Advance in pNRQCD studies for quarkonium production

Synergies between LHC and EIC for quarkonium physics

ECT*, Trento, 8 -12, July, 2024

Based on PRD 105 (2022) L111503; JHEP 03 (2023)242 In collaboration with N. Brambilla, H. S. Chung, A. Vairo

> Xiang-Peng Wang 08/07/2024

Contents

- Review on NRQCD Factorization for Quarkonium Production
- pNRQCD and NRQCD LDMEs in pNRQCD
- Spin-1 S-wave Quarkonium Production in pNRQCD
- Summary and Outlook

Introduction: Quarkonium Production and Energy Scales

• Quarkonium production from colliders is typical complicated multi-scale problem:

• **NRQCD** factorization is the default framework to study quarkonium production

• **NRQCD** factorization formula for inclusive quarkonium (Q) production

G. T. Bodwin, E. Bratten & G. P. Lapge, PRD 51 (1995) 1125, 2900+ citations

$$\sigma\left(A+B\to\mathcal{Q}+X\right)=\sum_{N}\hat{\sigma}\left(A+B\to Q\bar{Q}(N)+X\right)\,\langle\Omega\,|\,\mathcal{O}^{\mathcal{Q}}(N)\,|\,\Omega\rangle,$$

• NRQCD factorization formula for inclusive quarkonium (@) production G. T. Bodwin, E. Bratten & G. P. Lapge, PRD 51 (1995) 1125, 2900+ citations

$$\sigma\left(A+B\to\mathcal{Q}+X\right)=\sum_{N}\hat{\sigma}\left(A+B\to Q\bar{Q}(N)+X\right)\,\langle\Omega\,|\,\mathcal{O}^{\mathcal{Q}}(N)\,|\,\Omega\rangle,$$

- $\hat{\sigma}$: Short-distance coefficients (SDCs), perturbatively calculable α_s expansion
- $\langle \Omega | \mathcal{O}^{\mathbb{Q}}(N) | \Omega \rangle$: Universal non-perturbative long-distance-matrix-elements (LDMEs) defined using four fermion operators, has definite *v* scaling *v* expansion

$$\mathcal{O}^{\mathcal{Q}}(N_{\text{color singlet}}) = \chi^{\dagger} \mathscr{K}_{N} \psi \mathscr{P}_{\mathcal{Q}(\mathbf{P}=\mathbf{0})} \psi^{\dagger} \mathscr{K}'_{N} \chi,$$

$$\mathcal{O}^{\mathcal{Q}}(N_{\text{color octet}}) = \chi^{\dagger} \mathscr{K}_{N} T^{a} \psi \Phi_{\ell}^{\dagger ab} \mathscr{P}_{\mathcal{Q}(\mathbf{P}=\mathbf{0})} \Phi_{\ell}^{bc} \psi^{\dagger} \mathscr{K}_{N}^{\prime} T^{c} \chi,$$

where Φ_{ℓ} is a Wilson line along the path ℓ and $\mathscr{P}_{Q(\mathbf{P}=0)} = \sum_{X} \mathcal{Q} + X \rangle \langle \mathcal{Q} + X$

• NRQCD factorization formula for inclusive quarkonium (@) production G. T. Bodwin, E. Bratten & G. P. Lapge, PRD 51 (1995) 1125, 2900+ citations

$$\sigma\left(A+B\to\mathcal{Q}+X\right)=\sum_{N}\hat{\sigma}\left(A+B\to Q\bar{Q}(N)+X\right)\,\langle\Omega\,|\,\mathcal{O}^{\mathcal{Q}}(N)\,|\,\Omega\rangle,$$

- $\hat{\sigma}$: Short-distance coefficients (SDCs), perturbatively calculable α_s expansion
- $\langle \Omega | \mathcal{O}^{\mathbb{Q}}(N) | \Omega \rangle$: Universal non-perturbative long-distance-matrix-elements (LDMEs) defined using four fermion operators, has definite *v* scaling *v* expansion

$$\mathcal{O}^{\mathcal{Q}}(N_{\text{color singlet}}) = \chi^{\dagger} \mathscr{K}_{N} \psi \mathscr{P}_{\mathcal{Q}(\mathbf{P}=\mathbf{0})} \psi^{\dagger} \mathscr{K}'_{N} \chi,$$

$$\mathcal{O}^{\mathcal{Q}}(N_{\text{color octet}}) = \chi^{\dagger} \mathscr{K}_{N} T^{a} \psi \Phi_{\ell}^{\dagger ab} \mathscr{P}_{\mathcal{Q}(\mathbf{P}=\mathbf{0})} \Phi_{\ell}^{bc} \psi^{\dagger} \mathscr{K}_{N}^{\prime} T^{c} \chi,$$

where Φ_{ℓ} is a Wilson line along the path ℓ and $\mathscr{P}_{Q(\mathbf{P}=0)} = \sum_{X} \mathcal{Q} + X \rangle \langle \mathcal{Q} + X$

• For J/ψ , N usually includes: ${}^{3}S_{1}^{[1]}(v^{0}), {}^{1}S_{0}^{[8]}(v^{3}), {}^{3}S_{1}^{[8]}(v^{4}), {}^{3}P_{J}^{[8]}(v^{4})\dots$

• NRQCD factorization formula for inclusive quarkonium (@) production G. T. Bodwin, E. Bratten & G. P. Lapge, PRD 51 (1995) 1125, 2900+ citations

$$\sigma\left(A+B\to\mathcal{Q}+X\right)=\sum_{N}\hat{\sigma}\left(A+B\to Q\bar{Q}(N)+X\right)\,\langle\Omega\,|\,\mathcal{O}^{\mathcal{Q}}(N)\,|\,\Omega\rangle,$$

- $\hat{\sigma}$: Short-distance coefficients (SDCs), perturbatively calculable α_s expansion
- $\langle \Omega | \mathcal{O}^{Q}(N) | \Omega \rangle$: Universal non-perturbative long-distance-matrix-elements (LDMEs) defined using four fermion operators, has definite *v* scaling *v* expansion

$$\mathcal{O}^{\mathcal{Q}}(N_{\text{color singlet}}) = \chi^{\dagger} \mathscr{K}_{N} \psi \mathscr{P}_{\mathcal{Q}(\mathbf{P}=\mathbf{0})} \psi^{\dagger} \mathscr{K}'_{N} \chi,$$

$$\mathcal{O}^{\mathcal{Q}}(N_{\text{color octet}}) = \chi^{\dagger} \mathscr{K}_{N} T^{a} \psi \Phi_{\ell}^{\dagger ab} \mathscr{P}_{\mathcal{Q}(\mathbf{P}=\mathbf{0})} \Phi_{\ell}^{bc} \psi^{\dagger} \mathscr{K}_{N}^{\prime} T^{c} \chi,$$

where Φ_{ℓ} is a Wilson line along the path ℓ and $\mathscr{P}_{Q(\mathbf{P}=0)} = \sum_{X} Q + X \rangle \langle Q + X \rangle$

