Experimental results on double J/ψ hadro-production \bigcirc

Liupan An

Peking University

Synergies between LHC and EIC for quarkonium physics @ ECT, 9 July 2024

Quarkonium production mechanism

> Heavy quarkonium: ideal system to study hadronization mechanism

>Non-relativistic QCD (NRQCD) provides the most successful description

>Yet not able to coherently describe prod.&pol. measurements in all collision systems

$$\sigma(H_{Q\bar{Q}}) = \sum_{a,b,n} \int dx_1 dx_2 f_{a/p}(x_1) f_{b/p}(x_2) |\mathcal{A}(ab \to Q\bar{Q}[n] + X)|^2 \times \langle \mathcal{O}^H(n) \rangle$$

LDMEs: extracted from measurements & process independent

Associated Quarkonium production

- ✓ To probe the quarkonium production mechanism puzzle
- ✓ Golden channel to probe gluon transverse momentum dependent (TMD) PDFs:
- $h_1^{\perp g}(x, \mathbf{k}_T^2, \mu) \Rightarrow azimuthal asymmetry$
- $f_1^g(x, \mathbf{k}_T^2, \mu)$: affect p_T spectrum [EPJC 80 (2020) 87]

✓ To search for fully heavy tetraquark states

- ✓ To provide information on parton transverse profile & correlations in colliding hadrons
- ✓ To understand multiparticle background (Z + bb, W⁺W⁺ etc.) in both SM measurements and search for New Physics

Double Parton Scattering

 $\sigma_{Q_1Q_2}^{\text{DPS}} = \frac{1}{1 + \delta_{Q_1Q_2}} \sum_{i,j,k,l} \int dx_1 dx_2 dx_1' dx_2' d^2 \mathbf{b_1} d^2 \mathbf{b_2} d^2 \mathbf{b_1}$

Generalized double parton PDF SPS parton-level cross-section

 $\times \Gamma_{ij}(x_1, x_2, \mathbf{b_1}, \mathbf{b_2}) \times \hat{\sigma}_{ik}^{Q_1}(x_1, x_1') \hat{\sigma}_{jl}^{Q_2}(x_2, x_2') \times \Gamma_{kl}(x_1', x_2', \mathbf{b_1} - \mathbf{b}, \mathbf{b_2} - \mathbf{b})$

Liupan An

Assuming:

- ✓ factorization of trans. & long. components $\Gamma_{ij}(x_1, x_2, \boldsymbol{b}_1, \boldsymbol{b}_2) = D_{ij}(x_1, x_2)T_{ij}(\boldsymbol{b}_1, \boldsymbol{b}_2)$
- ✓ no correlation between two sets of partons $D_{ij}(x_1, x_2) = f_i(x_1)f_j(x_2), T_{ij}(\boldsymbol{b}_1, \boldsymbol{b}_2) = T_i(\boldsymbol{b}_1)T_j(\boldsymbol{b}_2)$

$$\sigma_{Q_1Q_2} = \frac{1}{1 + \delta_{Q_1Q_2}} \frac{\sigma_{Q_1}\sigma_{Q_2}}{\sigma_{\text{eff}}}$$

$$\sigma_{\rm eff} = 1 / \left[\int d^2 \boldsymbol{b} F(\boldsymbol{b})^2 \right], F(\boldsymbol{b}) = \int T(\boldsymbol{b}_i) T(\boldsymbol{b}_i - \boldsymbol{b}) d^2 \boldsymbol{b}_i$$

