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Motivation
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• Study quark and gluon content of nucleons and nuclei in

• hadron-hadron scattering,

• hadron-nucleus scattering,

• or any asymmetric reactions (nucleus/hadron A + nucleus/hadron B),

described by Parton Distribution Functions (PDF)

• Evaluate the baseline for more sophisticated studies, like: 

• new state of matter in heavy-ion collisions, 

• charm and beauty quark production,  

• quarkonium productions and 

• the interpretation of the LHC and RHIC data.

• Develop a reliable and high-precision tool for feasibility studies for future 

measurements and experimental programs 



Context (State of art)
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• There is no NLO code for asymmetric hadron collisions with radiative corrections

• Modified versions of 

• MCFM (Monte Carlo for FeMtobarn processes)

• FEWZ (FEWZ: A Fully Exclusive Numerical Code for QCD and EW Correction to Drell-Yan Process)

are used by High Energy Physics community (they are private and not properly validated)

• It’s important to provide such a tool for phenomenology

• The code should be interfaceable even with generators like Pythia

• It should be able to perform calculations at high orders of QCD (Leading Order, Next-to-

Leading Order) for any types of Parton Distribution Functions, or example: 

• nuclear, 

• nucleon, 

• pion, 

• photon, etc.



Framework – Collinear factorization
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Cross sections in collinear factorization and perturbative QCD

𝑑𝜎 = σ𝑎,𝑏 ׬ 𝑑𝑥1𝑑𝑥2𝑓𝑎( 𝑥1, 𝜇𝐹)𝑓𝑏(𝑥2, 𝜇𝐹)𝑑 ො𝜎𝑎𝑏→𝐾(ෝ𝑠, 𝜇𝐹,𝜇𝑅)

Parton-level

(differential)

Cross section

Parton density functions

where the partonic cross section is calculated using:

ො𝜎 = 𝜎𝐵𝑜𝑟𝑛(1 +
𝛼𝑠

2𝜋
𝜎 1 +

𝛼𝑠

2𝜋

2
𝜎 2 + 𝛼𝑠

2𝜋

3
𝜎 3 +…)

Leading order

Next-to-next-to-leading order
Next-to-leading order

For charm, beauty, quarkonium production, the scales are small and 𝛼𝑆 is large 

(0.15 ~ 0.25), NLO corrections are very large and cannot be neglected.  

Such processes are usually accompanied with the largest nuclear corrections in proton-nucleus 

and nucleus-nucleus collisions



Parton-distribution  functions  (PDFs): essential link between hadronic cross sections and

perturbatively calculable partonic cross sections

Challenging situation for PDFs of nucleons inside nuclei (nPDFs): nuclear data significantly more 

complex to collect with two additional degrees of freedom (protons and neutrons)

nPDFs and PDFs give information on:

• the nuclear / hadronic structure in terms of quarks and gluons;

• the initial state of relativistic heavy-ion collisions, 

   to use perturbative probes of the Quark Gluon Plasma to study its properties

• nPDFs cannot be computed 

and similarly, to the proton PDFs are fit to experimental data. 

Only the evolution is perturbative

Framework - PDFs
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• Collinear factorization in terms of nPDFs is assumed and should be tested case by case

• Automating computations of cross sections with nPDFs up to NLO is highly desirable



Nuclear Modification Factors

We can define nuclear modification factors 𝑅𝐴𝐴, 𝑅𝑝𝐴 :

𝑅𝑝𝐴 ≡
𝜎𝑝𝐴

1 × 𝐴 × 𝜎𝑝𝑝

𝑅𝐴𝐵 =
𝜎𝐴𝐵

𝐴𝐵 𝜎𝑝𝑝

For rare/hard probes 𝜎𝑁𝑁
𝑝𝑟𝑜𝑏𝑒

≪ 𝜎𝑁𝑁
𝑖𝑛𝑒𝑙  

𝜎𝐴𝐵
𝑝𝑟𝑜𝑏𝑒

= 𝐴 × 𝐵 × 𝜎𝑁𝑁
𝑝𝑟𝑜𝑏𝑒

[Each probe is produced independently] 
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One expects:

• 𝑅𝑝𝐴>1 for x ≳ 0.8 (Fermi-motion region),

• 𝑅𝑝𝐴<1 for 0.25 ≲ x ≲ 0.8 (EMC region), 

• 𝑅𝑝𝐴>1 for 0.1 ≲ x ≲ 0.25 (antishadowing region)

• 𝑅𝑝𝐴<1 for x ≲ 0.1 (shadowing region)

• 𝑅𝑝𝐴~ 1: absence of nuclear effects

arXiv:1612.05741v2 [hep-ph]



nPDFs and MG5

Any PDFs can be used in MG5 up to NLO like proton PDFs with LHAPDF library 

Currently only the symmetric mode is implemented 

Reminder: we assume that

• the factorization of the cross section even in presence of nuclear effects 

• all the nuclear effects can be accounted by nPDFs and thus can be computed by 

MG5.

8



MadGraph
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• MG5_aMC@NLO is a metacode, i.e. a code 

generating another code

• Matrix element generator written in Python

• Can compute cross section and generates events 

at NLO with QCD corrections automatically

• Using LHAPDF can compute the cross section for 

any PDF in it with negligible additional CPU time (but 

only for symmetrical beam species)

• Scale and PDF uncertainties automatically 

computed and stored in Histograms with 

Uncertainties (HwU)

• Output in multiple formats (root, HwU, gnuplot, 

etc…)

9



MadGraph
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• MG5_aMC@NLO is a metacode, i.e. a code 

generating another code

• Matrix element generator written in Python

• Can compute cross section and generates events 

at NLO with QCD corrections automatically

• Using LHAPDF can compute the cross section for 

any PDF in it with negligible additional CPU time (but 

only for symmetrical beam species)

• Scale and PDF uncertainties automatically 

computed and stored in Histograms with 

Uncertainties (HwU)

• Output in multiple formats (root, HwU, gnuplot, 

etc…)

The missing part is asymmetric collisions! 

10



Framework – Collinear factorization
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Cross sections in collinear factorization and perturbative QCD

𝑑𝜎 = σ𝑎,𝑏 ׬ 𝑑𝑥1𝑑𝑥2𝑓𝑎( 𝑥1, 𝜇𝐹)𝑓𝑏(𝑥2, 𝜇𝐹)𝑑 ො𝜎𝑎𝑏→𝐾(ෝ𝑠, 𝜇𝐹,𝜇𝑅)

Parton-level

(differential)

Cross section

Parton density functions

where the partonic cross section is calculated using:

ො𝜎 = 𝜎𝐵𝑜𝑟𝑛(1 +
𝛼𝑠

2𝜋
𝜎 1 +

𝛼𝑠

2𝜋

2
𝜎 2 + 𝛼𝑠

2𝜋

3
𝜎 3 +…)

Leading order

Next-to-next-to-leading order
Next-to-leading order

For charm, beauty, quarkonium production, the scales are small and 𝛼𝑆 is large 

(0.15 ~ 0.25), NLO corrections are very large and cannot be neglected.  

Such processes are usually accompanied with the largest nuclear corrections in proton-nucleus 

and nucleus-nucleus collisions



Framework – Collinear factorization
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Cross sections in collinear factorization and perturbative QCD

where the partonic cross section is calculated using:

ො𝜎 = 𝜎𝐵𝑜𝑟𝑛(1 +
𝛼𝑠

2𝜋
𝜎 1 +

𝛼𝑠

2𝜋

2
𝜎 2 + 𝛼𝑠

2𝜋

3
𝜎 3 +…)

Leading order

Next-to-next-to-leading order
Next-to-leading order

For charm, beauty, quarkonium production, the scales are small and 𝛼𝑆 is large 

(0.15 ~ 0.25), NLO corrections are very large and cannot be neglected.  

