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Quarkonia as tools

Vector quarkonia (ψ, Υ) are easy to produce in e+e− collisions (couple to 1 photon) and
easy to detect via a large di-lepton branching fraction (do not couple to 2 gluons)

→ (charm) quark discovery in 1974 at SLAC (e+e−) & BNL (pA) via the J/ψ discovery

Proposed as tools for many applications since 40 years

QGP thermometer
Gluonometer (in proton, nucleus, meson, ...) [QQ̄ from gluon fusion at high energies]

(polarised / nuclear) PDFs in single inclusive production;
→ Evidence for gluon shadowing

GPDs in single exclusive production;
TMDs in double inclusive production or associated production with γ;
GTMDs in coherent diffractive single production, ...

Probe of intrinsic charm in double-charm production;
Probe of double parton scatterings / parton correlations in associated production;

The reason why we can measure ψ and Υ well (coupling to 1 γ and not to 2 g) is also
the reason why their production is extremely complex, ... and not understood.
Conversely, other quarkonia (ηQ, χQ) or pairs (coupling to 2 g but not to 1 γ) are much
less measured, and yet it seems we understand better their production mechanism
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The quarkonium-production revolutions

1974: J/ψ (and ψ′) discovery: the November revolution
1997: First prompt χc inclusive crosss section out by CDF

Clear issue with the CSM
2007: Run2 CDF prompt inclusive J/ψ and ψ′ polarisation out by CDF

NRQCD under tension
2012: Discovery of χb(3P) below the BB̄ threshold by ATLAS

The Υ(3S) is no more fully direct
2015: First prompt ηc inclusive cross section out by LHCb

NRQCD cannot describe the world J/ψ data

2017+2023: Multi-dimensional measurements of J/ψ pairs by ATLAS &
LHCb ?
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Approaches to Quarkonium Production

For an up-to-date review, see JPL. arXiv:1903.09185 [hep-ph] (Phys.Rept. 889 (2020) 1)

No consensus on the mechanism at work in quarkonium production
Yet, nearly all approaches assume a factorisation between the production of

the heavy-quark pair, QQ̄, and its hadronisation into a meson
Different approaches differ essentially in the treatment of the hadronisation
3 fashionable models:

1 COLOUR EVAPORATION MODEL: application of quark-hadron duality;
only the invariant mass matters; bleaching via (numerous) soft gluons ?

2 COLOUR SINGLET MODEL: hadronisation w/o gluon emission; each emission
costs αs(mQ) and occurs at short distances; bleaching at the pair-production
time

3 COLOUR OCTET MECHANISM (encapsulated in NRQCD): higher Fock states of
the mesons taken into account; QQ̄ can be produced in octet states with
different quantum # as the meson; bleaching with semi-soft gluons ?

+ extensions: Improved CEM, Soft Gluon Factorisation, Soft Colour
Interaction, ...
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CEM vs. CSM vs. COM

1 COLOUR EVAPORATION MODEL

any QQ̄ state contributes to a specific quarkonium state
colourless final state via a simple 1/9 factor
one non-pertubative parameter per meson, supposedly universal

2 COLOUR SINGLET MODEL

colourless final state via colour projection; quantum numbers enforced by spin
projection

one non-pertubative parameter per meson but equal to
the Schrödinger wave function at the origin

this parameter is fixed by the decay width or potential models and
by heavy-quark spin symmetry (HQSS)

3 COLOUR OCTET MECHANISM

one non-perturbative parameter per Fock States
expansion in v2; series can be truncated
the phenomenology partly depends on this
HQSS relates some non-perturbative parameters to each others and

to a specific quarkonium polarisation
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the Colour Evaporation Model

Based on Quark-Hadron duality argument, one writes
H. Fritzsch, PLB 67 (1977) 217; F. Halzen, PLB 69 (1977) 105

σ
(N)LO, direct
Q = Fdirect

Q
∫ 2mH

2mQ

dσ
(N)LO
QQ̄

dmQQ̄
dmQQ̄

Using a simple statistical counting [∑i runs over all the charmonium states below the DD̄ threshold]

J. F. Amundson,et al. PLB 372 (1996)

Fdirect
J/ψ =

1
9

2Jψ + 1
∑i(2Ji + 1)

,

most of the data could accounted for !

