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• Quarkonium production from colliders is typical complicated multi-scale problem：

Heavy Quark Mass ! ≫ Λ!"#

Colliding Energy $ ≫ !

Inverse Size ! ≫ $
% ∼ !&

Binding Energy !& ≫ ' ∼ !&&

QCD

SCET/Collinear Factorization

NRQCD

pNRQCD

Energy Scales and Effective Field Theories for Quarkonium Production Processes

Energy Scales Effective Field Theories

• NRQCD factorization is the default framework to study quarkonium production 

Introduction: Quarkonium Production and Energy Scales
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• NRQCD factorization formula for inclusive quarkonium ( ) production𝒬

σ (A + B → 𝒬 + X) = ∑
N

̂σ (A + B → QQ̄(N ) + X) ⟨Ω |𝒪𝒬(N ) |Ω⟩,

G. T. Bodwin, E. Bratten & G. P. Lapge，PRD 51 (1995) 1125， 2900+ citations
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𝒪𝒬(Ncolor singlet) = χ†𝒦Nψ𝒫𝒬(P=0)ψ†𝒦′ N χ,

Introduction: NRQCD Factorization

𝒪𝒬(Ncolor octet) = χ†𝒦NTaψΦ†ab
ℓ 𝒫𝒬(P=0)Φbc

ℓ ψ†𝒦′ NTcχ,

where             is  a Wilson line along the path   and ℓΦℓ
𝒫𝒬(P=0) = ∑

X

𝒬 + X⟩⟨𝒬 + X
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• Color-octet  LDMEs are obtained through fitting NLO predictions to experimental data
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Introduction: Heavy Quark Spin Symmetry (HQSS)

⟨Ω |𝒪J/ψ(3P[8]
J ) |Ω⟩ = (2J + 1)⟨Ω |𝒪J/ψ(3P[8]

0 ) |Ω⟩ + O(v2),

• Relates different P-wave LDMEs
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Introduction: Heavy Quark Spin Symmetry (HQSS)

⟨Ω |𝒪J/ψ(3P[8]
J ) |Ω⟩ = (2J + 1)⟨Ω |𝒪J/ψ(3P[8]

0 ) |Ω⟩ + O(v2),

⟨Ω |𝒪J/ψ(3S[1/8]
1 ) |Ω⟩ = 3⟨Ω |𝒪ηc(1S[1/8]

0 ) |Ω⟩ + O(v2),

⟨Ω |𝒪J/ψ(1S[8]
0 ) |Ω⟩ = ⟨Ω |𝒪ηc(3S[8]

1 ) |Ω⟩ + O(v2),

⟨Ω |𝒪J/ψ(3P[8]
0 ) |Ω⟩ =

1
3

⟨Ω |𝒪ηc(1P[8]
1 ) |Ω⟩ + O(v2) . . .

• Relates different P-wave LDMEs

• Relates different  LDMEs with  LDMEs (same for bottomonium)J/ψ ηc
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• Theory: NRQCD factorization is based on EFT, solved P-wave infrared divergence problem 

⟨𝒪𝒬(3S[8]
1 )⟩NLO = ⟨𝒪𝒬(3S[8]

1 )⟩Born +
2αs

3πm2
Q

μ4−D ( 1
ϵUV

−
1

ϵIR )
J=2

∑
J=0

[ CF

CA
⟨𝒪𝒬(3P[1]

J )⟩Born + (
CA

2
−

1
CA

)⟨𝒪𝒬(3P[8]
J )⟩Born] .
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• Theory: NRQCD factorization is based on EFT, solved P-wave infrared divergence problem 

• Phenomenology: NRQCD factorization can explain   large    distribution  from hadron 
colliders, while color-singlet model predictions are two orders of magnitude smaller

J/ψ pT

• Dramatically different sets of   LDMEs are extracted by several groups through fittingJ/ψ
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3πm2
Q

μ4−D ( 1
ϵUV

−
1

ϵIR )
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CA
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• Chao et al. ( ), hadron production, fit two linear combinations：pT > 7 Gev

M0, r0=3.9 = ⟨𝒪J/ψ(1S[8]
0 )⟩ +

r0

m2
c

⟨𝒪J/ψ(3P[8]
0 )⟩ = (7.4 ± 1.9) × 10−2Gev3,

M1, r1=−0.56 = ⟨𝒪J/ψ(3S[8]
1 )⟩ +

r1

m2
c

⟨𝒪J/ψ(3P[8]
0 )⟩ = (0.05 ± 0.02) × 10−2Gev3 .
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• Fitting results using large    hadroproduction data lead to predictions much larger than 
HERA, Belle data, which challenges universality of the NRQCD LDMEs

pT J/ψ

• NRQCD factorization  at NLO in small  region is not reliable? Or we need more accurate 
theoretical calculations, for instance, NNLO, relativistic corrections, resummation?

pT
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• NRQCD still has several dynamic scales, , therefore, the NRQCD power counting 
is nonhomogeneous, it includes soft, potential, ultra-soft modes

|p | , E, ΛQCD

Potential NRQCD
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pNRQCD: A. Pineda & J. Soto, Nucl. Phys. B Proc. Suppl. 64 (1998) 42