Such processes are usually accompanied with the largest nuclear corrections in proton-nucleus 

and nucleus-nucleus collisions

Parton-level

(differential)

Cross section

Parton density functions

𝜎ℎ1ℎ2→ 𝑋 = σ𝑎,𝑏 ׬ 𝑑𝑥𝑎 𝑑𝑥𝑏𝑓 Τ𝑎 ℎ1
(𝑥𝑎, 𝜇𝐹; 𝐿𝐻𝐴𝐼𝐷_ℎ1) 𝑓 Τ𝑏 ℎ2

(𝑥𝑏, 𝜇𝐹; 𝐿𝐻𝐴𝐼𝐷_ℎ2) ො𝜎𝑎𝑏→𝑋(𝑥𝑎, 𝑥𝑏, 𝜇𝐹 , 𝛼𝑆 𝜇𝑅; 𝐿𝐻𝐴𝐼𝐷_ℎ2 )



MadGraph in NLOAccess

https://nloaccess.in2p3.fr/ 

MG5_aMC@NLO is now available online with its full NLO version on 
NLOAccess (https://nloaccess.in2p3.fr/MG5/)

MG5 extension to asymmetric collisions will be included on NLOAccess
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The asymmetric version of the code is available at:
https://github.com/mg5amcnlo/mg5amcnlo.git

https://nloaccess.in2p3.fr/MG5/
https://github.com/mg5amcnlo/mg5amcnlo.git


Validations of MG5 in asymmetric collisions 
Validation vs MCFM for W and Z production in proton-lead collisions 

at NLO
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• Very good agreement between MG5 and MCFM-based computations both for central value and 
uncertainties

• Uncertainties match, if MCFM-based computation done with asymmetric error estimation 



𝐶ℎ𝑎𝑟𝑚 𝑞𝑢𝑎𝑟𝑘 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

Example: c production in pPb collision at LHC 

For charm production, 𝝁𝑭 uncertainty nearly as large as the nPDF uncertainty.
15

To make this plot, one just needs as input two numbers: 

LHAPDF IDs of proton and nCTEQ15 for Lead
Scale uncertainty is automatically computed.

JHEP 10 (2017) 090, arXiv:1707.02750 [hep-ex].

Helac-Onia



𝐵𝑜𝑡𝑡𝑜𝑚 𝑞𝑢𝑎𝑟𝑘 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

Example: b production in pPb collision at LHC 
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To make this plot, one just needs as input two numbers: 

LHAPDF IDs of proton and nCTEQ15 for Lead
Scale uncertainty is automatically computed.

Phys. Rev. D99 no. 5, (2019) 052011, arXiv:1902.05599 [hep-ex].

𝜇𝐹  = [ 0.5, 1, 2 ] 𝜇𝑅  

Helac-Onia



Example: B+ production in pPb collision at LHC 
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Phys. Rev. D99 no. 5, (2019) 052011, arXiv:1902.05599 [hep-ex].

Helac-Onia

MG5+Pythia8

MG5
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Impact on nPDF of 
future D0 and B+ 

measurements with 
SMOG2

Directed by 

Cynthia Hadjidakis 
(IJClab) 



𝑹𝑫𝟎

𝒑𝑨 for different nuclei (H, He, Ne, Ar, Kr, Xe): rapidity dependence 
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• Uncertainties dominated by nPDFs ones

• Uncertainties for lower atomic mass number 

(He, Ne, Ar) probably too small.