expected to be universal under the given assumptions

			pp	@13 TeV		
	—		LHC	b (<i>J/ψ-J/ψ</i>)	
			pp	@8 TeV		
			ATL	AS $(J/\psi - Z^0)$)	
	i -		ATL	AS $(J/\psi - J/\psi)$	ψ)	
			LHC	b (Υ(1S)-D	⁰)	
			рр	@7 TeV		
	-		ATL	AS $(J/\psi - W)$	[±])	
			CMS	$(J/\psi - J/\psi)$		
			LHC	$b (J/\psi - D^0)$		
			LHC	$b(D^0-D^0)$		
			ATL	AS (W^{\pm} -2 j	ets)	
			CMS	$(W^{\pm}-2 \text{ jets})$)	
			рĪ	7 @1.96 Te	V	
•	I.		D0 (.	Ι/ψ-Υ)		
			D0 (.	I/ψ - J/ψ)		
			D0 ()	v-3 jets)		
			₽Ī	7 @1.8 TeV	r	
⊢ ⊢			CDF	(4 jets)		
	$ CDF (\gamma - 3 jets)$					
h	20	40	60	80	100	
J	20	40	00	80	100	
			172.	σ [1	mh]	
L L			L/Z;	U _{eff} []	ΠU	
arXiv: 2009.12555]			•]	4/29		

9/7/24

LHC experiments

hadron PID

HCAL

ECAL

tracking

muon system

lumi counters

Analysis strategy $d\sigma$ Ν \overline{dv} $-\frac{1}{\mathcal{L} \times \varepsilon \times \mathcal{B}(J/\psi \to \mu^+\mu^-) \times \Delta v}$ J/ψ -from-b prompt J/ψ μ^+ $\mu^+_{\mu^-}$ μ^+ μ H_{b} Secondary vertex **Primary vertex** X X Primary vertex Primary vertex X $\times 10^3$ Candidates per 5 MeV/ c^2 Candidates per 0.2 ps 10^4 m 10^2 ps LHCb LHCb 12 Data $\sqrt{s} = 13$ TeV, $L_{int} = 3.05$ pb⁻¹ 3 < y < 3.5 Total fit $\sqrt{s} = 13 \text{ TeV}, L_{\text{int}} = 3.05 \text{ pb}^{-1}$ J/ψ -from-b 3 < y < 3.510 🔆 Prompt J/ψ $2 < p_{_{\rm T}} < 3 \text{ GeV/}c$ $2 < p_{_{\rm T}} < 3 \text{ GeV}/c$ Wrong PV Background 102 3200 2950 3000 3050 3100 3150 t_{z}^{8} [ps] [ps] -2 -10 -8 6 $m_{\mu^+\mu^-}$ [MeV/ c^2] $t_z = \frac{\left(z_{J/\psi} - z_{\rm PV}\right) \times M_{J/\psi}}{t_z}$ [JHEP 10 (2015) 172] Liupan An p_z 9/7/24 6/29

di-*J*/ψ @ 7 TeV

 \blacktriangleright Using 37.5 pb⁻¹ data at $\sqrt{s} = 7$ TeV

Fiducial region: $2 < y^{J/\psi} < 4.5$, $p_T^{J/\psi} < 10 \text{ GeV}/c$

 \triangleright Observed with significance > 6σ (from-b contribution negligible)

9/7/24

Liupan An

 $m_{J/\psi J/\psi}$

di- J/ψ @ 13 TeV

 $\mathcal{FL} = 279 \text{ pb}^{-1}$, pp collisions @ $\sqrt{s} = 13 \text{ TeV}$

Finematic range of J/ψ : $p_{\rm T} < 10 \text{ GeV}/c \text{ for } 2.0 < y < 4.5$

Signal yield determination

✓ Residual from-*b* component determined using simulation together with $\sigma(pp \rightarrow b\overline{b})$ and $\sigma(\text{prompt } J/\psi)$

[JHEP 06 (2017) 047]

$rac{\sigma(J/\psi J/\psi)}{} = 15.2 \pm 1.0(\text{stat}) \pm 0.9(\text{syst}) \text{ nb}$

