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𝑝 + 𝑝 → 𝐽/ѱ + 𝐽/ѱ + 𝑋
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• J/ψ-pair production gives via its 𝑞!-spectrum 
and modulations access to the gluon TMDs 
Lansberg et al. 2018, Scarpa et al. 2020

• Probe the transverse momentum of 
the partonic gluons via the observed 
quarkonia: 𝒑!" + 𝒑#" = 𝒒"

• The invariant mass 𝑀$$ allows to 
study scale evolution of the TMDs

• Make use of CS-model in which TMD-
factorization breaking effects are 
avoided (@ LO 𝛼%&)  

• No TMDShF / smearing effects are 
expected for CS quarkonium at LO

• There are recent measurements of 
this process LHCb 2023



The Gluon TMD and the hadron correlator

• Unpolarized proton is 
parameterized by two functions 
at LO (twist ～ 1/hard scale)
• Unpolarized gluon 

distribution: 𝑓"
#

• Linearly polarized gluon 
distribution: ℎ"

$#
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Mulders and Rodrigues 2001



The differential cross section at LO

5

• Hard factors 𝐹% 
 Lansberg et al. 2018
• 𝐹& negligible when 𝑀'' is 

large or |cos 𝜃()| ≤ 0.5



𝐶[𝑓!
"𝑓!

"]
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• 𝐶[𝑓"
#𝑓"

#] is a general quantity that determines the unpolarized differential cross 
section for any proton-proton process that are dominated by gluon-gluon fusion: 
• Higgs production Sun et al. 2011, Boer et al. 2012
• 𝜂$, 𝜒$', 𝜒$( production Boer and Pisano 2012
• Quarkonium + di-lepton production Lansberg et al. 2017 

• Also, it appears next to quark-antiquark and quark-gluon contributions:
• Higgs + jet production Boer and Pisano 2014 
• Di-jet production Boer et al. 2009
• open heavy quark production Boer et al. 2010, Pisano et al. 2013, Boer et al. 2016



Introduction of evolution
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• Beyond tree level, the TMDs and hard factor become scale dependent 
   Collins and Soper 1981
• Implementing evolution is more easily done in impact parameter space, where 

convolutions become simple products



The Sudakov factor and scales
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• CS Evolution:

• To avoid large logs in the hard factor
• TMDs should be evaluated at their natural scale 
• Instead of choosing a low, still perturbative scale, is common to take 

• 𝑏! must be constrained

• 𝑏!,+,- is the point where perturbation theory starts to fail: [0.5: 1.5] 𝐺𝑒𝑉." 



𝑏#-domains and the nonperturbative Sudakov
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1) 

2)

Boer and Den Dunnen 2014            Collins et al. 2016

Collins et al. 1982

• For 𝑏! > 𝑏!,+,- :



The convolution(s)
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• NLL accuracy
• 𝛼! 1-loop

• Perturbative TMD tail

• Suppressed by 𝛼%

Sun et al. 2011
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A novel nonperturbative Sudakov ?

11

• Generates upward bump for small 
𝑏!,+,- and 𝜇/ due to large 
contributions of the integrand at 
large 𝑏! 
• TMD and 𝑥 independent

• Does not provide 𝑏!,+,--invariance

A simple Gaussian ansatz for 𝑆01 has limitations

 

• 𝐴 = 0.16 𝐺𝑒𝑉( 
• 𝑏",*!+= 1.5 vs 0.5 𝐺𝑒𝑉,-

• Particularly relevant for quarkonia
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Another problem identified

• We want to trust perturbative 
physics when we can, to study 𝑆01 

• Remove the ‘kink’ at the same order 𝑛  10°3

10°2
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101 n = 2

g = A ln(µH/µNP ),
with A = 0.04 GeV2

g = gS(µH, bT,max)
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exp[°SP (b§
T ; µH, µ̃0
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£bT exp[°SNP (b†
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• 𝜇/ = 12 𝐺𝑒𝑉

• Nonperturbative physics is 
dependent on perturbative physics!
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Similarly for the perturbative tails

• Extra factor 𝑔2 needed to remove other ‘kinks’
• Exception of absolute value when 𝑔2 < Λ'(3& :

⟹ 𝑔" = Λ#$%&

• MHST20lo_as130
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• 𝑥 = 0.01, 𝜇/ = 12 𝐺𝑒𝑉 
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The behaviour of 𝑔’s

