

Quarkonium production and TMDs in MadGraph5_aMC@NLO Synergies between LHC and EIC for quarkonium physics

Alice COLPANI SERRI

C. FLETT, J.-P. LANSBERG, H.-S. SHAO, L. SIMON

July 9, 2024

Alice COLPANI SERRI

Warsaw University of Technology

ECT* Workshop on Synergies between LHC and EIC for quarkonium physics

1 / 30

1 Introduction

- 2 MadGraph5: onia implementation
- **3** TMD factorisation and TMDs
- **4** Conclusions

Alice COLPANI SERRI

Warsaw University of Technology

1 Introduction

- 2 MadGraph5: onia implementation
- 3 TMD factorisation and TMDs
- 4 Conclusions

Alice COLPANI SERRI

MadGraph5_aMC@NLO = event / diagram generator (Python) → compute matrix-element (helicity amplitude formalism)

- Total cross section
- Differential cross section
- Un-weighted event

 Lagrangian ★Feynman Rules ★ Matrix Element * Parton Events *Hadronise Events Detector Events

Alice COLPANI SERRI

Warsaw University of Technology

Introduction: MadGraph5_aMC@NLO

Master integral for symmetric collisions in MadGraph5:

$$\sigma(AA \to X) = \sum_{i,j} \int dx_i dx_j d\Phi f_{i/A}(x_i) f_{j/A}(x_j) \hat{\sigma}_{(ab \to X)}(x_i, x_j, \mu_F, \mu_R)$$

How MadGraph5 works:

- Identify partonic processes and calculate partonic cross section
- Use PDFs (LHAPDF package)
- Do phase space integral and convolute with PDFs
- Generate events

Slide courtesy of L. Manna

NEW implementations:

- Asymmetric collisions (see talks by L. Manna and A. Safronov)
- This talk: quarkonium production!

Alice COLPANI SERRI

There are many reasons why quarkonia are interesting:

- QCD studies!
- internal structure of nucleons
- gluon investigation (e.g. EIC)

Focus on inclusive processes \rightarrow factorisation:

$$\sigma(pp \to Q + X) = \sum_{i,j,n} \int dx_1 dx_2 f_{i/p}(x_1) f_{j/p}(x_2)$$
$$\times \hat{\sigma}(ij \to Q\bar{Q}[n] + X) \langle \mathcal{O}_n^Q \rangle \qquad \boxed{n = 2^{s+1} L_j^c}$$

Models for quarkonium production: NRQCD, CSM, CEM, ...

Alice COLPANI SERRI

• ...

Warsaw University of Technology

 \rightarrow TMDs!!

Many reasons, including:

- global data-theory comparisons
- physics cases for future experimental facilities
- global NRQCD fits

Matrix element/event generators publicly available (↔ interfacing of e.g. HERWIG or PYTHIA with e.g. MG5_aMC)

facilitates complete computation

- \checkmark versatility and enhanced physics simulation capabilities
- integration complexity, computational overhead, code compatibility and increased learning requirements

MadOnia:

- \checkmark single quarkonium production phenomenology (only)
- X (deprecated) module within MadGraph4

Helac-Onia:

- (S-wave/P-wave) multiple-quarkonium production based on tree-level helicity amplitudes
- X limited to LO (not immediately extendable to NLO)

MadGraph5 aMC@NLO:

- flexibility to support SM, BSM and large number of particle physics models
- ? no quarkonia final states \rightarrow (technical) complexities arise!

Goal: automation of LO quarkonium with NLO in sight

Alice COLPANI SERRI

Introduction

2 MadGraph5: onia implementation

3 TMD factorisation and TMDs

4 Conclusions

・ロ・・聞・・思・・思・・ 聞・ うろの

Alice COLPANI SERRI

ECT* Workshop on Synergies between LHC and EIC for quarkonium physics

Warsaw University of Technology

9 / 30

□ Implementation of quarkonia in MadGraph5_aMC@NLO at LO → Single and multiple S-wave inclusive quarkonium production

- Colour projectors
- Spin projectors
- Interface
- Phase space adaptation

 \square Extensions to states with leading P-wave Fock states LO implementation $\longrightarrow \square$ NLO in the easiest way possible!