9/7/24

Comparison to theory

			$\sigma(J/\psi J/\psi)$ [nb]	[JHEP 06 (2017) 047]
		no $p_{\rm T}$ cut	$p_{\rm T} > 1 {\rm GeV}/c$	$p_{\rm T} > 3 {\rm GeV}/c$
1	LO Colour-singlet	$1.3 \pm 0.1^{+3.2}_{-0.1}$		
SPS -	LO Colour-octet	$0.45 \pm 0.09^{+1.42+0.25}_{-0.36-0.34}$		
	LO k_{T}	$6.3^{+3.8+3.8}_{-1.6-2.6}$	$5.7^{+3.4+3.2}_{-1.5-2.1}$	$2.7^{+1.6+1.6}_{-0.7-1.0}$
	NLO* Colour-single	eť	$4.3 \pm 0.1^{+9.9}_{-0.9}$	$1.6 \pm 0.1^{+3.3}_{-0.3}$
	NLO* Colour-single	$t'' 15.4 \pm 2.2^{+51}_{-12}$	$14.8 \pm 1.7^{+53}_{-12}$	$6.8 \pm 0.6^{+22}_{-5}$
	- NLO Colour-singlet	$11.9^{+4.6}_{-3.2}$		
	DPS	$8.1 \pm 0.9^{+1.6}_{-1.3}$	$7.5 \pm 0.8^{+1.5}_{-1.2}$	$4.9 \pm 0.5^{+1.0}_{-0.8}$
	LHCb result	$15.2 \pm 1.0 \pm 0.9$	$13.5 \pm 0.9 \pm 0.9$	$8.3 \pm 0.6 \pm 0.5$

DPS: assuming $\sigma_{eff} = 14.5 \pm 1.7^{+1.7}_{-2.3}$ mb [PRD 56 (1997) 3811]

LO Colour-octet : contribution very small

>LO Colour-singlet/ NLO* Colour-singlet' and LO $k_{\rm T}$: need DPS contribution

NLO* Colour-singlet" and NLO Colour-singlet : consistent with our measurement by itself; overestimated if there is DPS contribution

Differential cross-sections

> Differential cross-sections of different variables compared to theory predictions

- ✓ Most significant indication of DPS comes from $|\Delta y|$
- ✓ DPS contribution essential for the region $|\Delta y| > 1.5$
- ✓ Also clear indication from $m(J/\psi J/\psi)$

[JHEP 06 (2017) 047]

DPS extraction

[JHEP 06 (2017) 047]

11/29

Template DPS+SPS fits performed for different variables using various models

9/7/24

di- J/ψ @ 13 TeV update

[JHEP 03 (2024) 088]

Fiducial region: 2 < $y(J/\psi)$ < 4.5, $p_T(J/\psi)$ < 14 GeV

SPS and DPS separation

[JHEP 03 (2024) 088]

SPS & DPS separated assuming negligible SPS contribution in $1.8 < \Delta y < 2.5$ according to NRQCD predictions

	<i>pp</i> @13 TeV
	LHCb $(J/\psi - J/\psi)$
	LHCb $(J/\psi - \Upsilon(1S))$
	LHCb $(J/\psi - \Upsilon(2S))$
	<i>pp</i> @8 TeV
•••	ATLAS $(J/\psi - Z^0)^*$
⊷ •	ATLAS $(J/\psi - J/\psi)$
	LHCb ($\Upsilon(1S)$ - D^0)
	<i>pp</i> @7 TeV
+ e	ATLAS $(J/\psi - W^{\pm})^*$
	CMS $(J/\psi - J/\psi)^*$
•	LHCb $(J/\psi - D^0)^*$
	LHCb $(D^0 - D^0)$
	ATLAS (W^{\pm} -2 jets)
• ••• •	CMS (W^{\pm} -2 jets)
	<i>pp@</i> 1.96 TeV
•	D0 $(J/\psi - \Upsilon)^*$
	$D0 (J/\psi - J/\psi)$
	D0 (γ -3 jets)
	<i>pp@</i> 1.8 TeV
••••	CDF (4 jets)
••• ·	CDF (γ -3 jets)
0 20 40	60 80 100
0 20 40	00 80 100
[PoS (LHCP2020) 1	72; σ [mb]
arXiv: 2009.12555	1 eff [1110] 3/29