𝑹𝑫𝟎

𝒑𝑨 for different nuclei (H, He, Ne, Ar, Kr, Xe): A dependence
Vertical bar – scale uncertainties
Boxes – nPDF uncertainties

20



𝑠 = 113 𝐺𝑒𝑉

2.0 < y_lab <4.6

-2.79 < y_cms <-0.19

𝜎𝐷0+𝐷0
= 2 × 𝜎𝑐 × 𝜀𝑒𝑓𝑓 × 𝐵𝑟 × 𝑓(𝑐 → 𝐷0) ×L

𝐵𝑟 𝐷0 → 𝐾−𝜋+ = 3.9 ± 0.09 ± 0.12 %

Production of the D0 pseudo-data of SMOG2 LHCb 
using MG5 output LHCb-PUB-2018-015

04/12/2018

40
40

We have less statistics 
(limited by) for 𝐻2

21

𝐟(c → 𝑫𝟎) = 0.542 ± 0.024



Calculation of the AccxEff and uncertainties
Acceptance efficiency integrated over 

y is taken as 0.5-1% (we took 1%) 
(priv. comm. Emilie Maurice)

To achieve this, we have to scale 
Gaussian from the LHCb by factor 0.56 

(yellow distribution)

Systematic uncertainty estimations are based on pPb systematics for 
D0 production:
arXiv:1707.02750v1 (5 TeV)
arXiv:2205.03936v4 (8.16 TeV)

PID Lum Tracking    Signal Prompt Sim.sample    BR 
1%               2%                3%               1%          0.1%               1%            0.8%

𝛿𝜎𝑠𝑦𝑠𝑡

𝜎𝑠𝑦𝑠𝑡
= 4%

Except for bins 
-2.5 < y_cms < -2.0

𝛿𝜎𝑠𝑦𝑠𝑡

𝜎𝑠𝑦𝑠𝑡
= 5%

22

Uncertainties are 
considered as uncorrelated 

over y!

from simulations of 
Marco Santimaria



𝑹𝑫𝟎

𝒑𝑨 for different nuclei (H, He, Ne, Ar, Kr, Xe): reweighing of the nPDFs

Steps for the reweighting were taken from 
arXiv:1610.02925v2

23



𝑹𝑫𝟎

𝒑𝑨 for Ar: reweighing of the nPDFs, 
nCTEQ vs EPPS21

24



Reweighing of the nPDFs: 
proton beam on Xe target vs Pb beam on H target
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𝑥1 ∈ [0.0053, 0.056]𝑥2 ∈ [0.032, 0.33]

𝑥2 =
2𝑚𝑐

113
𝑒−𝑦 𝑥1 =

2𝑚𝑐

71
𝑒𝑦

SMOG2 
probes different 

regions of the rapidity



𝑹𝑫𝟎

𝒑𝑨 for He and newer nPDFs: reweighing
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𝑹𝑫𝟎

𝒑𝑨 for Xe for newer nPDFs: reweighing

27



𝑠 = 113 𝐺𝑒𝑉

2.0 < y_lab <4.5

-2.79 < y_cms <-0.29

𝜎𝐵+ = 𝜎𝑏 × 𝜀𝑒𝑓𝑓 × 𝐵𝑟 × 𝑓(𝑏 → 𝐵+) ×L

𝐵𝑟 𝐵+ → Τ𝐽 𝜓 𝐾+ = (1.020 ± 0.019)×10−3

𝐵𝑟 Τ𝐽 𝜓 →  𝜇+𝜇− = (5.961 ± 0.033)%

Production of the B+ pseudo-data of SMOG2 LHCb 
using MG5 output LHCb-PUB-2018-015

04/12/2018

40
40

We have less statistics 
(limited by) 
𝐻2 and Xe

28
𝐟(b → 𝑩𝟎) = 40.4 ± 0.6 %
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Production of the pseudo-data of SMOG2 LHCb 
using MG5 output

arXiv:1807.00603v3 [hep-ex] 28 Jan 2021

𝑠 = 113 𝐺𝑒𝑉

2.0 < y_lab <4.5

-2.79 < y_cms <-0.29



Calculation of the AccxEff and uncertainties

Systematic uncertainty estimations are based 
on pPb and pp systematics for B+ production:
arXiv:1902.05599v2 (8.16 TeV)
arXiv:1710.04921v2 (13 TeV)

PID         Lum          BR         Binning      mass-fits           Acc         Rec       Track        Trigger      

GEC    Selection  Weighting 

0.4%     2%         2.8%      2.5%          2%

𝛿𝜎𝑠𝑦𝑠𝑡

𝜎𝑠𝑦𝑠𝑡
= 6.1%

30

Uncertainties are 
considered as uncorrelated 

over y!
0.2%     0.1%     2%           3%

0.7%          1%         0.2%         

AccxEff is 
Different for each of the y 

region



𝑹𝑩+

𝒑𝑨 for Xe nPDF: reweighing

31



• Asymmetric collisions in MadGraph5 have been implemented and successfully validated

• The code is available at GitHub right now!