 $\Box \text{ TMD factorisation also to be implemented}$ $\hookrightarrow \text{ for example gg} \rightarrow \text{di-} J/\psi \qquad (... \text{ not only for quarkonia})$

Alice COLPANI SERRI

Status of the project

□ Implementation of quarkonia in MadGraph5_aMC@NLO at LO → Single and multiple S-wave inclusive quarkonium production

- Colour projectors \rightarrow implemented \checkmark
- Spin projectors
- \rightarrow implemented \checkmark
- Interface \rightarrow implemented \checkmark
- Phase space adaptation

 \square Extensions to states with leading P-wave Fock states LO implementation $\longrightarrow \square$ NLO in the easiest way possible!

□ TMD factorisation also to be implemented \hookrightarrow for example gg \rightarrow di- J/ψ

Alice COLPANI SERRI

Colour projectors (1)

Quarkonium in the quantum state $n \rightarrow$ colour singlet or octet?

$$C_1 = \delta_{ij} / \sqrt{N_c}$$
$$C_8 = \sqrt{2} t_{ij}^c$$

• Example: $gg \rightarrow c\bar{c}$ 3 diagrams at LO

Alice COLPANI SERRI

Warsaw University of Technology

Colour projectors (2)

(A)
$$\sim (t^a_{ik}t^b_{kl}) = (t^a t^b)_{il} \longrightarrow \text{we set } (t^a t^b)_{il} = c1$$

(B) $\sim (t^b_{ik}t^a_{kl}) = (t^b t^a)_{il} \longrightarrow \text{we set } (t^b t^a)_{il} = c2$
 $\longleftrightarrow \text{ open } c\bar{c} \text{ soleur basis of dim} = 2$

 \rightarrow open *cc* colour basis of dim = 2

Image: A math and A

Alice COLPANI SERRI

Warsaw University of Technology

Colour projectors (3)

Alice COLPANI SERRI

Warsaw University of Technology

Colour projectors (4)

Apply colour projectors: $C_1 = \delta^{il}$ and $C_8 = t_{il}^c$

• Colour singlet:

$$(t^a t^b)_{il} \delta^{il} = \operatorname{Tr}(t^a t^b) \tag{A}$$

$$(t^b t^a)_{il} \delta^{il} = \mathsf{Tr}(t^b t^a) \tag{B}$$

• Colour octet:

$$\begin{aligned} & (t^{a}t^{b})_{il}t^{c}_{il} &= \operatorname{Tr}(t^{a}t^{b}t^{c}) = \frac{1}{4}(d^{abc} + if^{abc}) & (1) \\ & (t^{b}t^{a})_{il}t^{c}_{il} &= \operatorname{Tr}(t^{b}t^{a}t^{c}) = \frac{1}{4}(d^{bac} + if^{bac}) & (2) \end{aligned}$$

The amplitude will be given by the sum of the three contributions

$$\mathcal{A} = \mathcal{A}(\mathbf{A}) + \mathcal{A}(\mathbf{B}) + \mathcal{A}(\mathbf{C})$$

Alice COLPANI SERRI

Warsaw University of Technology

Colour projectors for *m* colour singlet and colour octet quarkonia production and associated production implemented \checkmark

Metacode: quarkonium formalism implemented via extension of python files which produce fortran code \rightarrow numerical manipulations

In /mg5amcnlo/madgraph/core

- color_algebra.py
- color_amp.py
- helas_objects.py

Alice COLPANI SERRI

Quarkonium in the quantum state $n \rightarrow$ spin singlet or triplet?

• Generic quarkonium spin projector: normalisation as arXiv:2402.19221

$$\frac{1}{2\sqrt{2m_Qm_{\bar{Q}}}}\bar{v}(p_2,\lambda_2)\Gamma_S u(p_1,\lambda_1) \tag{1}$$

• Generic fermion line: $\bar{u}(p_1, \lambda_1) \Gamma_1 \cdots \Gamma_2 v(p_2, \lambda_2)$ (2)

Contracting (2) with (1): $S = 0, \gamma_5; 1, \notin(P)$

$\bar{v}(p_2,\lambda_2)\Gamma_S u(p_1,\lambda_1)$

Declaration of new effective spinors in:

- /mg5amcnlo/aloha/template_files/ aloha_functions.f
- /mg5amcnlo/madgraph/core/helas_objects.py