9/7/24

Differential $J/\psi - J/\psi$ cross-section $_{\mu}$

[JHEP 03 (2024) 088]

SPS differential cross-sections are within uncertainties of the incomplete (no-loops) next-to-leading order (NLO*) colorsinglet (CS) NRQCD calculations [PRL 111 (2013) 122001]

> PRA+NRQCD overestimates SPS data at low mass and high $p_{\rm T}$ [PRL 123 (2019) 162002]

[Comput. Phys. Commun. 184 (2013) 2562] [Comput. Phys. Commun. 198 (2016) 238]

9/7/24

$J/\psi - \psi(2S)$ @ 13 TeV

[JHEP 05 (2024) 259]

Fiducial region: 2 < $y(\psi)$ < 4.5, $p_{\rm T}(\psi)$ < 14 GeV

Differential $J/\psi - \psi(2S)$ cross-section

[JHEP 05 (2024) 259]

 Results consistent with NLO* CS NRQCD calculations albeit DPS is not subtracted [PRL 111 (2013) 122001] [Comput. Phys. Commun. 184 (2013) 2562] [Comput. Phys. Commun. 198 (2016) 238]
 PRA+NRQCD overestimates SPS data at low mass [PRL 123 (2019) 162002]

 $J/\psi - \psi(2S)$ vs. $J/\psi - J/\psi$

[JHEP 05 (2024) 259]

 \succ Predictions on the ratio between $\sigma(J/\psi - \psi(2S))$ and $\sigma(J/\psi - J/\psi)$ give

✓ SPS: 0.94 ± 0.030 [PLB 751 (2015) 479]

✓ DPS: 0.282 ± 0.027 [JHEP 10 (2015) 172] [EPJC 80 (2020) 185]

 $\frac{\sigma(J/\psi - \psi(2S))}{\sigma(J/\psi - J/\psi)} = 0.274 \pm 0.044 \text{(stat)} \pm 0.008 \text{(syst)}$

 \Rightarrow it confirms a prominent DPS contribution to $J/\psi - J/\psi$ production in a novel way, independent of the kinematic correlation of two J/ψ mesons

Differential cross-section ratios are also measured, but more statistics needed

9/7/24

di- J/ψ @ 7 TeV

 $> \mathcal{L} = 4.7 \text{ fb}^{-1}$, pp collisions @ $\sqrt{s} = 7 \text{ TeV}$

➤ Kinematic range of J/ψ : $p_T > 6.5 \text{ GeV}/c$ for |y| < 1.2; $p_T > 6.5 - 4.5 \text{ GeV}/c$ for 1.2 < |y| < 1.43; $p_T > 4.5 \text{ GeV}/c$ for 1.43 < |y| < 2.2

➢Signal yield determination

 $\succ \sigma(J/\psi J/\psi) = 1.49 \pm 0.07 (\text{stat}) \pm 0.13 (\text{syst}) \text{ nb}$

[JHEP 1409 (2014) 094]

SPS and DPS contributions determined by performing SPS+DPS templated fits to these differential cross-sections: $\sigma_{eff} = 8.2 \pm 2.0(\text{stat}) \pm 2.9(\text{syst}) \text{ mb}$ 10 $10^{\text{LO SPS}}_{\text{DPS}} = \frac{10^{\text{LO SPS}}_{\text{DPS}}}{\frac{10^{\text{LO SPS}}}{\text{DPS}}_{\text{DPS}+\text{NLO}^* \text{SPS}}} = \frac{10^{\text{CeV SPS}}}{\frac{10^{\text{SP$