- For J/ψ , N usually includes: ${}^{3}S_{1}^{[1]}(v^{0}), {}^{1}S_{0}^{[8]}(v^{4}), {}^{3}S_{1}^{[8]}(v^{4}), {}^{3}P_{J}^{[8]}(v^{4})\dots$
- Color-octet LDMEs are obtained through fitting NLO predictions to experimental data

Introduction: Heavy Quark Spin Symmetry (HQSS)

• Relates different P-wave LDMEs

 $\langle \Omega \, | \, \mathcal{O}^{J/\psi}({}^3P_J^{[8]}) \, | \, \Omega \rangle = (2J+1) \langle \Omega \, | \, \mathcal{O}^{J/\psi}({}^3P_0^{[8]}) \, | \, \Omega \rangle + O(v^2),$

Introduction: Heavy Quark Spin Symmetry (HQSS)

Relates different P-wave LDMEs

$$\langle \Omega | \mathcal{O}^{J/\psi}({}^{3}P_{J}^{[8]}) | \Omega \rangle = (2J+1) \langle \Omega | \mathcal{O}^{J/\psi}({}^{3}P_{0}^{[8]}) | \Omega \rangle + O(v^{2}),$$

• Relates different J/ψ LDMEs with η_c LDMEs (same for bottomonium)

 $\langle \Omega | \mathcal{O}^{J/\psi}({}^{3}S_{1}^{[1/8]}) | \Omega \rangle = 3 \langle \Omega | \mathcal{O}^{\eta_{c}}({}^{1}S_{0}^{[1/8]}) | \Omega \rangle + O(v^{2}),$

 $\langle \Omega | \mathcal{O}^{J/\psi}({}^{1}S_{0}^{[8]}) | \Omega \rangle = \langle \Omega | \mathcal{O}^{\eta_{c}}({}^{3}S_{1}^{[8]}) | \Omega \rangle + O(v^{2}),$

$$\langle \Omega | \mathcal{O}^{J/\psi}({}^{3}P_{0}^{[8]}) | \Omega \rangle = \frac{1}{3} \langle \Omega | \mathcal{O}^{\eta_{c}}({}^{1}P_{1}^{[8]}) | \Omega \rangle + O(v^{2}) \dots$$

• Theory: NRQCD factorization is based on EFT, solved P-wave infrared divergence problem

$$\langle \mathcal{O}^{\mathcal{Q}}({}^{3}S_{1}^{[8]})\rangle_{\mathrm{NLO}} = \langle \mathcal{O}^{\mathcal{Q}}({}^{3}S_{1}^{[8]})\rangle_{\mathrm{Born}} + \frac{2\alpha_{s}}{3\pi m_{Q}^{2}}\mu^{4-D} \left(\frac{1}{\epsilon_{\mathrm{UV}}} - \frac{1}{\epsilon_{\mathrm{IR}}}\right)\sum_{J=0}^{J=2} \left[\frac{C_{F}}{C_{A}}\langle \mathcal{O}^{\mathcal{Q}}({}^{3}P_{J}^{[1]})\rangle_{\mathrm{Born}} + (\frac{C_{A}}{2} - \frac{1}{C_{A}})\langle \mathcal{O}^{\mathcal{Q}}({}^{3}P_{J}^{[8]})\rangle_{\mathrm{Born}}\right].$$

• Theory: NRQCD factorization is based on EFT, solved P-wave infrared divergence problem

$$\langle \mathcal{O}^{\mathcal{Q}}(^{3}S_{1}^{[8]})\rangle_{\text{NLO}} = \langle \mathcal{O}^{\mathcal{Q}}(^{3}S_{1}^{[8]})\rangle_{\text{Born}} + \frac{2\alpha_{s}}{3\pi m_{Q}^{2}}\mu^{4-D}\left(\frac{1}{\epsilon_{\text{UV}}} - \frac{1}{\epsilon_{\text{IR}}}\right)\sum_{J=0}^{J=2} \left[\frac{C_{F}}{C_{A}}\langle \mathcal{O}^{\mathcal{Q}}(^{3}P_{J}^{[1]})\rangle_{\text{Born}} + (\frac{C_{A}}{2} - \frac{1}{C_{A}})\langle \mathcal{O}^{\mathcal{Q}}(^{3}P_{J}^{[8]})\rangle_{\text{Born}}\right]$$

• Phenomenology: NRQCD factorization can explain J/ψ large p_T distribution from hadron colliders, while color-singlet model predictions are two orders of magnitude smaller

Theory: NRQCD factorization is based on EFT, solved P-wave infrared divergence problem

$$\langle \mathcal{O}^{\hat{Q}}({}^{3}S_{1}^{[8]}) \rangle_{\rm NLO} = \langle \mathcal{O}^{\hat{Q}}({}^{3}S_{1}^{[8]}) \rangle_{\rm Born} + \frac{2\alpha_{s}}{3\pi m_{Q}^{2}} \mu^{4-D} \left(\frac{1}{\epsilon_{\rm UV}} - \frac{1}{\epsilon_{\rm IR}} \right) \sum_{J=0}^{J=2} \left[\frac{C_{F}}{C_{A}} \langle \mathcal{O}^{\hat{Q}}({}^{3}P_{J}^{[1]}) \rangle_{\rm Born} + (\frac{C_{A}}{2} - \frac{1}{C_{A}}) \langle \mathcal{O}^{\hat{Q}}({}^{3}P_{J}^{[8]}) \rangle_{\rm Born} \right]$$

- Phenomenology: NRQCD factorization can explain J/ψ large p_T distribution from hadron colliders, while color-singlet model predictions are two orders of magnitude smaller
- Dramatically different sets of J/ψ LDMEs are extracted by several groups through fitting

