{f,2}, J. Seixas^{g,h,j,2}, H.S. Shao^{j,2}, A. Signori^{k,c,l,2}, B. Trzeciak^{m,n,2}, S.J. Brodsky^o, G. Cavoto^p,
C. Da Silva^q, F. Donato^r, E.G. Ferreiro^{s,t}, I. Hřivnáčová^a, A. Klein^q, A. Kurepin^u, C. Lorcé^v, F. Lyonnet^w,
Y. Makdisi^x, S. Porteboeuf Houssais^y, C. Quintans^h, A. Rakotozafindrabe^z, P. Robbe^a, W. Scandale^{aa},
N. Topilskaya^u, A. Uras^{ab}, J. Wagner^{ac}, N. Yamanaka^{a,af,ad,ae}, Z. Yang^{ag}, A. Zelenski^x

arXiv:1807.00603v3 [hep-ex] 28 Jan 2021

$$\sqrt{s} = 113 \ GeV$$

2.0 < y_lab < 4.5

-2.79 < y_cms <-0.29

Calculation of the AccxEff and uncertainties

Table 3: Measured ε_{tot} of B^{\pm} events at 13 TeV, in the bins of $B^{\pm} p_{\text{T}}$ and y. The efficiencies and uncertainties are in percent.

$p_{\rm T} \; [{\rm GeV}/c \;]$	2.0 < y < 2.5	2.5 < y < 3.0	3.0 < y < 3.5	3.5 < y < 4.0	4.0 < y < 4.5
0.0 - 0.5	0.8 ± 0.1	4.7 ± 0.1	$7.6 {\pm} 0.2$	6.8 ± 0.2	2.3 ± 0.1

AccxEff is Different for each of the y region

Systematic uncertainty estimations are based on pPb and pp systematics for B+ production: arXiv:1902.05599v2 (8.16 TeV) arXiv:1710.04921v2 (13 TeV)

PID	Lum	BR	Binning	mass-fits	Acc	Rec	Track	Trigger
0.4%	2%	2.8%	2.5%	2%	0.2%	0.1%	2%	3%
GEC	Selection	Weigh	ting					
0.7%	1%	0.2	%		$rac{\delta\sigma_{sys}}{\sigma_{syst}}$	$\frac{st}{t} = 6.$	1%	

Uncertainties are considered as uncorrelated over y!

$R^{B^+}_{pA}$ for Xe nPDF: reweighing

Conclusions

- Asymmetric collisions in MadGraph5 have been implemented and successfully validated
- The code is available at GitHub right now!
- Also, it will be a part of NLOAccess and official MadGraph5
- Reweighting is working with chosen D0-meson pseudo-data with SMOG2:
 - Pseudo-data uncertainties dominated by the systematic ones
 - If data-point uncertainties lower than nPDF uncertainties (Xe target), data can constrain gluon nPDF in and outside the probed rapidity interval
- Pseudo-data has the strong impact on the nPDF, for Xe target ($x_2 \in [0.032, 0.33]$) and Pb-beam ($x_1 \in [0.0053, 0.056]$)
- For lighter target it's not clear how reliable are uncertainties for nPDFs.
- Very similar situation with B+-meson pseudo-data
- Except that statistic uncertainties are much larger, due to the low luminosities of the Hydrogen and a target
- Some pseudo-data systematic uncertainties can be correlated over *y* assuming some experimental correlation could improve the reweighting picture.

Backup

Quark nPDFs

Since the early 1980s, from the ratio of structure functions F_2 , we know that the **nuclei** are **not** a simple collection of **free nucleons**.

In other words, **nPDFs deviate** from a simple **sum of nucleon PDFs**. To **study** such deviations, it is customary to rely on **NMFs**, like:

$$R_i^A(x,\mu_F) = \frac{Zf_i^{p/A} + (A-Z)f_i^{n/A}}{Zf_i^p + (A-Z)f_i^n}$$

arXiv:1712.07024v2 [hep-ph]

One expects:

- $R_q^A > 1$ for x $\gtrsim 0.8$ (Fermi-motion region),
- $R_q^A < 1$ for $0.25 \leq x \leq 0.8$ (EMC region),
- $R_q^A > 1$ for $0.1 \le x \le 0.25$ (antishadowing region)
- $R_q^{\dot{A}} < 1$ for x ≤ 0.1 (shadowing region)
- $R_q^A \sim 1$: absence of nuclear effects