• Also, it will be a part of NLOAccess and official MadGraph5 

• Reweighting is working with chosen D0-meson pseudo-data with SMOG2:
• Pseudo-data uncertainties dominated by the systematic ones
• If data-point uncertainties lower than nPDF uncertainties (Xe target), data can constrain gluon nPDF in and 

outside the probed rapidity interval

• Pseudo-data has the strong impact on the nPDF, for 
   Xe target (𝒙𝟐 ∈ [𝟎. 𝟎𝟑𝟐, 𝟎. 𝟑𝟑])
   and 
   Pb-beam (𝒙𝟏 ∈ [𝟎. 𝟎𝟎𝟓𝟑, 𝟎. 𝟎𝟓𝟔])

• For lighter target it’s not clear how reliable are uncertainties for nPDFs.

• Very similar situation with B+-meson pseudo-data

• Except that statistic uncertainties are much larger, due to the low luminosities of the Hydrogen and a target

• Some pseudo-data systematic uncertainties can be correlated over y
 assuming some experimental correlation could improve the reweighting picture. 

Conclusions

32



Backup
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Quark nPDFs
Since the early 1980s, from the ratio of structure functions 𝐹2 , we know that the nuclei are not a simple 

collection of free nucleons. 

In other words, nPDFs deviate from a simple sum of nucleon PDFs. To study such deviations, it is

customary to rely on NMFs, like:

𝑅 𝐹2
ℓ𝐴 =

𝐹2
ℓ𝐴

(𝑍𝐹2
ℓ𝑝

+ 𝐴 − 𝑍 𝐹2
ℓ𝑛)

One expects:

• 𝑅𝑞
𝐴 >1 for x ≳ 0.8 (Fermi-motion region),

• 𝑅𝑞
𝐴 <1 for 0.25 ≲ x ≲ 0.8 (EMC region), 

• 𝑅𝑞
𝐴 >1 for 0.1 ≲ x ≲ 0.25 (antishadowing region)

• 𝑅𝑞
𝐴 <1 for x ≲ 0.1 (shadowing region)

• 𝑅𝑞
𝐴 ~ 1: absence of nuclear effects

𝑅𝑖
𝐴(𝑥, 𝜇𝐹) =

𝑍𝑓𝑖
𝑝/𝐴

+ 𝐴 − 𝑍 𝑓𝑖
𝑛/𝐴

𝑍𝑓𝑖
𝑝

+ 𝐴 − 𝑍 𝑓𝑖
𝑛

34

arXiv:1712.07024v2 [hep-ph] 



Validations of MG5 in asymmetric collisions 
Validation vs MCFM for CT14 + EPPS16 for W production at NLO

35

• Good agreement between MG5 and MCFM-based computations for EPPS16

• Good agreement between MG5 and experimental data

• Slight difference in the uncertainty since MCFM-based computation done with symmetric uncertainties 

arXiv:2204.10640v1 [nucl-ex]