	$p_{T,\min}$.	$\langle {\cal O}^{J/\psi}({}^3S_1^{[1]}) angle$	$\langle \mathcal{O}^{J/\psi}({}^1S_0^{[8]})\rangle$	$\langle {\cal O}^{J/\psi}({}^3S_1^{[8]}) angle$	$\langle {\cal O}^{J/\psi}(^3P_0^{[8]}) angle/m_c^2$
	(Gev)	$({ m Gev}^3)$	$(10^{-2} { m Gev}^3)$	$(10^{-2} { m Gev}^3)$	$(10^{-2} { m Gev}^3)$
Chao et al. [1]	7	1.16	7.4	0.05	0
			0	1.11	1.89
Butenschön et al. [2]	3	1.32	3.04 ± 0.35	0.168 ± 0.046	-0.404 ± 0.072
Zhang et al. 3	7	[0.24, 0.9]	[0.44, 1.13]	1.0 ± 0.3	1.7 ± 0.5
Bodwin et al. [4]	10	1.32	11.1 ± 1.4	-0.713 ± 0.364	-0.312 ± 0.151
Feng et al. [5]	7	1.16	5.66 ± 0.47	0.117 ± 0.058	0.054 ± 0.005

[1]. Y. Q. Ma, K. Wang & K. T. Chao, PRL 106 (2011) 042002 [2]. M. Butenschön & B. A. Kniehl, PRD 84 (2011) 051501

- [3]. H. F. Zhang, Z. Sun, W. L. Sang & R. Li, PRL 114 (2015) 092006
- [4]. G. T. Bodwin, K. T. Chao, H. S. Chung, U.-R.-Kim, J.-Lee & Y. Q. Ma, PRD 93 (2016) 034041
- [5]. Y. Feng, B. Gong, C. H. Chang & J. X. Wang, PRD 99 (2019) 014044

$$M_{0,r_0=3.9} = \langle \mathcal{O}^{J/\psi}({}^{1}S_{0}^{[8]}) \rangle + \frac{r_0}{m_c^2} \langle \mathcal{O}^{J/\psi}({}^{3}P_{0}^{[8]}) \rangle = (7.4 \pm 1.9) \times 10^{-2} \text{Gev}^3,$$
$$M_{1,r_1=-0.56} = \langle \mathcal{O}^{J/\psi}({}^{3}S_{1}^{[8]}) \rangle + \frac{r_1}{m_c^2} \langle \mathcal{O}^{J/\psi}({}^{3}P_{0}^{[8]}) \rangle = (0.05 \pm 0.02) \times 10^{-2} \text{Gev}^3$$

• Chao et al. ($p_T > 7 \text{ Gev}$), hadron production, fit two linear combinations:

$$M_{0,r_0=3.9} = \langle \mathcal{O}^{J/\psi}({}^{1}S_{0}^{[8]}) \rangle + \frac{r_0}{m_c^2} \langle \mathcal{O}^{J/\psi}({}^{3}P_{0}^{[8]}) \rangle = (7.4 \pm 1.9) \times 10^{-2} \text{Gev}^3,$$
$$M_{1,r_1=-0.56} = \langle \mathcal{O}^{J/\psi}({}^{3}S_{1}^{[8]}) \rangle + \frac{r_1}{m_c^2} \langle \mathcal{O}^{J/\psi}({}^{3}P_{0}^{[8]}) \rangle = (0.05 \pm 0.02) \times 10^{-2} \text{Gev}^3$$

• Butenschön et al. ($p_T > 3$ Gev), hadroproduction, ep, e^+e^- , leads to J/ψ polarization puzzle...

$$M_{0,r_0=3.9} = \langle \mathcal{O}^{J/\psi}({}^{1}S_0^{[8]}) \rangle + \frac{r_0}{m_c^2} \langle \mathcal{O}^{J/\psi}({}^{3}P_0^{[8]}) \rangle = (7.4 \pm 1.9) \times 10^{-2} \text{Gev}^3,$$
$$M_{1,r_1=-0.56} = \langle \mathcal{O}^{J/\psi}({}^{3}S_1^{[8]}) \rangle + \frac{r_1}{m_c^2} \langle \mathcal{O}^{J/\psi}({}^{3}P_0^{[8]}) \rangle = (0.05 \pm 0.02) \times 10^{-2} \text{Gev}^3$$

- Butenschön et al. ($p_T > 3 \text{ Gev}$), hadroproduction, ep, e^+e^- , leads to J/ψ polarization puzzle...
- Zhang et al. , based on the fitting from Chao et al. , combined with LHCb η_c (HQSS) data

$$M_{0,r_0=3.9} = \langle \mathcal{O}^{J/\psi}({}^{1}S_{0}^{[8]}) \rangle + \frac{r_0}{m_c^2} \langle \mathcal{O}^{J/\psi}({}^{3}P_{0}^{[8]}) \rangle = (7.4 \pm 1.9) \times 10^{-2} \text{Gev}^3,$$
$$M_{1,r_1=-0.56} = \langle \mathcal{O}^{J/\psi}({}^{3}S_{1}^{[8]}) \rangle + \frac{r_1}{m^2} \langle \mathcal{O}^{J/\psi}({}^{3}P_{0}^{[8]}) \rangle = (0.05 \pm 0.02) \times 10^{-2} \text{Gev}^3.$$

- Butenschön et al. ($p_T > 3 \text{ Gev}$), hadroproduction, ep, e^+e^- , leads to J/ψ polarization puzzle...
- Zhang et al. , based on the fitting from Chao et al. , combined with LHCb η_c (HQSS) data
- Bodwin et al. ($p_T > 10 \text{ Gev}$), hadroproduction, Leading power fragmentation + NLO NRQCD

$$M_{0,r_0=3.9} = \langle \mathcal{O}^{J/\psi}({}^{1}S_{0}^{[8]}) \rangle + \frac{r_0}{m_c^2} \langle \mathcal{O}^{J/\psi}({}^{3}P_{0}^{[8]}) \rangle = (7.4 \pm 1.9) \times 10^{-2} \text{Gev}^3,$$
$$M_{1,r_1=-0.56} = \langle \mathcal{O}^{J/\psi}({}^{3}S_{1}^{[8]}) \rangle + \frac{r_1}{m_c^2} \langle \mathcal{O}^{J/\psi}({}^{3}P_{0}^{[8]}) \rangle = (0.05 \pm 0.02) \times 10^{-2} \text{Gev}^3.$$