• 𝑔𝑆 follows theoretical trend – extra term also employed in other studies Collins 2012
• 𝑔𝑓 difficult to compare with literature: can be of same order depending on 𝑥 and the 

kind of TMD tail
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𝑏!,#$% dependence

• Flip ⟹ It is not recommended to use too small 𝑏𝑇,𝑚𝑎𝑥 for low 𝜇/
• One expects smooth behaviour as a function of 𝑏!,+,- : discontinuities due 

to PDF set ⟹ It is not recommended to use 𝑏!,+,- > 𝑏: for this method 
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The novel nonperturbative Sudakov 

• Larger values 𝑔 reasonable because of larger 𝑛 (and smaller 𝑏!,+,-)
• 𝑔 can be taken lager than the found value by matching, to suppress nonperturbative 

physics more, but not smaller (gives back ‘kink’)

• Solves strange behaviour for small 𝑏!,+,- and 𝜇/ 
• Takes into account 𝑥 and TMD dependence

• 𝑏!,+,--invariance of C𝑊 not directly observable and hard to obtain with our robust 
method. However, now it does take 𝑏!,+,- systematically into account. 
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Nonperturbative uncertainties

• The PDF set uncertainty (Hessian): 

• 𝑆01 uncertainties:
• 𝑏!,+,- variation; [0.5: 1.5] 𝐺𝑒𝑉."→ 𝜇01= [2.25: 0.75] 𝐺𝑒𝑉 
• 𝑔 increasement; f.e. 𝑔 → 10𝑔
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Perturbative uncertainties

• Scale variation, 𝜇 → 𝐶𝜇 with C = [1/2: 2]
• 𝐶" times 𝜇; = 𝑏:/𝑏! and 𝐶& times 𝜇/ = 𝑀'' = 𝑄 
• 𝐶< times 𝜇; in the perturbative TMD tails

Note:
• 𝐶" and 𝐶< contain in practice the 𝑏!-expressions (so also 𝐶&)
• Scale variation alters also 𝑔) and 𝑔2 

Melis et al. 2015

• 𝐶. = 𝐶-/𝐶( 
Collins et al. 1984
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Comparison with the LHCb data 

• Envelope from all 27 scale combinations

• Collider mode: 𝑠 = 13 𝑇𝑒𝑉
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Comparison with the LHCb data (1) 

• DPS subtracted data

• 𝐶< ≠ 𝐶"/𝐶& provides 
better agreement 
with data 
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Comparison with the LHCb data (2) 

• Rapidity dependence 
is small
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Power law behaviour of the hard scale
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• Saddle point approximation for perturbative Sudakov suppression ~𝜇/.".>< : 
PDFs and nonperturbative Sudakov
• For larger rapidity they decreases faster
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Azimuthal modulations

• The cos 2𝜙𝐶𝑆-modulation 
provides a way to 
determine the sign of ℎ1

⊥𝑔

 
• The cos 4𝜙𝐶𝑆-modulation 

can be used to extract ℎ1
⊥𝑔 

independently from 𝑓1
𝑔 

(when 𝐶 𝑓"
#𝑓"

#  is known) 

• Sign flip due to 𝐹C
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Azimuthal modulations
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• The uncertainties for the 
cos 2𝜙()-modulations 
always become larger than 
the upper bounds (that 
follows from the positivity 
bound of the TMDs) at 
some point

• The cos 4𝜙()-modulations 
including uncertainties are 
much smaller than their 
bound: due to smaller 
𝐶 𝑤Cℎ"

$#ℎ"
$#  



Conclusions
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• We have investigated the interplay between the perturbative and nonperturbative 
regions that endorsed a novel nonperturbative Sudakov factor that solves problems that 
can arise with a simple Gaussian ansatz.

• Perturbative uncertainties are much larger than nonperturbative uncertainties: higher 
order corrections should be taken into account for more precise predictions.
• Our predictions including scale uncertainties are agreeable with data: especially when 
𝐶< ≠ 𝐶"/𝐶&.

• It might be suitable to probe the TMD evolution formalism as well by extracting the 
power law behaviour of the hard scale e.g. of the normalized cross section at a specific 
TM

⟹ Bor, Boer, Colpani Serri and Lansberg [in progress … 2024]