9/7/24

CMS,

tri- J/ψ @ 13 TeV

[Nat. Phys. 19 (2023) 338]

Pure prompt production:

9/7/24

Liupan An

21/29

$\sigma_{\rm eff}$ determination

[Nat. Phys. 19 (2023) 338]

$$\begin{aligned} \sigma_{\text{tot}}^{3J/\psi} &= \sigma_{\text{SPS}}^{3J/\psi} + \sigma_{\text{DPS}}^{3J/\psi} + \sigma_{\text{TPS}}^{3J/\psi} \\ &= \left(\sigma_{\text{SPS}}^{3p} + \sigma_{\text{SPS}}^{2p1np} + \sigma_{\text{SPS}}^{1p2np} + \sigma_{\text{SPS}}^{3np}\right) \\ &+ \left(\sigma_{\text{DPS}}^{3p} + \sigma_{\text{DPS}}^{2p1np} + \sigma_{\text{DPS}}^{1p2np} + \sigma_{\text{DPS}}^{3np}\right) + \left(\sigma_{\text{TPS}}^{3p} + \sigma_{\text{TPS}}^{2p1np} + \sigma_{\text{TPS}}^{3np}\right) \end{aligned}$$

 ✓ SPS cross-sections taken from HELAC-ONIA at LO or NLO* (prompt) & MADGRAPH5_aMC@NLO + Pythia8 (non-prompt)

✓ Taking $\sigma_{\rm eff,TPS} = (0.82 \pm 0.11) \sigma_{\rm eff,DPS}$

 $\Rightarrow \sigma_{\rm eff,DPS} = 2.7 \, {}^{+1.4}_{-1.0} \, ({\rm exp.}) \, {}^{+1.5}_{-1.0}$ (th.) mb

✓ DPS and TPS dominate

Process:	3 prompt	2 prompt+1 nonprompt	1 prompt+2 nonprompt	3 nonprompt	Total
$\sigma_{\rm SPS}^{3{\rm J}/\psi}$ (fb)	< 0.005	5.7	0.014	12	18
$N_{ m SPS}^{ m 3J/\psi}$	0.0	0.10	0.0	0.22	0.32
$\sigma_{\rm DPS}^{\rm 3J/\psi}$ (fb)	8.4	8.9	90	95	202
$N_{ m DPS}^{3{ m J}/\psi}$	0.15	0.16	1.65	1.75	3.7
$\sigma_{\mathrm{TPS}}^{\mathrm{3J/\psi}}$ (fb)	6.1	19.4	20.4	7.2	53
$N_{\mathrm{TPS}}^{3\mathrm{J}/\psi}$	0.11	0.36	0.38	0.13	1.0
$\sigma_{\rm tot}^{3J/\psi}$ (fb)	15	34	110	114	272
$N_{\rm tot}^{3J/\psi}$	0.3	0.6	2.0	2.1	5.0

I	CMS, √s=13 TeV, J/ψ+J/ψ+J/ψ	This work
	CMS [*] , $\sqrt{s}=7$ TeV, $J/\psi+J/\psi$	Ref. 60
	ATLAS, √s=8 TeV, J/ψ+J/ψ	Ref. 24
	D0 , v s=1.96 TeV, J/ψ+J/ψ	Ref. 22
<u> </u>	D0 *, vs=1.96 TeV, J/ψ+Y	Ref. 58
<u> </u>	ATLAS*, √s=7 TeV, W+J/ψ	Ref. 59
	ATLAS*, √s=8 TeV, Z+J/ψ	Ref. 60
	ATLAS *, √ s=8 TeV, Z+b→J/ψ	Ref. 57
· /	D0 , v s=1.96 TeV, γ+b/c+2-jet	Ref. 55
+	D0 , v s=1.96 TeV, γ+3-jet	Ref. 55
_	D0 , vs=1.96 TeV, 2-γ+2-jet	Ref. 56
	D0 , v s=1.96 TeV, γ+3-jet	Ref. 54
	CDF , v s=1.8 TeV, γ+3-jet	Ref. 58
\longmapsto	UA2, vs=640 GeV, 4-jet	Ref. 51
<u> </u>	CDF, vs=1.8 TeV, 4-jet	Ref. 52
_ 	ATLAS, vs=7 TeV, 4-jet	Ref. 15
+	CMS, vs=7 TeV, 4-jet	Ref. ²⁴
	CMS, vs=13 TeV, 4-jet	Ref. 19
· · · · ·	CMS, √s=7 TeV, W+2-jet	Ref. 14
_	ATLAS, vs=7 TeV, W+2-jet	Ref. 13
	CMS , √s=13 TeV, WW	Ref. 18
0 20		
5 20		
σ		
~ett.DPS ••••~I		