- Butenschön et al. ($p_T > 3$ Gev), hadroproduction, ep, e^+e^- , leads to J/ψ polarization puzzle...
- Zhang et al. , based on the fitting from Chao et al. , combined with LHCb η_c (HQSS) data
- Bodwin et al. ($p_T > 10 \,\text{Gev}$), hadroproduction, Leading power fragmentation + NLO NRQCD
- Feng et al. ($p_T > 7 \text{ Gev}$), Fit both hadroproduction and polarization data

$$\begin{split} M_{0,r_0=3.9} &= \langle \mathcal{O}^{J/\psi}({}^{1}S_{0}^{[8]}) \rangle + \frac{r_0}{m_c^2} \langle \mathcal{O}^{J/\psi}({}^{3}P_{0}^{[8]}) \rangle = (7.4 \pm 1.9) \times 10^{-2} \text{Gev}^3, \\ M_{1,r_1=-0.56} &= \langle \mathcal{O}^{J/\psi}({}^{3}S_{1}^{[8]}) \rangle + \frac{r_1}{m^2} \langle \mathcal{O}^{J/\psi}({}^{3}P_{0}^{[8]}) \rangle = (0.05 \pm 0.02) \times 10^{-2} \text{Gev}^3. \end{split}$$

- Butenschön et al. ($p_T > 3 \text{ Gev}$), hadroproduction, ep, e^+e^- , leads to J/ψ polarization puzzle...
- Zhang et al. , based on the fitting from Chao et al. , combined with LHCb η_c (HQSS) data
- Bodwin et al. ($p_T > 10 \,\text{Gev}$), hadroproduction, Leading power fragmentation + NLO NRQCD
- Feng et al. ($p_T > 7 \text{ Gev}$), Fit both hadroproduction and polarization data
- Fitting results using large $p_T J/\psi$ hadroproduction data lead to predictions much larger than HERA, Belle data, which challenges universality of the NRQCD LDMEs

$$M_{0,r_0=3.9} = \langle \mathcal{O}^{J/\psi}({}^{1}S_{0}^{[8]}) \rangle + \frac{r_0}{m_c^2} \langle \mathcal{O}^{J/\psi}({}^{3}P_{0}^{[8]}) \rangle = (7.4 \pm 1.9) \times 10^{-2} \text{Gev}^3,$$
$$M_{1,r_1=-0.56} = \langle \mathcal{O}^{J/\psi}({}^{3}S_{1}^{[8]}) \rangle + \frac{r_1}{m^2} \langle \mathcal{O}^{J/\psi}({}^{3}P_{0}^{[8]}) \rangle = (0.05 \pm 0.02) \times 10^{-2} \text{Gev}^3.$$

- Butenschön et al. ($p_T > 3 \text{ Gev}$), hadroproduction, ep, e^+e^- , leads to J/ψ polarization puzzle...
- Zhang et al. , based on the fitting from Chao et al. , combined with LHCb η_c (HQSS) data
- Bodwin et al. ($p_T > 10 \,\text{Gev}$), hadroproduction, Leading power fragmentation + NLO NRQCD
- Feng et al. ($p_T > 7 \text{ Gev}$), Fit both hadroproduction and polarization data
- Fitting results using large $p_T J/\psi$ hadroproduction data lead to predictions much larger than HERA, Belle data, which challenges universality of the NRQCD LDMEs
- NRQCD factorization at NLO in small p_T region is not reliable? Or we need more accurate theoretical calculations, for instance, NNLO, relativistic corrections, resummation?

• NRQCD still has several dynamic scales, |p|, E, Λ_{QCD} , therefore, the NRQCD power counting is nonhomogeneous, it includes soft, potential, ultra-soft modes

- NRQCD still has several dynamic scales, |p|, E, Λ_{QCD}, therefore, the NRQCD power counting is nonhomogeneous, it includes soft, potential, ultra-soft modes
- pNRQCD: based on NRQCD, integrating out the scales above *E*, only ultra-soft mode is left

pNRQCD: A. Pineda & J. Soto, Nucl. Phys. B Proc. Suppl. 64 (1998) 42

N. Brambilla, A. Pineda, J. Soto & A. Vairo, Nucl.Phys.B 566 (2000) 275; Rev.Mod.Phys. 77 (2005) 1423

$$\mathcal{L} = \Phi(\mathbf{r})^{\dagger} \left(i \partial_0 - \frac{\mathbf{p}^2}{2m} - V^{(0)}(r) \right)$$

+ corrections to the potential

+ interactions with other low-

pNRQCD,

energy degrees of freedom $\Phi(\mathbf{r})$

where $V^{(0)}(r)$ is the static potential $(-C_F \alpha_s/r)$ in the perturbative case) and $\Phi(\mathbf{r})$ is the field associated with the \overline{Q} -Q state. This EFT turned out to meet all our expec-

- NRQCD still has several dynamic scales, |p|, E, Λ_{QCD}, therefore, the NRQCD power counting is nonhomogeneous, it includes soft, potential, ultra-soft modes
- pNRQCD: based on NRQCD, integrating out the scales above *E*, only ultra-soft mode is left

pNRQCD: A. Pineda & J. Soto, Nucl. Phys. B Proc. Suppl. 64 (1998) 42

N. Brambilla, A. Pineda, J. Soto & A. Vairo, Nucl.Phys.B 566 (2000) 275; Rev.Mod.Phys. 77 (2005) 1423

$$\mathcal{L} = \Phi(\mathbf{r})^{\dagger} \left(i\partial_0 - \frac{\mathbf{p}^2}{2m} - V^{(0)}(r) \right)$$

+ corrections to the potential

+ interactions with other lowenergy degrees of freedom $\Phi(\mathbf{r})$ pNRQCD,

where $V^{(0)}(r)$ is the static potential $(-C_F \alpha_s/r)$ in the perturbative case) and $\Phi(\mathbf{r})$ is the field associated with the \overline{Q} -Q state. This EFT turned out to meet all our expec-

• Weakly-coupled pNRQCD ($|p| \gg E \gtrsim \Lambda_{QCD}$): degree of freedom — S(r, R, t), O(r, R, t), including $t\bar{t}$ near threshold, and possibaly $\Upsilon(1S)$, perturbative matching

- NRQCD still has several dynamic scales, |p|, E, Λ_{QCD}, therefore, the NRQCD power counting is nonhomogeneous, it includes soft, potential, ultra-soft modes
- pNRQCD: based on NRQCD, integrating out the scales above *E*, only ultra-soft mode is left

pNRQCD: A. Pineda & J. Soto, Nucl. Phys. B Proc. Suppl. 64 (1998) 42

N. Brambilla, A. Pineda, J. Soto & A. Vairo, Nucl.Phys.B 566 (2000) 275; Rev.Mod.Phys. 77 (2005) 1423

$$\mathcal{L} = \Phi(\mathbf{r})^{\dagger} \left(i\partial_0 - \frac{\mathbf{p}^2}{2m} - V^{(0)}(r) \right)$$