Python: calls template _files \rightarrow matrix _i.f files

Alice COLPANI SERRI

Amplitudes organised into colour basis JAMPs

$$\mathcal{A} = \sum_{i} A_{i} \stackrel{\text{example}}{=} A(\mathbf{A}) + A(\mathbf{B}) + A(\mathbf{C})$$
$$A(\mathbf{A}) = c1A_{1} \qquad A(\mathbf{B}) = c2A_{2} \qquad A(\mathbf{C}) = c1A_{31} - c2A_{32}$$
$$\frac{\text{JAMP decomposition}}{\text{JAMP}_{1}} \quad = A_{1} + A_{31} \propto c1$$
$$\text{JAMP}_{2} = A_{2} - A_{32} \propto c2$$

$$|\mathcal{A}|^{2} = \sum_{i,j=1,2} \mathsf{JAMP}_{i}^{*} \langle c_{i} | c_{j} \rangle \mathsf{JAMP}_{j}$$

(Depends on spin projectors - constructed from helas routines) Efficiency: large number of Feynman diagrams possible...

...but colour basis much smaller!

Alice COLPANI SERRI

Generate process: single, associated and multiple production From the mg5amcnlo folder: type ./bin/mg5 aMC MG aMC >

★ Example: $pp \rightarrow \eta_c + c\bar{c}g$

MG_aMC > generate p p > c.c~(1S01) c c~ q dot notation for onia with spectroscopic notation in brackets

MG_aMC > generate p p > etac c c~ g Particle name directly in the process generation New file containing onia information! onia names properties To be added:

or

- MadGraph5 own pdg code
- Principal guantum number

Implementation made in /mg5amcnlo/madgraph/interface/

3

18 / 30

List of processes that have been checked:

Benchmarked our matrix elements squared against Helac-Onia:

 \Rightarrow

Alice COLPANI SERRI

Warsaw University of Technology

• g g > b.b~(1S01) g

Phase-space point				
E	рх	ру	pz	
0.5000000E+03	0.0000000E+00	0.0000000E+00	0.5000000E+03	
0.5000000E+03	0.0000000E+00	0.0000000E+00	-0.5000000E+03	
0.5000048E+03	0.1109232E+03	0.4448265E+03	-0.1995510E+03	
0.4999952E+03	-0.1109232E+03	-0.4448265E+03	0.1995510E+03	

Matrix element	1.4532913707599472E-005 GeV^0
Helac-Onia	1.45329122E-05 GeV^0
Ratio	1.0000001005670054

Alice COLPANI SERRI

Warsaw University of Technology

Some results: MadGraph5 vs Helac-Onia

• g g > b.b~(3S11) g

Matrix element	4.8065942918292797E-010 GeV^0
Helac-Onia	4.80663009E-10 GeV^0
Ratio	0.99999255151418964

Matrix element	4.4080653118388797E-005 GeV^0
Helac-Onia	4.40806543E-05 GeV^0
Ratio	0.99999997242730454

• g g > b.b~(1S01) b.b~(1S01)

Matrix element	5.2953309332877083E-013 GeV^0
Helac-Onia	5.29533448E-13 GeV^0
Ratio	0.99999932957700877

Alice COLPANI SERRI

Warsaw University of Technology

Phase space intagration in MadGraph5: multi-channelling ← efficiency: parallel computation

Phase-space adaptation: onia in final state single particle, not two!

• Process like $gg \rightarrow c\bar{c}$ always interpreted as $2 \rightarrow 2$ process

Work in progress!

Alice COLPANI SERRI

Warsaw University of Technology

New parts in the code: search # ONIA

GitHub: release **onia** branch of MG5 version 3.x

Alice COLPANI SERRI

Warsaw University of Technology

ECT* Workshop on Synergies between LHC and EIC for quarkonium physics

23 / 30

Introduction

- 2 MadGraph5: onia implementation
- **3** TMD factorisation and TMDs
- 4 Conclusions

Alice COLPANI SERRI

Warsaw University of Technology

Understanding the internal structure of the nucleon \rightarrow TMDs Correlations between k_T and the polarisation of the nucleon/parton 2 components \triangleright collinear (x)

▶ transversal $(\vec{k_{\perp}}) \rightarrow$ generate q_T (final-state)

TMD factorisation ($q_T \ll Q$ hard scale) General factorised cross section

← partonic scattering amplitude (*perturbative*)

 \hookrightarrow k_T -dependent correlators (*non-perturbative*)

$$d\sigma = \int dx_1 dx_2 d^2 \vec{k}_{T1} d^2 \vec{k}_{T2} \delta^{(2)} (\vec{k}_{T1} + \vec{k}_{T2} - \vec{q}_T) \\ \times \Phi_g^{\mu\nu}(x_1, \vec{k}_{T1}) \Phi_g^{\rho\sigma}(x_2, \vec{k}_{T2}) \Big[\hat{\mathcal{M}}_{\mu\rho} \, \hat{\mathcal{M}}_{\nu\sigma}^* \Big]_{\substack{k_1 = x_1 P_1 \\ k_2 = x_2 P_2}} + \mathcal{O}\left(\frac{q_T^2}{Q^2}\right)$$