Validations of MG5 in asymmetric collisions

Validation vs MCFM for CT14 + EPPS16 for W production at NLO

- Good agreement between MG5 and MCFM-based computations for EPPS16
- Good agreement between MG5 and experimental data
- Slight difference in the uncertainty since MCFM-based computation done with symmetric uncertainties

Example: *Drell-Yan* production in πW collision

Phys.Rev.D 39 (1989) 92-122

 m_{ll} $\tau =$

$$x_F = x_{pion} - x_{nucleus}$$
$$x_{pion} = \sqrt{\tau}e^{Y}$$
$$x_{nucleus} = \sqrt{\tau}e^{-Y}$$

Example: *Drell-Yang* production in πW collision

- For all $\sqrt{\tau}$ regions and bins, differences do not exceed 5-10% percent range
- Results match well those produced by the JAM collaboration
- Small differences, could arise from instabilities that relate to Monte-Carlo algorithms and very narrow regions of invariant masses of muon pairs

 $\tau = \frac{{m_{ll}}^2}{s}$

"Un"real prediction: Higgs+ $b\overline{b}$ at NLO

• Rapidity dependence for other particles can be obtained by changing a single line in the analysis file

D^0 production for the proton-Ne collisions, for two different masses for m_c

-1.5

-1

yc_{c.m.s}

0

-2

 $p_T \in [0,8] \text{ GeV/c}$

-0.5

LHCb data: arXiv:2211.11633v3 [hep-ex] 20 Feb 2024

On the plots we have a cross-section of c-quark production,

multiplied by the factor: $2^* f(c \rightarrow D^0)$

 $f(c \rightarrow D^0) = 0.542 \pm 0.024$

Charm mass significant for the scale variation

D^0 production for the proton-Ne collisions, for two different masses of m_c

MG5 + nCTEQ15 nPDF

LHCb data: arXiv:2211.11633v3 [hep-ex] 20 Feb 2024

On the plots we have a cross-section of c-quark production, multiplied by the factor: $2^*f(c \rightarrow D^0)$

 $f(c \rightarrow D^0) = 0.542 \pm 0.024$

Assumption that $pT_c \sim pT_{D^0}$ not correct for **large pT**: one can try to use **Pythia** to compute decay kinematics

Reweighing of the nPDFs: Heavy-lon beams

Reweighting process

Def. of PDF replicas f_k :

$$f_k = f_0 + \sum_{i=1}^N \frac{f_i^{(+)} - f_i^{(-)}}{2} R_{ki}$$

 f_0 – best fit (central) PDF

 $f_i^{(+)}$, $f_i^{(-)}$ – are the plus and minus error PDFs corresponding to the eigenvector direction *i*

Def. of weight:

$$w_{k} = \frac{e^{-\frac{1}{2}\chi_{k}^{2}/T}}{\frac{1}{N_{\rm rep}}\sum_{i}^{N_{\rm rep}} e^{-\frac{1}{2}\chi_{i}^{2}/T}}$$

T – is the tolerance criterion used when defining Hessian error PDFs $\chi_k^2 - \chi^2$ for a given replica k.

$$\chi_k^2 = \sum_j^{N_{\rm data}} \frac{(D_j - T_j^k)^2}{\sigma_j^2}$$

j – runs over all data points in the data set(s) N_{data} – total number of data points, D_j – the experimental measurement at point j σ_j – experimental uncertainty T_k^j – theoretical prediction calculated with PDFs given by replica k.

$$\begin{split} \langle \mathcal{O} \rangle_{\text{new}} &= \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} w_k \mathcal{O}(f_k), \\ \delta \langle \mathcal{O} \rangle_{\text{new}} &= \sqrt{\frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} w_k \left(\mathcal{O}(f_k) - \langle \mathcal{O} \rangle_{\text{new}} \right)^2} \end{split}$$

x2 vs y for pXe

x2 vs y for pXe

Red: $m_c = 1.5 \ GeV$ Green: $m_c = 1 \ GeV$ (fit) Open-points: maximum of the distribution per bin of y

44