+ corrections to the potential+ interactions with other low-

pNRQCD,

energy degrees of freedom) $\Phi(\mathbf{r})$ where $V^{(0)}(r)$ is the static potential $(-C_F \alpha_s/r)$ in the per-

turbative case) and $\Phi(\mathbf{r})$ is the field associated with the

 \bar{Q} -Q state. This EFT turned out to meet all our expec-

- Weakly-coupled pNRQCD ($|p| \gg E \gtrsim \Lambda_{QCD}$): degree of freedom S(r, R, t), O(r, R, t), including $t\bar{t}$ near threshold, and possibaly $\Upsilon(1S)$, perturbative matching
- Strongly-coupled pNRQCD ($\Lambda_{\text{QCD}} \gg E$, non-coulombic): degree of freedom S(r, R, t), including J/ψ , $\psi(2S)$, $\Upsilon(nS, n \ge 2)$ and so on, nonperturbative matching

LDMEs in pNRQCD

In strongly-coupled region, LDMEs can be factorized into products of wavefunction at the origin and gluonic correlators

P-wave decay: N. Brambilla, D. Eiras, A. Pineda, J. Soto & A. Vairo, PRL 88 (2002) 012003

S-wave, P-wave decay & electromagnetic production: N. Brambilla, H. S. Chung, D. Müller & A. Vairo, JHEP 04 (2020) 095

P-wave production: N. Brambilla, H. S. Chung & A. Vairo, PRL 126, 082003 (2021), JHEP 09 (2021) 032

LDMEs in pNRQCD

In strongly-coupled region, LDMEs can be factorized into products of wavefunction at the origin and gluonic correlators

P-wave decay: N. Brambilla, D. Eiras, A. Pineda, J. Soto & A. Vairo, PRL 88 (2002) 012003

S-wave, P-wave decay & electromagnetic production: N. Brambilla, H. S. Chung, D. Müller & A. Vairo, JHEP 04 (2020) 095 P-wave production: N. Brambilla, H. S. Chung & A. Vairo, PRL 126, 082003 (2021), JHEP 09 (2021) 032

• Generally, for a production LDMEs $\langle \Omega | \mathcal{O}^{Q}(N) | \Omega \rangle$, applying pNRQCD, we have

$$\langle \Omega | \mathcal{O}^{\mathcal{Q}}(N) | \Omega \rangle = \frac{1}{\langle \boldsymbol{P} = \mathbf{0} | \boldsymbol{P} = \mathbf{0} \rangle} \int d^3 x_1 d^3 x_2 d^3 x'_1 d^3 x'_2 \phi_{\mathcal{Q}}^{(0)}(\boldsymbol{x}_1 - \boldsymbol{x}_2)$$

$$\times \left[-V_{\mathcal{O}(N)}(\boldsymbol{x}_1, \boldsymbol{x}_2; \boldsymbol{\nabla}_1, \boldsymbol{\nabla}_2) \delta^{(3)}(\boldsymbol{x}_1 - \boldsymbol{x}_1') \delta^{(3)}(\boldsymbol{x}_2 - \boldsymbol{x}_2') \right] \phi_{\mathcal{Q}}^{(0)\dagger}(\boldsymbol{x}_1' - \boldsymbol{x}_2'),$$

$$(3.4)$$

where $V_{\mathcal{O}(N)}(\boldsymbol{x}_1, \boldsymbol{x}_2; \boldsymbol{\nabla}_1, \boldsymbol{\nabla}_2)$ is the contact term given by

$$-V_{\mathcal{O}(N)}(\boldsymbol{x}_{1},\boldsymbol{x}_{2};\boldsymbol{\nabla}_{1},\boldsymbol{\nabla}_{2})\delta^{(3)}(\boldsymbol{x}_{1}-\boldsymbol{x}_{1}')\delta^{(3)}(\boldsymbol{x}_{2}-\boldsymbol{x}_{2}')$$

$$=\sum_{n\in\mathbb{S}}\int d^{3}x\langle\Omega|\left(\chi^{\dagger}\mathcal{K}_{N}\psi\right)(\boldsymbol{x})|\underline{\mathbf{n}};\boldsymbol{x}_{1},\boldsymbol{x}_{2}\rangle\langle\underline{\mathbf{n}};\boldsymbol{x}_{1}'\boldsymbol{x}_{2}'|\left(\psi^{\dagger}\mathcal{K}_{N}'\chi\right)(\boldsymbol{x})|\Omega\rangle, \qquad (3.5)$$

• $\phi^{(0)}_{\it O}$ and $V_{{\cal O}(N)}$ have to be determined from matching the NRQCD LDMEs to pNRQCD

Spin-1 S-wave LDMEs in pNRQCD

• Based on perturbative quantum mechanics, up to $O(v^2, 1/N_c^2)$ corrections, we have

$$\begin{split} \langle \mathcal{O}^{V}({}^{3}S_{1}^{[1]})\rangle &= 2N_{c} \times \frac{3|R_{V}^{(0)}(0)|^{2}}{4\pi}, \qquad \mathcal{E}_{10;10} = \left| d^{dac} \int_{0}^{\infty} dt_{1}t_{1} \int_{t_{1}}^{\infty} dt_{2}gE^{b,i}(t_{2}) \right. \\ \langle \mathcal{O}^{V}({}^{3}S_{1}^{[8]})\rangle &= \frac{1}{2N_{c}m^{2}} \frac{3|R_{V}^{(0)}(0)|^{2}}{4\pi} \mathcal{E}_{10;10}, \qquad \times \Phi_{0}^{bc}(t_{1};t_{2})gE^{a,i}(t_{1})\Phi_{0}^{df}(0;t_{1})\Phi_{\ell}^{ef}|\Omega\rangle \Big|^{2}, \\ \langle \mathcal{O}^{V}({}^{1}S_{0}^{[8]})\rangle &= \frac{1}{6N_{c}m^{2}} \frac{3|R_{V}^{(0)}(0)|^{2}}{4\pi} c_{F}^{2}\mathcal{B}_{00}, \qquad \mathcal{B}_{00} = \left| \int_{0}^{\infty} dtgB^{a,i}(t)\Phi_{0}^{ac}(0;t)\Phi_{\ell}^{bc}|\Omega\rangle \Big|^{2}, \\ \langle \mathcal{O}^{V}({}^{3}P_{0}^{[8]})\rangle &= \frac{1}{18N_{c}} \frac{3|R_{V}^{(0)}(0)|^{2}}{4\pi} \mathcal{E}_{00}, \qquad \mathcal{E}_{00} = \left| \int_{0}^{\infty} dtgE^{a,i}(t)\Phi_{0}^{ac}(0;t)\Phi_{\ell}^{bc}|\Omega\rangle \Big|^{2}, \end{split}$$