di- J/ψ @ 8 TeV

 $\mathcal{L} = 11.4 \text{ fb}^{-1}$, pp collisions @ $\sqrt{s} = 8 \text{ TeV}$

Finematic range of J/ψ : $p_{\rm T} > 8.5 ~{\rm GeV}/c$ for |y| < 2.1

[EPJC 77 (2017) 76]

Cross-sections

[EPJC 77 (2017) 76]

Fiducial cross-section measured in two $y(J/\psi)$ regions due to different mass resolutions

 \blacktriangleright Within the muon kinematic acceptance: $p_T^{\mu} > 2.5 \text{ GeV}/c$, $|\eta^{\mu}| < 2.3$

 $15.6 \pm 1.3 \text{ (stat)} \pm 1.2 \text{ (syst)} \pm 0.2 \text{ (BF)} \pm 0.3 \text{ (lumi) pb, for } |y| < 1.05,$ $13.5 \pm 1.3 \text{ (stat)} \pm 1.1 \text{ (syst)} \pm 0.2 \text{ (BF)} \pm 0.3 \text{ (lumi) pb, for } 1.05 \le |y| < 2.1$

Extrapolating to the full fiducial region assuming zero polarisation

 $\begin{aligned} 82.2 \pm 8.3 \,(\text{stat}) \pm 6.3 \,(\text{syst}) \, \pm 0.9 \,(\text{BF}) \, \pm 1.6 \,(\text{lumi}) \,\text{pb, for } |y| \, < \, 1.05, \\ 78.3 \pm 9.2 \,(\text{stat}) \pm 6.6 \,(\text{syst}) \, \pm 0.9 \,(\text{BF}) \, \pm 1.5 \,(\text{lumi}) \,\text{pb, for } 1.05 \, \leq \, |y| \, < \, 2.1 \end{aligned}$

DPS extraction

Data-driven DPS template

 $\sqrt{J/\psi}$ mesons taken from two random events of the di- J/ψ data sample

✓ Normalized to the data in the region $\Delta y > 1.8$ and $\Delta \phi \le \pi/2$, where there is negligible SPS contribution

Data-driven SPS template

✓ Subtracting the DPS template from the $(\Delta y, \Delta \phi)$ distribution of the background-subtracted data

 \succ Each candidate is assigned w_{DPS} and w_{SPS}

 $F_{\text{DPS}} = (9.2 \pm 2.1 \pm 0.5)\%$ $\sigma_{\text{eff}} = 6.3 \pm 1.6(\text{stat}) \pm 1.0(\text{syst}) \pm 0.1(\text{BF}) \pm 0.1(\text{lumi}) \text{ mb}$

Comparison to theory (I)

[EPJC 77 (2017) 76]

- Compared to
 DPS + NLO* SPS
 predictions
- DPS fraction fixed to measured f_{DPS}

- Some discrepancy for the total cross-section in regions of away topology
- Maybe due to the constant factor for feeddown in NLO* SPS

 10^{-2}

10⁻³

10

Liupan An

50

60

70

 $m(J/\psi J/\psi)$ [GeV]

80

30

40

20

Comparison to theory (II)

[EPJC 77 (2017) 76]

- > Compared to DPS + NLO* SPS predictions
- DPS fraction fixed to measured f_{DPS}

✓ Large SPS contribution to events with towards topology

 10^{-2}

 10^{-3}

20

10

30

40

10²

10E

- ✓ LO SPS predictions do not include towards topology
- ✓ NLO SPS necessary to describe the data!

