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Photon-induced interactions @ the LHC

b > R1 +R2
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s

b− s

kl→i

P2

Accelerated charged particles emit photons

Photoproduction usually studied in ep colliders
→ clean photoproduction environment

However, the LHC is an excellent source of photons
→ can reach extremely large Wγp

Energies available at the LHC:

pp @
√
s = 13 TeV → Wmax

γp ≈ 5 TeV → xmax
γ ≈ 0.14

pPb @
√
sNN = 8.16 TeV → Wmax

γp ≈ 1.5 TeV → xmax
γ ≈ 0.03

Energies available at ep colliders:

Wmax HERA
γp ≈ 240 GeV

Wmax EIC
γp ≈ 100 GeV

At hadron-hadron colliders: Ultra Peripheral Collisions select photoproduction

Done so far only for exclusive processes

We will show:
Inclusive quarkonium photoproduction can be measured via UPC at the LHC

K. Lynch (IJCLab & UCD) Inclusive UPC @ LHC July 10, 2024 3 / 23



Photon-induced interactions @ the LHC

b > R1 +R2

R1

P1

R2

γ

s

b− s

kl→i

P2

Accelerated charged particles emit photons

Photoproduction usually studied in ep colliders
→ clean photoproduction environment

However, the LHC is an excellent source of photons
→ can reach extremely large Wγp

Energies available at the LHC:

pp @
√
s = 13 TeV → Wmax

γp ≈ 5 TeV → xmax
γ ≈ 0.14

pPb @
√
sNN = 8.16 TeV → Wmax

γp ≈ 1.5 TeV → xmax
γ ≈ 0.03

Energies available at ep colliders:

Wmax HERA
γp ≈ 240 GeV

Wmax EIC
γp ≈ 100 GeV

At hadron-hadron colliders: Ultra Peripheral Collisions select photoproduction

Done so far only for exclusive processes

We will show:
Inclusive quarkonium photoproduction can be measured via UPC at the LHC

K. Lynch (IJCLab & UCD) Inclusive UPC @ LHC July 10, 2024 3 / 23



Photon-induced interactions @ the LHC

b > R1 +R2

R1

P1

R2

γ

s

b− s

kl→i

P2

Accelerated charged particles emit photons

Photoproduction usually studied in ep colliders
→ clean photoproduction environment

However, the LHC is an excellent source of photons
→ can reach extremely large Wγp

Energies available at the LHC:

pp @
√
s = 13 TeV → Wmax

γp ≈ 5 TeV → xmax
γ ≈ 0.14

pPb @
√
sNN = 8.16 TeV → Wmax

γp ≈ 1.5 TeV → xmax
γ ≈ 0.03

Energies available at ep colliders:

Wmax HERA
γp ≈ 240 GeV

Wmax EIC
γp ≈ 100 GeV

At hadron-hadron colliders: Ultra Peripheral Collisions select photoproduction

Done so far only for exclusive processes

We will show:
Inclusive quarkonium photoproduction can be measured via UPC at the LHC

K. Lynch (IJCLab & UCD) Inclusive UPC @ LHC July 10, 2024 3 / 23



Photon-induced interactions @ the LHC

b > R1 +R2

R1

P1

R2

γ

s

b− s

kl→i

P2

Accelerated charged particles emit photons

Photoproduction usually studied in ep colliders
→ clean photoproduction environment

However, the LHC is an excellent source of photons
→ can reach extremely large Wγp

Energies available at the LHC:

pp @
√
s = 13 TeV → Wmax

γp ≈ 5 TeV → xmax
γ ≈ 0.14

pPb @
√
sNN = 8.16 TeV → Wmax

γp ≈ 1.5 TeV → xmax
γ ≈ 0.03

Energies available at ep colliders:

Wmax HERA
γp ≈ 240 GeV

Wmax EIC
γp ≈ 100 GeV

At hadron-hadron colliders: Ultra Peripheral Collisions select photoproduction

Done so far only for exclusive processes

We will show:
Inclusive quarkonium photoproduction can be measured via UPC at the LHC

K. Lynch (IJCLab & UCD) Inclusive UPC @ LHC July 10, 2024 3 / 23



Photon-induced interactions @ the LHC

b > R1 +R2

R1

P1

R2

γ

s

b− s

kl→i

P2

Accelerated charged particles emit photons

Photoproduction usually studied in ep colliders
→ clean photoproduction environment