Ramona Vogt’s fits roughly give the same number for direct J/ψ’s
M. Bedjidian, [..], R. Vogt et al., hep-ph/0311048

It can easily be checked by MCFM at NLO for instance http://mcfm.fnal.gov/

Low predictive power, yet overshoots the data at large PT; issues with the χc’s
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Basic pQCD approach: the Colour Singlet Model (CSM)
C.-H. Chang, NPB172, 425 (1980); R. Baier & R. Rückl Z. Phys. C 19, 251(1983);

×
×

Q

α3s
(2mQ)

4

P 8
T

LO

➫ Perturbative creation of 2 quarks Q and Q̄ BUT

➟ on-shell (×)
➟ in a colour singlet state
➟ with a vanishing relative momentum
➟ in a 3S1 state (for J/ψ, ψ′ and Υ)

➫ Non-perturbative binding of quarks → Schrödinger wave function
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J/ψ production at the Tevatron 
sqrt(s)=1.8 TeV 

Br:5.88 % ,<0>:1.16 GeV3,µ0=(4mc
2+PT

2)1/2

unc. band : 
µ0/2 < µf,r<2 µ0 
1.4 GeV < mc < 1.6 GeV 

CDF data
J/ψ +g

CDF, PRL 79:572 & 578,1997
CDF, PRL 88:161802,2002
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COM dominance at LO : not so simple

COM: physical states can be produced by coloured pairs
NRQCD: Bodwin, Braaten, Lepage, 1995; Cho, Leibovich,...

➞ Heavy-quark line can connect to one or two gluons, not necessarily three
✔ Gluon fragmentation then LO in αS: larger rates

➞ CO fragmentation ∝ Long Distance Matrix Elements (LDMEs)
➞ When Pgluon ≫, the gluon is nearly on-shell and transversally pol.
➞ NRQCD spin symmetry:Q has the same polarisation as the gluon
✗ Experimentally, this is clearly contradicted !

➞ Yields expected to peak near end points in e+e− → J/ψX and γp → J/ψX
(even after SCET resummation)

✗ Such peaks have never been seen: LDME fine tuning needed !
✗ Cannot describe both the high-PT and PT-integrated hadroproduction yields
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Part II

Impact of QCD corrections to the
C(S,E,O)M*

*See section 2 of Phys. Rept. 889 (2020) 1 for collinear factorisation
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QCD corrections to the CSM for Υ at colliders

J.Campbell, F. Maltoni, F. Tramontano, Phys.Rev.Lett. 98:252002,2007
P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008)

CDF PRL 88 (2002) 161802
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Attention: the NNLO⋆ is not a complete NNLO
See a recent study by H.S. Shao JHEP 1901 (2019) 112
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COM at NLO in hadroproduction: even more
complicated

At LO, PT spectrum driven by the combination
of 2 CO components : 3S[8]

1 vs. 1S[8]
0 & 3P[8]

J

LO

ψ data: a little less hard than the blue curve

At NLO, the soft component becomes
harder (same effect as for CSM)

3P[8]
J becomes as hard as 3S[8]

1 and interferes with it; 1S[8]
0 a little softer

Due to this interference, it is possible to make the softer 1S[8]
0 dominant yet

with nonzero 3P[8]
J and 3S[8]

1 LDMEs

Since the 3 associated LDMEs are fit, the combination at NLO still describes
the data; hence an apparent stability of NRQCD x-section at NLO

What significantly changes is the size of the LDMEs

Polarisation: 1S[8]
0 : unpolarised; 3S[8]

1 & 3P[8]
J : transverse
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Universality of NLO NRQCD fits ?
Plot from M. Butenschön (ICHEP 2012); Discussion in JPL, Phys.Rept. 889 (2020) 1
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Further caveats: LDME upper limit from ηc data clearly violated by the 3 fits !
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The last piece in the puzzle: the ηc
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Even neglecting the dominant CS, this induces constraints on CO J/ψ LDMEs
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0 )⟩ = ⟨Oηc (3S[8]

1 )⟩ < 1.46 × 10−2 GeV3

Rules out the fits yielding the 1S[8]
0 dominance to get unpolarised yields

Even the PKU fit has now troubles to describe CDF polarisation data
Yet, the constraints actually is ⟨OJ/ψ(1S[8]

0 )⟩ = ⟨Oηc (3S[8]
1 )⟩ ≲ 5 × 10−3 GeV3 when the CS

contribution is appropriately accounted for
Nobody foresaw the impact of measuring ηc yields: 3 PRL published right after the LCHb data
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[Additional relations: ⟨Oηc (1S[8]
0 )⟩ = ⟨OJ/ψ(3S[8]

1 )⟩/3 and ⟨Oηc (1P[8]
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Tension between hadro- and photoproduction data
No peak at z ≃ 1