ATLAS

√s = 8 TeV, 11.4 fb⁻¹

 $f_{DPS} = 9.5\% \pm 2.1\%$

DPS Estimate

NLO* SPS+DPS Pred.

DPS Pred.

Data

50

60

70

 $m(J/\psi J/\psi)$ [GeV]

80

di- J/ψ @ 13 TeV

>L = 24.11 pb⁻¹, pp collisions @ √s = 13 TeV≻Kinematic range of J/ψ : $p_T > 0$ GeV/c for 2.5 < y < 4</p>

 $\sqrt{\sigma}(J/\psi - J/\psi) = 10.3 \pm 2.3(\text{stat.}) \pm 1.3(\text{syst.}) \text{ nb}$

 $\checkmark \sigma_{\text{prompt}} (J/\psi - J/\psi) = 7.3 \pm 1.7 (\text{stat.})^{+1.9}_{-2.1} (\text{syst.}) \text{ nb}$

✓ Assuming only the DPS process contributes:

$$\checkmark \sigma_{\text{eff}}(J/\psi - J/\psi) = \frac{1}{2} \frac{\sigma_{\text{prompt}}(J/\psi)^2}{\sigma_{\text{prompt}}(J/\psi - J/\psi)} = 6.7 \pm 1.6(\text{stat.}) \pm 2.7(\text{syst.}) \text{ mb}$$

Summary and prospects

• Double J/ψ production measured by all four LHC experiments

✓LHCb: 7&13 TeV

✓CMS: 7 TeV

✓ ATLAS: 8 TeV

✓ ALICE: 13 TeV

What we have learned on DPS?

✓ Similar-level $\sigma_{\rm eff}$: a good starting point

✓ How to further investigate the discrepancies?

✓A unified way to separate SPS and DPS?

What else we can learn from di-quarkonium prod.?

✓gluon TMD

√...

Other di-quarkonium modes of interest?

 $\checkmark J/\psi + \chi_c, J/\psi + \eta_c \dots$

	<i>pp</i> @13 TeV			
	LHCb $(J/\psi - J/\psi)$			
·	LHCb $(J/\psi - \Upsilon(1S))$			
	LHCb $(J/\psi - \Upsilon(2S))$			
	<i>pp</i> @8 TeV			
	ATLAS $(J/\psi - Z^0)^*$			
• • •	ATLAS $(J/\psi - J/\psi)$			
	LHCb ($\Upsilon(1S)$ - D^0)			
	<i>pp</i> @7 TeV			
	ATLAS $(J/\psi - W^{\pm})^*$			
$CMS (J/\psi - J/\psi)^*$				
	LHCb $(J/\psi - D^0)^*$			
	LHCb $(D^0 - D^0)$			
—	ATLAS (W^{\pm} -2 jets)			
$CMS (W^{\pm}-2 \text{ jets})$				
	<i>рр</i> @1.96 ТеV			
•	D0 $(J/\psi - \Upsilon)^*$			
⊷	D0 $(J/\psi - J/\psi)$			
H e H	D0 (γ-3 jets)			
	<i>рр</i> @1.8 ТеV			
	CDF (4 jets)			
	CDF (γ -3 jets)			
0 20 40	60 80 100			
[PoS (LHCP2020)	172: σ [mb]			
O_{eff} [III0]				
arXiv: 2009.12555]				

Back up

Leading twist TMD PDFs

Sketch of CS frame