However, the LHC is an excellent source of photons
→ can reach extremely large Wγp

Energies available at the LHC:

pp @
√
s = 13 TeV → Wmax

γp ≈ 5 TeV → xmax
γ ≈ 0.14

pPb @
√
sNN = 8.16 TeV → Wmax

γp ≈ 1.5 TeV → xmax
γ ≈ 0.03

Energies available at ep colliders:

Wmax HERA
γp ≈ 240 GeV

Wmax EIC
γp ≈ 100 GeV

At hadron-hadron colliders: Ultra Peripheral Collisions select photoproduction

Done so far only for exclusive processes

We will show:
Inclusive quarkonium photoproduction can be measured via UPC at the LHC

K. Lynch (IJCLab & UCD) Inclusive UPC @ LHC July 10, 2024 3 / 23



Photon-induced interactions via UPC @ the LHC

So far focus of UPCs @ LHC on exclusive processes (fully determined final state) [1–4]

Recently there were photoproduction studies with nuclear break up [5] (non-UPC [6∗])

Only published inclusive UPC study in PbPb: two-particle azimuthal correlations
ATLAS, PRC 104, 014903 (2021)

Coming soon: inclusive photonuclear dijets in PbPb [7]

[1] Exclusive dijet: CMS, PRL 131 (2023) 5, 051901

[2] Exclusive dilepton: ATLAS, PRC 104 (2021) 024906,
PLB 777 (2018) 303-323, PLB 749 (2015) 242-261;
CMS, JHEP 01 (2012) 052

[3] Light-by-light scattering: ATLAS, Nature Phys. 13 (9)
(2017) 852–858; CMS, PLB 797 (2019) 134826

[4] Exclusive quarkonium: ALICE, EPJC 79 (5) (2019)
402, PRL 113 (23) 232504; LHCb, JHEP 06 (2023)
146, JPG 40 (2013) 045001, JHEP 10 (2018) 167

[5] Diffractive quarkonium with nuclear break up: ALICE,
PRD 108 (2023) 11

[6] Peripheral∗ quarkonium photoproduction: ALICE,
PRL 116 (2016) 22, 222301, PLB 846 (2023) 137467;
LHCb, PRC 105 (2022) L032201

[7] Inclusive dijet: Not yet published:
ATLAS-CONF-2022-021, ATLAS-CONF-2017-011

[8] Inclusive quarkonium photoproduction:
NOT YET MEASURED AT THE LHC!
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Exclusive vs. inclusive photoproduction at the LHC

Exclusive: fully determined final state

• Probe Generalised Parton Distributions

• Colourless exchange

• Experimentally clean: even @ LHC

• Smaller rates

• Initial state kinematics fully determined
by the final state

• Measured at the LHC

Inclusive: not fully determined final state

• Probe Parton Distribution Functions

• Colourful exchange

• Challenging: large backgrounds

• Larger rates

• Initial state kinematics partially
determined by the final state

• Can and should be measured at the LHC
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Quarkonium production status

Discovered 50 years ago quarkonia are bound states of heavy quarks

To date there is no theoretical mechanism that can describe all of the data

Different models make different assumptions of the hadronisation

Colour Evaporation model: 1 free parameter per meson
× fails to describe di-J/ψ data

Colour Singlet model: no free parameters
× tends to undershoot large pT data

Colour Octet mechanism (extension to CSM via non-relativistic QCD): free parameters
× cannot simultaneously describe the photoproduction and polarisation data

Maxim Nefedov, QaT 2023

More inclusive photoproduction data → possible at EIC in 10 years LHC today!
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Existing J/ψ photoproduction measurements from HERA

J/ψ

Pb

p

J/ψ

Pb

p

J/ψ

Pb

p

Data exists for diffractive (exclusive and proton-dissociative) & inclusive/inelastic
photoproduction @ HERA

√
s = 320 GeV

Different contributions separated using experimental cuts on pT and z =
Pp ·Pψ
Pp ·Pγ ...

diffractive region: pT < 1 GeV, z > 0.9; inclusive region: pT > 1 GeV, z < 0.9

HERA result: σHERA
exclusive ≃ σHERA

dissociative ≃ σHERA
inclusive

Expectation: σLHC
exclusive ≃ σLHC

dissociative ≃ σLHC
inclusive → only difference is photon flux!