Spin-1 S-wave LDMEs in pNRQCD

• Based on perturbative quantum mechanics, up to $O(v^2, 1/N_c^2)$ corrections, we have

$$\begin{split} \langle \mathcal{O}^{V}({}^{3}S_{1}^{[1]})\rangle &= 2N_{c} \times \frac{3|R_{V}^{(0)}(0)|^{2}}{4\pi}, \qquad \mathcal{E}_{10;10} = \left| d^{dac} \int_{0}^{\infty} dt_{1}t_{1} \int_{t_{1}}^{\infty} dt_{2}gE^{b,i}(t_{2}) \right. \\ \langle \mathcal{O}^{V}({}^{3}S_{1}^{[8]})\rangle &= \frac{1}{2N_{c}m^{2}} \frac{3|R_{V}^{(0)}(0)|^{2}}{4\pi} \mathcal{E}_{10;10}, \qquad \times \Phi_{0}^{bc}(t_{1};t_{2})gE^{a,i}(t_{1})\Phi_{0}^{df}(0;t_{1})\Phi_{\ell}^{ef}|\Omega\rangle \Big|^{2} \\ \langle \mathcal{O}^{V}({}^{1}S_{0}^{[8]})\rangle &= \frac{1}{6N_{c}m^{2}} \frac{3|R_{V}^{(0)}(0)|^{2}}{4\pi} c_{F}^{2}\mathcal{B}_{00}, \qquad \mathcal{B}_{00} = \left| \int_{0}^{\infty} dtgB^{a,i}(t)\Phi_{0}^{ac}(0;t)\Phi_{\ell}^{bc}|\Omega\rangle \Big|^{2}, \\ \langle \mathcal{O}^{V}({}^{3}P_{0}^{[8]})\rangle &= \frac{1}{18N_{c}} \frac{3|R_{V}^{(0)}(0)|^{2}}{4\pi} \mathcal{E}_{00}, \qquad \mathcal{E}_{00} = \left| \int_{0}^{\infty} dtgE^{a,i}(t)\Phi_{0}^{ac}(0;t)\Phi_{\ell}^{bc}|\Omega\rangle \Big|^{2}, \end{split}$$

• $|R_V(0)|^2$ is the square of wavefunction at the origin, which can be obtained using potential model, $\mathscr{E}_{10;10}$, \mathscr{B}_{00} , \mathscr{E}_{00} are gluonic correlators, can be calculated using lattice method

Spin-1 S-wave LDMEs in pNRQCD

• Based on perturbative quantum mechanics, up to $O(v^2, 1/N_c^2)$ corrections, we have

$$\begin{split} \langle \mathcal{O}^{V}({}^{3}S_{1}^{[1]})\rangle &= 2N_{c} \times \frac{3|R_{V}^{(0)}(0)|^{2}}{4\pi}, \qquad \mathcal{E}_{10;10} = \left| d^{dac} \int_{0}^{\infty} dt_{1}t_{1} \int_{t_{1}}^{\infty} dt_{2}gE^{b,i}(t_{2}) \right. \\ \langle \mathcal{O}^{V}({}^{3}S_{1}^{[8]})\rangle &= \frac{1}{2N_{c}m^{2}} \frac{3|R_{V}^{(0)}(0)|^{2}}{4\pi} \mathcal{E}_{10;10}, \qquad \times \Phi_{0}^{bc}(t_{1};t_{2})gE^{a,i}(t_{1})\Phi_{0}^{df}(0;t_{1})\Phi_{\ell}^{ef}|\Omega\rangle \Big|^{2} \\ \langle \mathcal{O}^{V}({}^{1}S_{0}^{[8]})\rangle &= \frac{1}{6N_{c}m^{2}} \frac{3|R_{V}^{(0)}(0)|^{2}}{4\pi} c_{F}^{2}\mathcal{B}_{00}, \qquad \mathcal{B}_{00} = \left| \int_{0}^{\infty} dtgB^{a,i}(t)\Phi_{0}^{ac}(0;t)\Phi_{\ell}^{bc}|\Omega\rangle \Big|^{2}, \\ \langle \mathcal{O}^{V}({}^{3}P_{0}^{[8]})\rangle &= \frac{1}{18N_{c}} \frac{3|R_{V}^{(0)}(0)|^{2}}{4\pi} \mathcal{E}_{00}, \qquad \mathcal{E}_{00} = \left| \int_{0}^{\infty} dtgE^{a,i}(t)\Phi_{0}^{ac}(0;t)\Phi_{\ell}^{bc}|\Omega\rangle \Big|^{2}, \end{split}$$

- $|R_V(0)|^2$ is the square of wavefunction at the origin, which can be obtained using potential model, $\mathscr{E}_{10;10}$, \mathscr{B}_{00} , \mathscr{E}_{00} are gluonic correlators, can be calculated using lattice method
- Since the gluonic correlators have power divergence, and power divergences are dropped in the \overline{MS} scheme, the above gluonic correlators are not positive definite

Gluonic Correlator Evolutions

• At one-loop level, the gluonic correlators satisfy the evolution equations (\mathscr{C}_{00} does not evolve at one-loop level)

$$\frac{d}{d\log\Lambda}\mathcal{B}_{00} = -\frac{\alpha_s C_A}{\pi}\mathcal{B}_{00} + O(\alpha_s^2),$$
$$\frac{d}{d\log\Lambda}\mathcal{E}_{10;10} = \frac{2\alpha_s}{3\pi}\frac{N_c^2 - 4}{N_c}\mathcal{E}_{00} + O(\alpha_s^2),$$

Sovling the above equations, we obtain

$$egin{split} \mathcal{E}_{10;10}(\Lambda) &= \mathcal{E}_{10;10}(\Lambda_0) + rac{4(N_c^2-4)}{3N_c\,eta_0}\mathcal{E}_{00}\lograc{lpha_s(\Lambda_0)}{lpha_s(\Lambda)}, \ \mathcal{B}_{00}(\Lambda) &= \mathcal{B}_{00}(\Lambda_0) imes \left(rac{lpha_s(\Lambda)}{lpha_s(\Lambda_0)}
ight)^{2C_A/eta_0}, \end{split}$$