Example: Drell-Yan production in 𝝅𝑾 collision

36

𝜏 =
𝑚𝑙𝑙

2

𝑠

𝑥𝐹 = 𝑥𝑝𝑖𝑜𝑛 − 𝑥𝑛𝑢𝑐𝑙𝑒𝑢𝑠

𝑥𝑝𝑖𝑜𝑛 = 𝜏𝑒𝑌

𝑥𝑛𝑢𝑐𝑙𝑒𝑢𝑠 = 𝜏𝑒−𝑌

4.05 GeV/c < 𝑚𝑙𝑙< 8.55 GeV/c

Phys.Rev.D 39 (1989) 92-122



Example: Drell-Yang production in 𝝅𝑾 collision

37

arXiv:2103.02159v2 [hep-ph] 30 Nov 2021

Phys.Rev.D 39 (1989) 92-122

• For all 𝝉 regions and bins, differences do not exceed 5-10% percent range 

• Results match well those produced by the JAM collaboration 

• Small differences, could arise from instabilities that relate to Monte-Carlo 

algorithms and very narrow regions of invariant masses of muon pairs

𝜏 =
𝑚𝑙𝑙

2

𝑠



“Un”real prediction: Higgs+𝒃ഥ𝒃 at NLO

• Rapidity dependence for other particles can be obtained by changing a single line in the analysis file  
38

𝜇𝐹  = [ 0.5, 1, 2 ] 𝜇𝑅  



𝑫𝟎 production for the proton-Ne collisions, 
for two different masses for 𝒎𝒄

LHCb data: arXiv:2211.11633v3 [hep-ex] 20 Feb 2024

On the plots we have a cross-section of c-quark 
production,
multiplied by the factor:       2*𝐟(c → 𝑫𝟎) 

𝐟(c → 𝑫𝟎) = 0.542 ± 0.024

MG5 + nCTEQ15 nPDF

Charm mass 
significant for the scale variation

39

Assumption:      𝒚𝒄~𝒚𝑫𝟎



𝑫𝟎 production for the proton-Ne collisions, 
for two different masses of 𝒎𝒄

LHCb data: arXiv:2211.11633v3 [hep-ex] 20 Feb 2024

On the plots we have a cross-section of c-quark 
production, multiplied by the factor:     

2*𝐟(c → 𝑫𝟎) 

𝐟(c → 𝑫𝟎) = 0.542 ± 0.024

Assumption that  𝒑𝑻𝒄~𝒑𝑻𝑫𝟎  
not correct for large pT: 

one can try to use Pythia to compute decay 
kinematics

MG5 + nCTEQ15 nPDF

40



Reweighing of the nPDFs: 
Heavy-Ion beams

41



Reweighting process 

42

Def. of PDF replicas 𝒇𝒌:

𝑓0 − best fit (central) PDF

𝑓𝑖
(+)

, 𝑓𝑖
(−)

− are the plus and minus error PDFs corresponding
to the eigenvector direction 𝑖

Def. of weight:

T − is the tolerance criterion used when defining Hessian error PDFs
𝜒𝑘

2 − 𝜒2   for a given replica k.

Def. of 𝜒2 :

j − runs over all data points in the data set(s)
𝑁𝑑𝑎𝑡𝑎  − total number of data points, 
𝐷𝑗  − the experimental measurement at point j 

𝜎𝑗 − experimental uncertainty

𝑇𝑘
𝑗
 − theoretical prediction calculated with PDFs

given by replica k.



Red: 𝑚𝑐 = 1.5 𝐺𝑒𝑉
Green: 𝑚𝑐 = 1 GeV  (fit)
Open-points: maximum of the distribution 

per bin of y

x

𝑥2 =
2𝑚𝑐

113
𝑒−𝑦

43

𝒚𝒄𝒎𝒔
𝒄

𝒙𝟐 𝒗𝒔 𝒚 
𝒇𝒐𝒓 𝒑𝑿𝒆



Red: 𝑚𝑐 = 1.5 𝐺𝑒𝑉
Green: 𝑚𝑐 = 1 GeV  (fit)
Open-points: maximum of the distribution 

per bin of y

𝒚𝒄𝒎𝒔
𝒄𝒄

𝑥2 =
2𝑚𝑐

113
𝑒−𝑦

44

x x

𝒚𝒄𝒎𝒔
𝒄𝒄

𝒙𝟐 𝒗𝒔 𝒚 
𝒇𝒐𝒓 𝒑𝑿𝒆

𝑵𝑳𝑶 𝑳𝑶
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