Exclusive and proton-dissociative photoproduction have been measured @ LHC

Expect that inclusive yield is sufficently large we will demonstrate this

Measuring inclusive quarkonium photoproduction to
understand the quarkonium hadronisation
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Is it feasible to measure inclusive quarkonium
photoproduction at the LHC?

Anticipate sizeable photoproduction yield

Large hadronic background must be shown to be suppressed

Q Q

Proton-lead is the ideal collision system

Enhanced photon flux w.r.t. pp: ∝ Z 2

No ambiguity as to the photon emitter: reconstruction of z and Wγp

Less pileup than pp

K. Lynch (IJCLab & UCD) Inclusive UPC @ LHC July 10, 2024 8 / 23



Part II

Methodology
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Building a Monte Carlo sample

We must:

1 Evaluate yield & PT reach: need reliable Monte Carlo (MC) sample

Problem:

Only LO MC for quarkonia + QCD corrections are large!

LO CS undershoots undershoots large PT data
LO CO captures large PT data

0 2 4 6 8 10
pT [GeV]

10 4

10 3

10 2

10 1

100

d
/d

p T
 [n

b/
Ge

V]

ep  e  J/  X
sep = 320GeV

Q2 < 2.5 GeV2

0.3 < z < 0.9
< OJ/ (3S[1]

1 ) > = 1.25 GeV3, mc = 1.5 GeV
< OJ/ (1S[8]

0 ) > = 0.076 GeV3, mc = 1.6 GeV
CT18NLO

HO2.6.7: 1S[8]
0

HO2.6.7: 3S[1]
1

H1 data: NPB 472 (1996) 3,
EPJC 25 (2002) 25,
EPJC 68 (2010) 401
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Building a Monte Carlo sample

We must:

1 Evaluate yield & PT reach: need reliable Monte Carlo (MC) sample
Solution: perform tune in PT to HERA data + keep

√
s and y dependence from

photon flux
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2 Reject background: reliable background MC + background reduction strategy
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Background Monte Carlo: hadroproduction PT distribution

Just as for photoproduction we tune our background Monte Carlo to data

Compute tune factors using 5 TeV rapidity-integrated LHCb data under the

assumptions:

1 Tuning is y independent
2 Tuning is

√
s independent

Validation 1: tune vs. y -diff. data @
5 TeV.
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1  

LHCb data JHEP 11 (2021) 181, 2021
2<y<2.5x 100

2.5<y<3.0x 101

3.0<y<3.5x 102

3.5<y<4.0x 103

4.0<y<4.5x 104

Validation 2: tune vs. 13- and 2.76 TeV
data.
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13 TeV LHCb data JHEP 10 (2015) 172, 2015
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Method I: Rapidity gaps in LHC detectors
General purpose detector [ATLAS, CMS]
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centrality>80%
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1
HO2.6.7 + PYTHIA8.310 + tune: 1S[8]
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Broad rapidity coverage:
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Narrow rapidity coverage:
LHCb 3 units, ALICE 1.8 units
less clean separation between
photoproduction and hadroproduction

Selecting a cut value that minimises that statistical uncertainty:
→ removes O(99.99%) (O(99.9%)) of background events → S/B ≳ O(1)
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Background-reduction techniques

Method II: forward activity with HeRSCheL at LHCb

forward scintillator sensitive to charged particle activity in the region 5 < |η| < 10

Photoproduction events identified with no HeRSCheL activity
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Selecting events based on activity in HeRSCheL

Differential yield w.r.t. the number of charged particles on the
γ-emitter side within 5 < η < 10 for photo- and hadroproduced J/ψ
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HO2.6.7 + PYTHIA8.310 + tune: 1S[8]
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We anticipate a clear distinction between photo- and hadroproduction

Necessary to perform a full detector simulation to include HeRSCheL
response
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Background-reduction techniques

Method III: far-forward activity with zero-degree calorimeter at ALICE, ATLAS, & CMS

Detector close to the beam pipe (|η| ≳ 8) sensitive to neutral particles

UPCs identified as most peripheral events (80− 100% centrality)
[Already done in pPb collisions: ALICE, JHEP 02 (2021) 002]

Selecting events with 0 neutrons in ZDC can further enhance signal purity

[We expect O(100%) of the signal with no neutron emission]

This would not be possible in PbPb where there is a non-negligible
photoproduction cross section with neutron emissions O(50%)

distentangling the photon emitter CMS, Phys.Rev.Lett. 131 (2023) 26, 262301, PRC

93, 055206 (2016)
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Part III

Results
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Comment on methods I–III in HL run