Gluonic Correlator Evolutions

• At one-loop level, the gluonic correlators satisfy the evolution equations (\mathscr{C}_{00} does not evolve at one-loop level)

$$\frac{d}{d\log\Lambda}\mathcal{B}_{00} = -\frac{\alpha_s C_A}{\pi}\mathcal{B}_{00} + O(\alpha_s^2),$$
$$\frac{d}{d\log\Lambda}\mathcal{E}_{10;10} = \frac{2\alpha_s}{3\pi}\frac{N_c^2 - 4}{N_c}\mathcal{E}_{00} + O(\alpha_s^2),$$

Sovling the above equations, we obtain

$$egin{split} \mathcal{E}_{10;10}(\Lambda) &= \mathcal{E}_{10;10}(\Lambda_0) + rac{4(N_c^2-4)}{3N_c\,eta_0}\mathcal{E}_{00}\lograc{lpha_s(\Lambda_0)}{lpha_s(\Lambda)}, \ \mathcal{B}_{00}(\Lambda) &= \mathcal{B}_{00}(\Lambda_0) imes \left(rac{lpha_s(\Lambda)}{lpha_s(\Lambda_0)}
ight)^{2C_A/eta_0}, \end{split}$$

• Setting $\Lambda_0 = m_c$, $\Lambda = m_b$, we can build up relations between the charmonium LDMEs and the corresponding bottomonium LDMEs

Gluonic Correlator Evolutions

• At one-loop level, the gluonic correlators satisfy the evolution equations (\mathscr{E}_{00} does not evolve at one-loop level)

$$\frac{d}{d\log\Lambda}\mathcal{B}_{00} = -\frac{\alpha_s C_A}{\pi}\mathcal{B}_{00} + O(\alpha_s^2),$$
$$\frac{d}{d\log\Lambda}\mathcal{E}_{10;10} = \frac{2\alpha_s}{3\pi}\frac{N_c^2 - 4}{N_c}\mathcal{E}_{00} + O(\alpha_s^2),$$

Sovling the above equations, we obtain

$$egin{split} \mathcal{E}_{10;10}(\Lambda) &= \mathcal{E}_{10;10}(\Lambda_0) + rac{4(N_c^2-4)}{3N_c\,eta_0}\mathcal{E}_{00}\lograc{lpha_s(\Lambda_0)}{lpha_s(\Lambda)}, \ \mathcal{B}_{00}(\Lambda) &= \mathcal{B}_{00}(\Lambda_0) imes \left(rac{lpha_s(\Lambda)}{lpha_s(\Lambda_0)}
ight)^{2C_A/eta_0}, \end{split}$$

- Setting $\Lambda_0 = m_c$, $\Lambda = m_b$, we can build up relations between the charmonium LDMEs and the corresponding bottomonium LDMEs
- Theory and phenomennology impact: Relating different Spin-1 S-wave quarkonium coloroctet LDMEs through gluonic correlators, greatly reduced independent nonperturbative parameters for quarkonium production processes (from 12 and more to 3)

Phenomenology 1: Cross Section Ratio Predictions

• Without perturbative calculations, based on the NRQCD factroization and the LDMEs in pNRQCD, we give cross section ratio predictions for $\psi(2S)$ and J/ψ , $\Upsilon(3S)$ and $\Upsilon(2S)$

Phenomenology 1: Cross Section Ratio Predictions

• Without perturbative calculations, based on the NRQCD factroization and the LDMEs in pNRQCD, we give cross section ratio predictions for $\psi(2S)$ and J/ψ , $\Upsilon(3S)$ and $\Upsilon(2S)$

• For $\psi(2S)$ and J/ψ , when $p_T \lesssim 10 \text{ Gev}$, the cross section ratio predictions start to deviate from data; similar situation for $\Upsilon(3S)$ and $\Upsilon(2S)$ when $p_T \lesssim 20 \text{ Gev}$

Phenomenology 1: Cross Section Ratio Predictions

• Without perturbative calculations, based on the NRQCD factroization and the LDMEs in pNRQCD, we give cross section ratio predictions for $\psi(2S)$ and J/ψ , $\Upsilon(3S)$ and $\Upsilon(2S)$

- For $\psi(2S)$ and J/ψ , when $p_T \lesssim 10 \text{ Gev}$, the cross section ratio predictions start to deviate from data; similar situation for $\Upsilon(3S)$ and $\Upsilon(2S)$ when $p_T \lesssim 20 \text{ Gev}$
- The deviations from data indicate that NRQCD factorization maynot be reliable in such p_T regions because of significant nonperturbative (or/and) relativistic correction effect?

• Large $p_T J/\psi(\Upsilon(nS))$ hadroproduction data can only constrain two linear combinations of the 3 $J/\psi(\Upsilon(nS))$ color-octet LDMEs

- Large $p_T J/\psi(\Upsilon(nS))$ hadroproduction data can only constrain two linear combinations of the 3 $J/\psi(\Upsilon(nS))$ color-octet LDMEs
- The gluonic correlator evolution relations can further constrain the color-octet LDMEs, that is, solving 3 gluonic correlators from 4 linear equations

- Large $p_T J/\psi(\Upsilon(nS))$ hadroproduction data can only constrain two linear combinations of the 3 $J/\psi(\Upsilon(nS))$ color-octet LDMEs
- The gluonic correlator evolution relations can further constrain the color-octet LDMEs, that is, solving 3 gluonic correlators from 4 linear equations
- Comparing NLO theory predictions for J/ψ , $\psi(2S)$, $\Upsilon(2S)$, $\Upsilon(3S)$ hadroproduction with the data, our fitting results for the 3 gluonic correlators are (charm mass scale, units of Gev²),

$p_T { m cut}$	$\mathcal{E}_{10;10}$	$c_F^2 \mathcal{B}_{00}$	\mathcal{E}_{00}
$p_T/(2m) > 3$	1.14 ± 0.12	-7.13 ± 2.89	18.9 ± 2.16
$p_T/(2m) > 5$	0.96 ± 0.29	-1.29 ± 6.63	16.0 ± 5.11

- Large $p_T J/\psi(\Upsilon(nS))$ hadroproduction data can only constrain two linear combinations of the 3 $J/\psi(\Upsilon(nS))$ color-octet LDMEs
- The gluonic correlator evolution relations can further constrain the color-octet LDMEs, that is, solving 3 gluonic correlators from 4 linear equations
- Comparing NLO theory predictions for J/ψ , $\psi(2S)$, $\Upsilon(2S)$, $\Upsilon(3S)$ hadroproduction with the data, our fitting results for the 3 gluonic correlators are (charm mass scale, units of Gev²),