Alice COLPANI SERRI

LO Feynman diagram for $p(P_1) + p(P_2) \rightarrow \mathcal{Q}(P_{Q,1}) + \mathcal{Q}(P_{Q,1}) + X$

F. Scarpa, D. Boer, M.G. Echevarria, J.-P. Lansberg, M. Schlegel, EPJC (2020) 80:87

Alice COLPANI SERRI

Warsaw University of Technology

J.-P. Lansberg, C. Pisano, F. Scarpa, M. Schlegel, PLB 784(2018) 217

The general formula for the cross section of gluon fusion is:

$$d\sigma^{gg} \propto F_1 \times \mathcal{C}[f_1^g f_1^g] +F_2 \times \mathcal{C}[w_2 h_1^{\perp g} h_1^{\perp g}] +(F_3 \times \mathcal{C}[w_3 f_1^g h_1^{\perp g}] + F_3' \times \mathcal{C}[w_3' h_1^{\perp g} f_1^g]) \cos(2\Phi_{CS}) +(F_4 \times \mathcal{C}[w_4 h_1^{\perp g} h_1^{\perp g}]) \cos(4\Phi_{CS})$$

- *F_i*: hard scattering coefficients
- w_i: transverse weights
- f_1^g and $h_1^{\perp g}$: unpolarised and linearly polarised gluon TMDs
- Φ_{CS} : Collins-Soper azimuthal angle

Alice COLPANI SERRI

Warsaw University of Technology

[see talk by J. Bor]

Work in terms of helicities!

J.-P. Lansberg, C. Pisano, M. Schlegel, Nucl.Phys.B 920 (2017) 192-210

$$\rightarrow d\sigma = \frac{(2\pi)^4}{S^2} dPS_n \sum_{\lambda_a, \bar{\lambda}_a, \lambda_b, \bar{\lambda}_b = \pm 1} \frac{1}{(N_c^2 - 1)^2} \times \\ \sum_{a, b; I} \mathcal{A}_{\lambda_a, \lambda_b; I}^{ab} (\bar{k}_a, \bar{k}_b; \{P_i\}) \mathcal{A}_{\bar{\lambda}_a, \bar{\lambda}_b; I}^{ab*} (\bar{k}_a, \bar{k}_b; \{P_i\}) \times \\ \int d^2 k_{aT} \int d^2 k_{bT} \delta^{(2)} (d^2 k_{aT} + d^2 k_{bT} - d^2 q_T) \times \\ \Phi_{\bar{\lambda}_a, \lambda_a} (x_a, d^2 k_{aT}, \zeta_a, \mu) \Phi_{\bar{\lambda}_b, \lambda_b} (x_b, d^2 k_{bT}, \zeta_b, \mu) + \mathcal{O}(q_T/Q)$$

$$\Phi_{\lambda_a,\bar{\lambda}_a} = \frac{1}{2x_a} \left(\delta_{\lambda_a,\bar{\lambda}_a} f_1^g + \frac{k_{ax}^2 - k_{ay}^2 - 2i\lambda_a k_{ax} k_{ay}}{2M^2} \delta_{\lambda_a,-\bar{\lambda}_a} h_1^{\perp g} \right)$$

Alice COLPANI SERRI

< ∃⇒ Warsaw University of Technology

・ロト ・ 日 ト ・ ヨ ト

ECT* Workshop on Synergies between LHC and EIC for quarkonium physics

28 / 30

Introduction

- 2 MadGraph5: onia implementation
- 3 TMD factorisation and TMDs
- **4** Conclusions

Alice COLPANI SERRI

ECT* Workshop on Synergies between LHC and EIC for quarkonium physics

Warsaw University of Technology

29 / 30

Implementation of quarkonia in MG5: in progress!

 Colour projectors 	implemented
 Spin-projectors 	implemented
* Interface	implemented

- * Benchmarked our matrix elements squared against Helac-Onia
- Phase-space adaptation to be implemented next

- P-wave extension
- From LO to NLO!

see H-S. Shao, A. Hamed, L. Simon arXiv:2402.19221

TMD factorisation

Alice COLPANI SERRI