One of the advantages of pPb over pp is the significantly reduced pile-up.
However, given the possibility of a pPb run with a sizeable µ value we
should consider the efficacy of methods I–III under such conditions:

Method I: rapidity gaps

Calorimeter based rapidity-gap definitions not possible
Only rapidity-gap definitions based on charged tracks possible
Reduced ∆η reach for ATLAS and CMS 10→ 5 units

Method II: HeRSCheL

Timing is insufficient

Method III: ZDC

Timing is insufficient

The same comments apply to exclusive UPCs
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Photoproduction yields: ATLAS & CMS
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Possible to isolate photoproduction
with CMS and ATLAS using
methods I & III

Possible to further enhance signal
purity by selecting 0n events

With Run3+4 lumi, possible to
extend the PT reach from 10 GeV
(HERA data) to 20 GeV

detector CMS LHCb CMS LHCb

Run 2 lumi: Run 3+4 lumi:

yield O(103 − 105) O(103 − 104) O(104 − 106) O(104 − 105)

PT reach 14 GeV 8 GeV 20 GeV 14 GeV
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Photoproduction yield: LHCb
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Possible to isolate photoproduction
at LHCb using method I alone
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information (method II) will improve
background removal

Expect ψ′ yield to be ∼ 1/20 of
J/ψ yield no PT differential data from HERA!
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Kinematic reconstruction: Wγp and z

We have shown that it is possible to measure PT -differential inclusive photoproduction
cross sections at the LHC without waiting for the EIC

What about dσ/dz and as a function of Wγp ?

Fully equivalent to ep measurements

Study quarkonium hadronisation
octet vs. singlet

Handle on resolved-photon contribution
direct and resolved photons

Kramer, hep-ph/016120

Let us reconstruct the photon kinematics from the final state :

Pb(PPb) + p(Pp)
γ(Pγ )→ Pb(P ′

Pb) + J/ψ(Pψ) + X (PX ) thus Pγ = Pψ + PX − Pp

Wγp ≃ (2 (Pψ + PX − Pp)︸ ︷︷ ︸
Pγ

·Pp)
1/2 & z =

Pp ·Pψ
Pp ·(Pψ+PX−Pp)

We only need to measure (Pψ · Pp) & (PX · Pp) or equivalently P−
X = EX − PX ,z

NB: In the exclusive case, PX ≃ P ′
p ⇒ Pγ + P ′

p = Pψ + P ′
p and Wγp ≃ Mψe

−yψ

K. Lynch (IJCLab & UCD) Inclusive UPC @ LHC July 10, 2024 21 / 23



Kinematic reconstruction: Wγp and z

We have shown that it is possible to measure PT -differential inclusive photoproduction
cross sections at the LHC without waiting for the EIC

What about dσ/dz and as a function of Wγp ?

Fully equivalent to ep measurements
Study quarkonium hadronisation

octet vs. singlet

Handle on resolved-photon contribution
direct and resolved photons

Kramer, hep-ph/016120

Let us reconstruct the photon kinematics from the final state :

Pb(PPb) + p(Pp)
γ(Pγ )→ Pb(P ′

Pb) + J/ψ(Pψ) + X (PX ) thus Pγ = Pψ + PX − Pp

Wγp ≃ (2 (Pψ + PX − Pp)︸ ︷︷ ︸
Pγ

·Pp)
1/2 & z =

Pp ·Pψ
Pp ·(Pψ+PX−Pp)

We only need to measure (Pψ · Pp) & (PX · Pp) or equivalently P−
X = EX − PX ,z

NB: In the exclusive case, PX ≃ P ′
p ⇒ Pγ + P ′

p = Pψ + P ′
p and Wγp ≃ Mψe

−yψ

K. Lynch (IJCLab & UCD) Inclusive UPC @ LHC July 10, 2024 21 / 23



Kinematic reconstruction: Wγp and z

We have shown that it is possible to measure PT -differential inclusive photoproduction
cross sections at the LHC without waiting for the EIC

What about dσ/dz and as a function of Wγp ?