$p_T \mathrm{cut}$	$\mathcal{E}_{10;10}$	$c_F^2 \mathcal{B}_{00}$	\mathcal{E}_{00}
$p_T/(2m) > 3$	1.14 ± 0.12	-7.13 ± 2.89	18.9 ± 2.16
$p_T/(2m) > 5$	0.96 ± 0.29	-1.29 ± 6.63	16.0 ± 5.11

• In terms of LDMEs, we have (units of $10^{-2} \, \text{Gev}^3$)

V	$p_T { m cut}$	$\langle \mathcal{O}^V(^3S_1^{[8]}) angle$	$\langle {\cal O}^V(^1S_0^{[8]}) angle$	$\langle {\cal O}^V(^3P_0^{[8]}) angle/m^2$
J/ψ	$p_T/(2m) > 3$	1.66 ± 0.18	-3.47 ± 1.41	3.07 ± 0.35
	$p_T/(2m) > 5$	1.40 ± 0.42	-0.63 ± 3.22	2.59 ± 0.83
$\psi(2S)$	$p_T/(2m) > 3$	0.99 ± 0.11	-2.07 ± 0.84	1.83 ± 0.21
	$p_T/(2m) > 5$	0.84 ± 0.25	-0.37 ± 1.92	1.55 ± 0.49
$\Upsilon(2S)$	$p_T/(2m) > 3$	1.79 ± 0.20	-1.12 ± 0.46	1.28 ± 0.15
	$p_T/(2m) > 5$	1.52 ± 0.47	-0.20 ± 1.04	1.08 ± 0.35
$\Upsilon(3S)$	$p_T/(2m) > 3$	1.39 ± 0.16	-0.87 ± 0.35	0.99 ± 0.11
	$p_T/(2m) > 5$	1.17 ± 0.37	-0.16 ± 0.81	0.84 ± 0.27

Fittings

Other Applications – Polarizations

40

40

40

50

50

50

• $\Upsilon(nS)$ are more transversely polarized compared with $J/\psi, \psi(2S)$

This is consistent with the fitted positive value of \mathscr{C}_{00} $({}^{3}P_{0}^{[8]}$ LDMEs) in the cancellation scenario because it leads to larger value of $\mathscr{C}_{10;10}$ (${}^{3}S_{1}^{[8]}$ LDMEs) with larger scale Λ

Other Applications

• η_c hadroproduction

Other Applications

• η_c hadroproduction

• J/ψ photoproduction (HERA data) and J/ψ production from EIC (ep frame)

Other Applications – $J/\psi + W/Z$ from LHC

• 4th column: theory prediction based on our fittings

Figure taken from M. Butenschoen, B. Kniehl, PRL 130 (2023) 4, 041901

• NRQCD LDMEs can be further factorized into products of the wavefunctions at origin and the gluonic correlators using pNRQCD in strong coupled region

- NRQCD LDMEs can be further factorized into products of the wavefunctions at origin and the gluonic correlators using pNRQCD in strong coupled region
- pNRQCD reduces the number (from 12 or more to 3) of nonperturbative parameters for quarkonium production processes, which significantly enhances theory predictive power

- NRQCD LDMEs can be further factorized into products of the wavefunctions at origin and the gluonic correlators using pNRQCD in strong coupled region
- pNRQCD reduces the number (from 12 or more to 3) of nonperturbative parameters for quarkonium production processes, which significantly enhances theory predictive power
- pNRQCD gives correct predictions for J/ψ , $\psi(2S)$ ($\Upsilon(2S)$, $\Upsilon(3S)$) cross section ratios in relatively large p_T regions without relying on perturbative calculations

- NRQCD LDMEs can be further factorized into products of the wavefunctions at origin and the gluonic correlators using pNRQCD in strong coupled region
- pNRQCD reduces the number (from 12 or more to 3) of nonperturbative parameters for quarkonium production processes, which significantly enhances theory predictive power
- pNRQCD gives correct predictions for J/ψ , $\psi(2S)$ ($\Upsilon(2S)$, $\Upsilon(3S)$) cross section ratios in relatively large p_T regions without relying on perturbative calculations
- The fitted postive value of \mathscr{E}_{00} explains why $\Upsilon(nS)$ states are more transversely polarized compared with $J/\psi, \psi(2S)$ states in the cancellation scenario. The small negative value of $c_F^2 \mathscr{B}_{00}$ is consistent with η_c hadroproduction data, although the uncertainties are large

- NRQCD LDMEs can be further factorized into products of the wavefunctions at origin and the gluonic correlators using pNRQCD in strong coupled region
- pNRQCD reduces the number (from 12 or more to 3) of nonperturbative parameters for quarkonium production processes, which significantly enhances theory predictive power
- pNRQCD gives correct predictions for J/ψ , $\psi(2S)$ ($\Upsilon(2S)$, $\Upsilon(3S)$) cross section ratios in relatively large p_T regions without relying on perturbative calculations
- The fitted postive value of \mathscr{E}_{00} explains why $\Upsilon(nS)$ states are more transversely polarized compared with $J/\psi, \psi(2S)$ states in the cancellation scenario. The small negative value of $c_F^2 \mathscr{B}_{00}$ is consistent with η_c hadroproduction data, although the uncertainties are large
- The pNRQCD fitting results still overshoot the HERA and Belle data significantly, which challenges the universality of NRQCD LDMEs

- NRQCD LDMEs can be further factorized into products of the wavefunctions at origin and the gluonic correlators using pNRQCD in strong coupled region
- pNRQCD reduces the number (from 12 or more to 3) of nonperturbative parameters for quarkonium production processes, which significantly enhances theory predictive power
- pNRQCD gives correct predictions for J/ψ , $\psi(2S)$ ($\Upsilon(2S)$, $\Upsilon(3S)$) cross section ratios in relatively large p_T regions without relying on perturbative calculations
- The fitted postive value of \mathscr{E}_{00} explains why $\Upsilon(nS)$ states are more transversely polarized compared with $J/\psi, \psi(2S)$ states in the cancellation scenario. The small negative value of $c_F^2 \mathscr{B}_{00}$ is consistent with η_c hadroproduction data, although the uncertainties are large
- The pNRQCD fitting results still overshoot the HERA and Belle data significantly, which challenges the universality of NRQCD LDMEs
- We need more precise and reliable theory predictions, including higer-order calculations, resummations, relativistic corrections, to pin-down quarkonium production mechanism