Plots courtesy M. Butenschön ; to appear in our EIC Quarkonium Review

NB: The small discrepancy of the blue band (CSM) could be fixed by HEF resummation
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Tension between hadro- and photoproduction data
Excess at ”any” PT

Plots courtesy M. Butenschön ; to appear in our EIC Quarkonium Review
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On the importance of QCD corrections to ψ + ψ production at
large Pψψ

T
JPL, H.-S.Shao PRL 111, 122001 (2013); PLB 751 (2015) 479; CMS JHEP 1409 (2014) 094; ATLAS EPJC (2017) 77:76

At Born (LO) order, the Pψψ
T spectrum is δ(Pψψ

T ): 2 → 2 topologies

It can be affected by initial parton kT [↔ interest for TMD studies]
By far insufficient (blue) to account for the CMS measured spectrum
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NLO α5
s contributions are crucial here and do a good job even up to the largest Pψψ

T
We do not expect NNLO (α6

s ) contributions to matter where one currently has data
[the orange histogram shows one class of leading PT α6

s contributions ]

Confirmation at larger Pψψ
T with ATLAS data !

Note: the NLO⋆ SPS red band in ATLAS EPJC (2017) 77:76 is wrong !
Like for ηc, ψ + ψ PT spectrum is well accounted by the CSM
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Table: Scaling with αs, pT and v of dσ/dp2
T for gg → cc̄(m)cc̄(n) times the respective

LDMEs and branching fractions for the relevant pairings (m, n) of cc̄ Fock states. Note

that 3P[1]
J are counted separately for J = 0, 1, 2. [By B. Kniehl and Z. He]

(m, n) 3S[1]
1

3S[8]
1

1S[8]
0

3P[8]
J

3P[1]
J

3S[1]
1 α4

s /p8
T α4

s v4/p8
T α4

s v3/p8
T α4

s v4/p8
T 0

3S[8]
1 · · · α4

s v8/p4
T α4

s v7/p6
T α4

s v8/p6
T α4

s v8/p6
T

1S[8]
0 · · · · · · α4

s v6/p8
T α4

s v7/p8
T α4

s v7/p8
T

3P[8]
J · · · · · · · · · α4

s v8/p8
T α4

s v8/p8
T

3P[1]
J · · · · · · · · · · · · α4

s v8/p8
T

Different scaling in the litterature v3 vs v4 for 1S[8]
0 , but similar pictures

CO are NNLO in v2 for single ψ, N4LO in v2 for double ψ

”0” can be misleading, it just means that it start at α5
s , like J/ψ + ηc

Indeed, rule of thumb, for cc̄, αS ∼ v2, but do not forget the PT scaling
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Part III

Summary and outlook
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The current situation in one slide ...

For an up-to-date review, see JPL. arXiv:1903.09185 [hep-ph] (Phys.Rept. 889 (2020) 1)

Colour-Singlet Model (CSM) long thought to be insufficient
. . . not as clear now

[large NLO and NNLO correction to the PT spectrum ; but not perfect → need a full NNLO]
P.Artoisenet, J.Campbell, JPL, F.Maltoni, F. Tramontano, PRL 101, 152001 (2008); JPL EPJC 61 (2009) 693; H.S. Shao JHEP 1901 (2019) 112

CSM is doing well for ψ and Υ PT-integrated yield as well as for ηc and
ψ + ψ PT spectra

S.J. Brodsky, JPL PRD 81 (2010) 051502;A. Colpani Serri, Y. Feng, C. Flore, JPL, M.A. Ozcelik, H.S. Shao, Y. Yedelkina PLB 835 (2022) 137556

Colour-Octet Mechanism (COM) helps in describing the PT spectrum
Yet, the COM NLO fits differ a lot in their conclusions owing to their

assumptions (data set, PT cut, polarisation fitted or not, etc.)
Colour-Evaporation Mechanism (CEM) ↔ quark-hadron duality

tends to overshoot the data at large PT – issue shared by some COM fits

All approaches have troubles with ep, ee or pp polarisation and/or the ηc data

J.P. Lansberg (IJCLab) Quarkonium production 22 / 25
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A EU Virtual Access to pQCD tools: NLOAccess
[in2p3.fr/nloaccess]
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https://nloaccess.in2p3.fr/


HELAC-Onia Web [nloaccess.in2p3.fr/HO/]
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https://nloaccess.in2p3.fr/HO/


MG5@NLO online [nloaccess.in2p3.fr/MG5/]
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https://nloaccess.in2p3.fr/MG5/
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