Fully equivalent to ep measurements
Study quarkonium hadronisation

octet vs. singlet

Handle on resolved-photon contribution
direct and resolved photons

Kramer, hep-ph/016120

Let us reconstruct the photon kinematics from the final state :

Pb(PPb) + p(Pp)
γ(Pγ )→ Pb(P ′

Pb) + J/ψ(Pψ) + X (PX ) thus Pγ = Pψ + PX − Pp

Wγp ≃ (2 (Pψ + PX − Pp)︸ ︷︷ ︸
Pγ

·Pp)
1/2 & z =

Pp ·Pψ
Pp ·(Pψ+PX−Pp)

We only need to measure (Pψ · Pp) & (PX · Pp) or equivalently P−
X = EX − PX ,z

NB: In the exclusive case, PX ≃ P ′
p ⇒ Pγ + P ′

p = Pψ + P ′
p and Wγp ≃ Mψe

−yψ

K. Lynch (IJCLab & UCD) Inclusive UPC @ LHC July 10, 2024 21 / 23



Kinematic reconstruction: Wγp and z

We have shown that it is possible to measure PT -differential inclusive photoproduction
cross sections at the LHC without waiting for the EIC

What about dσ/dz and as a function of Wγp ?

Fully equivalent to ep measurements
Study quarkonium hadronisation

octet vs. singlet

Handle on resolved-photon contribution
direct and resolved photons

Kramer, hep-ph/016120

Let us reconstruct the photon kinematics from the final state :

Pb(PPb) + p(Pp)
γ(Pγ )→ Pb(P ′

Pb) + J/ψ(Pψ) + X (PX ) thus Pγ = Pψ + PX − Pp

Wγp ≃ (2 (Pψ + PX − Pp)︸ ︷︷ ︸
Pγ

·Pp)
1/2 & z =

Pp ·Pψ
Pp ·(Pψ+PX−Pp)

We only need to measure (Pψ · Pp) & (PX · Pp) or equivalently P−
X = EX − PX ,z

NB: In the exclusive case, PX ≃ P ′
p ⇒ Pγ + P ′

p = Pψ + P ′
p and Wγp ≃ Mψe

−yψ

K. Lynch (IJCLab & UCD) Inclusive UPC @ LHC July 10, 2024 21 / 23



Kinematic reconstruction: results

Limited detector coverage ⇒ P−
reconstructed < P−

generated

This results in the following biases;

zrec > zgen

& W rec
γp <W gen

γp
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Kinematic reconstruction: results

Limited detector coverage ⇒ P−
reconstructed < P−

generated

This results in the following biases;
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Summary and outlook

A proton-lead collision system allows the LHC to be used as a
photon-nucleon collider

Feasible to measure inclusive J/ψ, ψ′ and Υ photoproduction at the LHC
Complementary to HERA measurements with a doubled PT reach
It can be done now O(10) years before the EIC

CMS and ATLAS are the most favourable experiments with the
largest PT reach and broadest psuedorapidity coverage

(CMS has additional advantage of measuring PT → 0 GeV)

Possible to make measurements at ALICE and LHCb too!

Despite the impossibility to measure the intact Pb ion,
possible to reconstruct z and Wγp

Binning competitive with HERA, confirms the reach in Wγp up to 1 TeV !
Possibility to isolate resolved-photon contributions
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Backup
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Reconstruction of kinematic variable in LHCb

Owing to the narrow psuedorapidity gap coverage in LHCb (2 < η < 5),
reconstruction of kinematics at LHCb is not possible.
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When z rec = 1 only the J/ψ is captured!
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Rapidity gap distributions in ALICE

∆ηγ-differential yield for J/ψ in the ALICE acceptance.
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∆ηγ-y–diff. yield for J/ψ in CMS low-PT acceptance
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Neutron emission: disentangling the photon emitter

For exclusive vector meson production in PbPb collisions there is as ambiguity as
to which Pb ion is the photon emitter

At a given rapidity either:

(a) xγ =
mT J/ψ√

s
e+yJ/ψ , xP =

mT J/ψ√
s

e−yJ/ψ or (b) xγ =
mT J/ψ√

s
e−yJ/ψ , xP =

mT J/ψ√
s

e+yJ/ψ

ALICE, JHEP 10 (2023) 119;CMS, Phys.Rev.Lett. 131 (2023) 26, 262301 PRC 93, 055206 (2016)

Neutron emissions (detected with ZDCs) serve as an impact
parameter filter

Larger photon energies are associated with smaller impact
parameters

0nXn and XnXn select smaller impact parameter and larger
xγ compared to 0n0n
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