Potential NRQCD

8/18

N. Brambilla, A. Pineda, J. Soto & A. Vairo, Nucl.Phys.B 566 (2000) 275; Rev.Mod.Phys. 77 (2005) 1423



• NRQCD still has several dynamic scales, , therefore, the NRQCD power counting 
is nonhomogeneous, it includes soft, potential, ultra-soft modes

|p | , E, ΛQCD

• pNRQCD: based on NRQCD, integrating out the scales above , only ultra-soft mode is leftE
pNRQCD: A. Pineda & J. Soto, Nucl. Phys. B Proc. Suppl. 64 (1998) 42

• Weakly-coupled pNRQCD ( ): degree of freedom — , , 

including  near threshold, and possibaly , perturbative matching

|p | ≫ E ≳ ΛQCD S(r, R, t) O(r, R, t)
tt̄ Υ(1S)

Potential NRQCD

8/18

N. Brambilla, A. Pineda, J. Soto & A. Vairo, Nucl.Phys.B 566 (2000) 275; Rev.Mod.Phys. 77 (2005) 1423



• NRQCD still has several dynamic scales, , therefore, the NRQCD power counting 
is nonhomogeneous, it includes soft, potential, ultra-soft modes

|p | , E, ΛQCD

• pNRQCD: based on NRQCD, integrating out the scales above , only ultra-soft mode is leftE
pNRQCD: A. Pineda & J. Soto, Nucl. Phys. B Proc. Suppl. 64 (1998) 42

• Weakly-coupled pNRQCD ( ): degree of freedom — , , 

including  near threshold, and possibaly , perturbative matching

|p | ≫ E ≳ ΛQCD S(r, R, t) O(r, R, t)
tt̄ Υ(1S)

• Strongly-coupled pNRQCD ( , non-coulombic): degree of freedom — , 

including   and so on, nonperturbative matching

ΛQCD ≫ E S(r, R, t)
J/ψ, ψ(2S), Υ(nS, n ≥ 2)

Potential NRQCD
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• In strongly-coupled region, LDMEs can be factorized into products of  wavefunction at the 
origin and gluonic correlators

P-wave decay: N. Brambilla, D. Eiras, A. Pineda, J. Soto & A. Vairo, PRL 88 (2002) 012003

S-wave, P-wave decay & electromagnetic production: N. Brambilla, H. S. Chung, D. Müller & A. Vairo, JHEP 04 (2020) 095

P-wave production: N. Brambilla, H. S. Chung & A. Vairo, PRL 126, 082003 (2021), JHEP 09 (2021) 032

LDMEs in pNRQCD
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S-wave, P-wave decay & electromagnetic production: N. Brambilla, H. S. Chung, D. Müller & A. Vairo, JHEP 04 (2020) 095

P-wave production: N. Brambilla, H. S. Chung & A. Vairo, PRL 126, 082003 (2021), JHEP 09 (2021) 032

• Generally, for a production LDMEs , applying pNRQCD, we have⟨Ω |𝒪𝒬(N ) |Ω⟩

LDMEs in pNRQCD

•  and  have to be determined from matching the NRQCD LDMEs to pNRQCDϕ(0)
𝒬 V𝒪(N)
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• Based on perturbative quantum mechanics，up to  corrections, we haveO(v2,1/N2
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•  is the square of wavefunction at the origin, which can be obtained using potential 
model, ， ，   are gluonic correlators, can be calculated using lattice method
|RV(0) |2

ℰ10;10 ℬ00 ℰ00

• Since the gluonic correlators have power divergence, and power divergences are dropped 
in the  scheme, the above gluonic correlators are not positive definite MS

Spin-1 S-wave LDMEs  in pNRQCD
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Sovling the above equations, we obtain

• At one-loop level, the gluonic correlators satisfy the evolution equations (  does not 
evolve at one-loop level)

ℰ00

Gluonic Correlator Evolutions
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• Theory and phenomennology impact：Relating different Spin- 1  S-wave quarkonium  color-
octet LDMEs through gluonic correlators, greatly reduced independent nonperturbative 
parameters for quarkonium production processes (from 12 and more to 3)
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• For  and , when  , the cross section ratio predictions start to deviate 
from data；similar situation for  and  when  

ψ(2S) J/ψ pT ≲ 10 Gev
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• The deviations from data indicate that NRQCD factorization maynot be reliable in such  
regions because of significant nonperturbative (or/and)  relativistic correction effect? 

pT

Phenomenology 1：Cross Section Ratio Predictions
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• Large     hadroproduction data can only constrain two linear combinations of 
the 3  color-octet LDMEs

pT J/ψ (Υ(nS))
J/ψ (Υ(nS))

Phenomenology  2： Constrain on the LDMEs
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•  are more transversely 
polarized compared with 
Υ(nS)

J/ψ, ψ(2S)

• This is consistent with the 
fitted positive value of  
(  LDMEs) in the 
cancellation scenario 
because it leads to larger 
value of  (  LDMEs)  
with larger scale 
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•  hadroproductionηc
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•  photoproduction (HERA data) and  production  from EIC (ep frame)J/ψ J/ψ
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•  4th column: theory prediction based on our fittings

图⽚来⾃ M. Butenschoen, B. Kniehl, PRL 130 (2023) 4, 041901

Figure taken from M. Butenschoen, B. Kniehl, PRL 130 (2023) 4, 041901

Other Applications —   from LHCJ/ψ + W/Z
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• The pNRQCD fitting results still overshoot the HERA and Belle data significantly, which 
challenges the universality of NRQCD LDMEs

• We need more precise and reliable theory predictions, including higer-order calculations, 
resummations, relativistic corrections, to pin-down quarkonium production mechanism
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